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Abstract

This paper describes human intelligence and how humans invented artificial intelligence

and machine learning. It explores the paradoxical situation that the tools that data

scientists have used to develop artificial intelligence are about subjects in which we

humans have hard-wired cognitive challenges that mislead us.
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Dedication

This paper is for Jasmina Arifovic. Because I wrote it after she left us, I did not discuss it

with her. But it is about ideas that we discussed over many years and about which Jasmina

taught me so much.

I met Jasmina in the fall of 1987 at a conference that Axel Leijonhufvud had organized at

a Certosa in Siena, Italy. The conference was about rational expectations macroeconomics.

Jasmina told me that she was a PhD student in Economics at the University of Chicago.

She liked rational expectations equilibria. Rational expectations modelers had mostly side-

stepped questions about how the artificial agents in those models had come to know the

model. That bothered Jasmina. She had read Lucas (1986) and had talked with Mike

Woodford about his research on conditions under which a system with least squares adaptive

learners could converge to a rational expectations equilibrium. Mike had told her that Albert

Marcet and I were working on related issues. That is probably why she said hello to me. I

told Jasmina that in the spring of 1987 I had attended a conference organized by Kenneth

∗I thank Herbert Dawid, Cars Hommes, and Luba Petersen for thoughtful criticisms of earlier drafts.
†New York University. Email: thomas.sargent@nyu.edu
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Arrow at the Santa Fe Institute about nonlinear dynamics, complexity, adaptation, and

optimization in systems with rugged landscapes. I told her how I had met John Holland

there and had learned about his genetic algorithms and classifier systems. The evolution of

cooperation and the prisoner’s dilemma tournament were in the air (Axelrod and Hamilton

(1981), White (1985)). John Rust was at that Spring 1987 Santa Fe meeting and set up

a contest for competing computer programs participate in a participate in a double oral

auction.1 Brian Arthur was also at the meeting and was full of insights about stochastic

approximation and ideas about how to model artificially intelligent agents. I told Jasmina

about those people and their ideas and how excited I was about them.

I saw Jasmina next in December of 1987 at the AEA meetings in Chicago. She told me

that she had read some of Holland’s papers on genetic algorithms and had some examples up

and running. She invited me to be on her PhD committee as a remote committee member. I

said I’d do if if she and Mike wanted that. Jasmina and I talked about applications of genetic

algorithms to overlapping generations models – Mike was applying least squares learning and

stochastic approximation to some OLG models at the time. I asked Jasmina if she’d like me

to arrange for her to attend the next meeting of Ken Arrow’s group at the Santa Fe Institute

and she said yes. She attended along with Ramon Marimon and others in the Spring of

1988. Aldo Rusticini came to one of those meetings and cooked spaghetti for Ramon and

me. I think that Jasmina came to one of those spaghetti dinners too. By the time of that

meeting Jasmina had completed most of what I thought was a fine PhD thesis.

I worked at the Hoover Institution then, so I invited Jasmina to visit Hoover. She came

there often when she was still a PhD student at Chicago. She had a Hoover office next to

mine. We talked a lot and read many papers. We audited a class at Stanford on genetic

algorithms taught by John Koza, one of John Holland’s former students. In Sargent (1993),

you’ll find references to pre-prints of four of Jasmina’s papers, as well as many ideas that we

talked about often. I finished that book in 1992, by which time Jasmina had launched her

scientific career.

Time passed. In the fall quarter of 2000 I visited Cal Tech. Jasmina was there too,

working with John Ledyard, an old friend of mine from when we both started at the Carnegie

Institute of Technology in 1967. John never hesitated to tell me I was off base, which was

often. That Jasmina could work with a tough guy like John did not surprise me. She had

her own opinions and a vision and a compass. Jasmina was really busy that quarter working

with John. But she invited me to go on walks with her and let me push Sarah in a stroller.

During those walks Jasmina told me what she and John were up to. Jasmina told me that

1The Santa Fe Institute ran that tournament – Todd Kaplan, Minnesota PhD student and a Cal Tech
undergrad, won the tournament. See Rust et al. (1992, 1994).
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I did not know how to treat young children because I tried to teach Sarah, who was about

18 months old, about negative numbers. Jasmina was working with other fine coauthors by

then too.

My purpose in this essay is to illustrate how the very same subjects in which Pinker

(2003) tells us we are all innately cognitively challenged are being deployed to create arti-

ficial intelligence and machine learning.2 Jasmina’s work turned the tables on this peculiar

situation by using frontier work in AI to create and test models of how people make economic

decisions in situations in which they face risk and model uncertainties. Jasmina used a no-

holds-barred approach to create, apply, and test her models of artificially intelligent agents

in a variety of situations of both theoretical and practical interest. She deployed an impres-

sive battery of tools from many parts of modern dynamic economics. For good reasons, her

work attracted attention and even collaboration from leading monetary policy authorities

like James Bullard, long-time President of the Federal Reserve Bank of St. Louis.3 If the

present paper had been written to summarize Jasmina’s work, there would be much more

to say.

I wrote only one paper with Jasmina, Arifovic and Sargent (2003). On several public

occasions, Chris Sims said that was my best paper.

1 Introduction

This essay is about human and artificial intelligence and machine learning. By artificial I

mean ‘non-human’. Before describing artificial intelligence and machine learning, I’ll define

natural or human intelligence in terms of salient classes of activities that a combination of

innate and learned skills enable intelligent people to perform: recognizing patterns and mak-

ing choices. Other aspects of human intelligence are awareness of time and space, as well

as sympathy and empathy with other people. Successive generations of parents pass on to

their children tools and perspectives that their parents taught them, along with new ideas

that they have learned through during their lives. After describing how Galileo, Darwin,

and Kepler combined extraordinary innate talents with their command of pre-existing find-

ings and theories to create scientific breakthroughs, I’ll tell how people designed computer

programs that recognize patterns and make decisions.4 My main purpose is to describe the

machine-learning “forest”, but I also mention many “trees”, i.e., a variety of concepts and

2Physics, biology, statistics, and economics.
3For an impressive small sample of her papers that shows the coherence and momentum of her research

program, please see Arifovic (1994, 1995, 1996), Arifovic and Gencay (2000), Arifovic and Ledyard (2004),
Arifovic and Ledyard (2012), Arifovic et al. (2013), and Anufriev et al. (2013).

4Hayek (2011, Appendix A) discusses other possible interpretations of natural and artificial.
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technicalities that might be new to a general reader. For readers curious to learn more about

a particular “tree”, I recommend using a good online search engine or references at the end

of this essay.

Section 2 describes human intelligence and Steven Pinker’s prescription for compensating

for its limits. Section 3 describes pioneers of artificial intelligence and machine learning who

worked in the 17th and 19th centuries, Galileo, Kepler, and Darwin. Section 4 defines

activities that comprise artificial intelligence today and confirms how Galileo, Kepler, and

Darwin were engaging in them. Section 5 describes sources of tools for machine learning

from statistics, biology, economics, and physics and how some of them are being applied.

Section 6 briefly discusses the roles of imitation and innovation in creating new possibilities.

Section 7 concludes.

2 Human Intelligence

Chapter 13 of The Blank Slate by cognitive psychologist Steven Pinker (2003) is titled Out

of Our Depths. Read it if you are thinking about the purposes of education. Based on his

understanding of our cognitive disabilities as human beings, Steven Pinker provides advice

about what to study in high school and college. He begins with things evolution has hard-

wired us to do well. During most of our 100,000 years of human pre-history and history,

things that we aren’t hard-wired to do well weren’t important. But modern life has made

some of them important. Pinker identifies four such subjects.

1. Physics. Theories and evidence about time, space, mass, motion, energy, heat, and

light.

2. Biology. Theories and evidence of life, birth, and death.

3. Statistics. Methods for describing uncertainties and for recognizing and interpreting

relative frequencies.

4. Economics. Theories and evidence about work, leisure, families, organizations, pro-

duction, distribution, markets, prices, and quantities.

Today, private and public decisions rest on understanding these subjects for which our

hard-wired “intuitions” often fail us. For working purposes, just define “intuition” as how we

think about situations that evolution constructed us to understand quickly. Maybe “common

sense” could be a synonym for intuition, things that we think we understand immediately.
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Steven Pinker describes situations in which our hard-wired prejudices, our theories about

these subjects, often lead us astray today.

Thus, our common sense doesn’t help us understand modern physics. According to

Richard Feynman and other distinguished physicists, quantum mechanics make no sense.

Neither does the general theory of relativity. Pinker tells how we had evolved to make some

statistical calculations that helped us when we were hunters and gatherers. These involved

probabilities of events that occurred frequently relative to the incidence of important risks

that we have to evaluate today. We are not naturally well-equipped to deal with probabilities

of events that occur very infrequently. That has been costly in terms of public policy deci-

sions that involve balancing costs and benefits from accepting low probability risks. Pinker

describes how evolution gave our ancestors a set of economic theories about production and

exchange that do not equip us to understand the division of labor, distribution, markets,

middlemen, intermediaries, stabilizing speculation, and profits. Actually, we naturally mis-

understand modern economic arrangements, with too often tragic consequences that have

occurred during recurrent expropriations and pogroms against middlemen and traders, spec-

ulators and liquidity providers, people who were often members of ethnic minorities.

Pinker recommends education as a technology that can help us compensate for our cog-

nitive limits by taking advantage of our innate abilities to learn. He calls for realigning

academic curricula to equip us to make better decisions today. This means teaching more

about biology, statistics, and economics and less about other subjects.

2.1 Innate Cognitive Limits and AI

Can “artificial intelligence” (AI) compensate for our cognitive disabilities? A paradox lurks

here because the principal technical tools being used to create artificial intelligence and

machine learning come from physics, biology, statistics, and economics, the same areas in

which we are innately challenged. Pioneers of machine learning and AI compensated for

their natural cognitive deficiencies by thoroughly learning and then imaginatively using the

best analytical techniques available to them. In the next section, I’ll offer two examples of

two examples.

3 Pioneers of Machine learning

3.1 Galileo Galilei

Because he accepted the theory of Nicholaus Copernicus (1473 - 1543) that the earth revolves

around the sun, Italian mathematician, scientist, physicist, astronomer Galileo Galilei (1564-
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1642) was arrested by the Inquisition in 1633.5 In 1603 Galileo deployed what we now call

“machine learning”. He (1) used some experiments to generate a data set; (2) searched for

patterns; (3) reduced the dimension of his data by fitting a function; and (4) generalized by

applying that function to ordinates beyond his data set. Galileo’s approach offers a beautiful

example for what machine learning and artificial intelligence are all about.

I refer to Galileo’s “inclined plane” experiments. Galileo wanted to know rates at which

balls of different weights fall toward the earth. Perhaps you think: “That’s easy, just apply

Newton’s laws of gravity.” Not so fast: Newton was born in 1643 and Galileo died in 1642.

The prevailing theory of falling bodies was Aristotle’s from 2000 years earlier: heavier bodies

fall faster than lighter ones.

Galileo wanted to check Aristotle’s theory empirically. Why not just drop balls of different

weights and measure how fast they fall? Galileo couldn’t do that because balls of all weights

fell much faster than the crude clocks then available could accurately measure. Therefore,

Galileo constructed a smooth inclined plane and adjusted the angle of incline to slow a falling

ball enough so that he could use a crude clock to measure a ball’s velocity as it travelled

along the plane. For a plane of length ` and height h, the ratio h
`

determines the angle of

the plane. Galileo dropped each ball and carefully measured distances d along the plane

that the had ball traveled at various times t elapsed after the ball had been dropped. For

each ball of a given weight, he made a table with two columns in which he recorded ti and

di, i “ 1, . . . , n for his n measurement times. For a given experiment, he then plotted di

against ti. He conducted experiments for a variety of balls of different weights with different

settings of ` and h (i.e., different angles for the inclined plane). He stared at his graphs and

noticed a pattern: for all of the graphs, d was proportional to t2 - the distance traveled was

proportional to the square of the elapsed time, independently of the weight of the ball. He

inferred a formula

d “ g̃

ˆ

h

`

˙

t2.

Remarkably, the weight of the ball does not appear on the right side. So the rates at which

balls fall were independent of their weight. Thus, by fitting a function, Galileo simultane-

ously accomplished data dimension reduction and generalization. He discovered an empirical

regularity that was an essential input into Isaac Newton’s thinking.

Galileo’s inclined plane experiments have all of the elements of modern machine learning

and artificial intelligence. He started without a trusted theory. He conducted experiments

and collected tables of numbers, one table for each experiment, indexed by the weight of a

5Copernicus was also a monetary economist. In 1517 he formulated an early version of Gresham’s Law,
the notion a commodity money that is overvalued at the mint will drive out a money that is undervalued at
the mint.

6



ball as well as by the length ` and height h of his inclined plane. From his tables, Galileo

inferred a quadratic function of elapsed time with a constant of proportionality that depends

on the angle of incline but not the weight of the ball. In this way, Gallileo discovered his

law of constant acceleration.6

I don’t know what inspired Galileo to design his experiments, collect those measurements,

and reduce the dimensionality of his data by fitting a function. I do know what tools that

Galileo actually possessed and other tools that could have helped him but that he didn’t

possess. Galileo knew geometry and algebra. He knew Euclid and Archimedes. Without

those tools, his intellectual brilliance and his doubts about Aristotle’s theory would not have

been enough.7

3.2 Charles Darwin

My next story is partly about how economists helped Charles Darwin (1809-1882) construct

his theory of “evolution of species by natural selection”. The following 1899 statement by

Simon N. Patton cited by Hayek (2011, Appendix B) summarizes my message: “. . . just as

Adam Smith was the last of the moralists and the first of the economists, so Darwin was

the last of the economists and the first of the biologists.” Distinguished game theorists and

economists now routinely use evolution as a source of economic and social dynamics. Some

of them are inspired by Darwin. It is fascinating that Darwin actually got an essential piece

of his theory from economists. Thus, Hayek (2011, Appendix A) notes that Darwin’s reading

Adam Smith in 1838 provided him with key components of his theory of evolution through

natural selection. Hayek (2011) documents that theories of cultural evolution were widely

accepted by economists and sociologists long before Malthus wrote in 1800.

Darwin used raw empiricism and informal statistical data dimension reduction to con-

struct his theory. He didn’t know what a gene was. He didn’t know what DNA was. He

assembled a huge data set, collected from his having bred pigeons and observed wild animals

and plants. From his pigeon data he inferred two of his three fundamental principles.

1. Natural variation.

2. Statistical inheritance of some variations.

6If you fast forward to today and watch how scientists use machine learning and AI, you’ll see smart
people collecting masses of data and fitting functions. For some wonderful examples, please see de Silva
et al. (2020) and Brunton and Kutz (2022).

7Galileo didn’t know differential and integral calculus. Decades later, Fermat and Newton and Leibniz
would invent them.
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As a pigeon breeder, Darwin used these two principles to observe variations, to select

desirable traits from them, and then to rely on statistical inheritance to create new vari-

eties of pigeons. Baby pigeons occasionally acquire some characteristics from their parents.

“Selection by Charles Darwin” guided his breeding strategy. Darwin sought a source for

selection of traits by nature. He tells us that he found that source in a book by Thomas

Malthus (2007) entitled An Essay on the Principle of Population as It Affects the Future

Improvement of Society. Malthus wrote about a competitive struggle for survival that was

set off by the propensity of populations of people to reproduce at faster rates than do food

sources. This situation created a struggle for existence that aligned surviving population

size with available food. This part of Malthus’s theory presented Darwin with his missing

piece: natural selection emerges from a struggle for existence. More babies of every species

are born than food sources can feed. The introduction to Darwin (1859) credits Malthus

with the third pillar of his theory:

3. Natural selection via a competitive struggle for survival.

Darwin’s research strategy stands as an instructive example of reducing a huge data set

to extract a low-dimensional model based on three principles that can be applied generally.

Data collection, data reduction, and generalization to deduce three principles: what an

extraordinary package!

Like Galileo, Darwin did not start from a blank slate. He was learned not just in biol-

ogy and geology but also in economics. His deep understanding of existing work in these

fields empowered him to step beyond what had been known. He operated like a Keynesian

macroeconomist in the sense that he put no “micro-foundations” under the first two pillars

of his theory – variation and inheritance of some of new traits – and that he insisted that

his theory fit patterns he had inferred from a huge data set. He was uncertain about how

much time would be required for his three pillars actually to produce the paleontological and

biological evidence at hand.8

3.3 Brahe, Kepler, Newton

While economists can be proud of how Robert Malthus and Adam Smith influenced Charles

Darwin, modern economists have actually been net importers of ideas from the natural

sciences. Pioneers of 20th century economics set out to remake their subject by abandoning

8Darwin’s work was not immediately accepted by leading natural scientists. For example, on the basis of
the then prevailing estimates of the age of the earth, Lord Kelvin would soon say that the earth was simply
much too young for Darwin’s theory to work. Lord Kelvin’s doubts impeded diffusion of Darwin’s theory
for many years.
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what they disparaged as the “literary” methods that had been used by 18th and early 19th

century economists like David Hume, Adam Smith, and Robert Malthus. Instead they

embraced quantitative methods of Tycho Brahe, Johannes Kepler, and Isaac Newton.

. . . the decisive break which came in physics in the seventeenth century, specifi-

cally in the field of mechanics, was possible only because of previous developments

in astronomy. It was backed by several millenia of systematic, scientific, astro-

nomical observation, culminating in an observer of unparalleled calibre, Tycho

de Brahe. Nothing of this sort has occurred in economic science. It would have

been absurd in physics to expect Kepler and Newton without Tycho, - and there

is no reason to hope for an easier development in economics. Von Neumann

and Morgenstern (1944, ch. 1)

To find his three laws of planetary motion that lurked within Tycho Brahe’s (1546-1601)

tables of time-stamped measurements of the positions of the known planets, Johannes Kepler

(1571-1630) used a method like Galileo’s. Isaac Newton (1642-1727) synthesized, simplified,

and generalized Galileo’s and Kepler’s findings.9 Founders of modern quantitative economics

fashioned their approach after Brahe, Kepler, and Newton.10 Koopmans (1947) tells how

even raw data collection depends on a ‘theory”.

When Tycho Brahe and Johannes Kepler engaged in the systematic labor of mea-

suring the positions of the planets, and charting their orbits, they started with

conceptions and models of the planetary system which later proved incorrect in

some aspects, irrelevant in others. Tycho always, and Kepler initially, believed

in uniform circular motion as the natural basic principle underlying the course

of celestial bodies. Tycho’s main contribution was a systematic accumulation of

careful measurements. Kepler’s outstanding success was due to a willingness to

strike out for new models and hypotheses if such were needed to account for the

observations obtained. He was able to find simple empirical “laws” which were

in accord with past observations and permitted the prediction of future obser-

vations. This achievement was a triumph for the approach in which large scale

gathering, sifting, and scrutinizing of facts precedes, or proceeds independently

of, the formulation of theories and their testing by further facts.

9Weinberg (2015) offers a spell-binding account of the scientific methods of Kepler and Galileo. Li et al.
(2021) use machine learning techniques to extract one of Kepler’s laws from Brahe’s data.

10Newton was gainfully employed as a monetary economist when he was Warden and eventually Master
of the Royal Mint from 1697 to 1727. Sargent and Velde (2002) describe Newton’s role in controversies about
the theory of policy of managing a commodity money. Copernicus was also a monetary economist.
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. . . in due course, the theorist Newton was inspired to formulate the fundamental

laws of attraction of matter, which contain the empirical regularities of plane-

tary motion discovered by Kepler as direct and natural consequences. The terms

“empirical regularities” and “fundamental laws” are used suggestively to describe

the “Kepler stage” and the “Newton stage” of the development of celestial me-

chanics. It is not easy to specify precisely what is the difference between the two

stages. Newton’s law of gravitation can also be looked upon as describing an

empirical regularity in the behavior of matter. The conviction that this “law” is

in some sense more fundamental, and thus constitutes progress over the Kepler

stage, is due, I believe, to its being at once more elementary and more general.

It is more elementary in that a simple property of mere matter is postulated. As

a result, it is more general in that it applies to all matter, whether assembled in

planets, comets, sun or stars, or in terrestrial objects - thus explaining a much

wider range of phenomena. Koopmans (1947, p. 161)

even for the purpose of systematic and large scale observation of such a many-

sided phenomenon, theoretical preconceptions about its nature cannot be dis-

pensed with . . .. Koopmans (1947, p. 163)

. . . the extraction of more information from the data requires that, in addition

to the hypotheses subject to test, certain basic economic hypotheses are formu-

lated as distributional assumptions, which often are not themselves subject to

statistical testing from the same data. Of course, the validity of information so

obtained is logically conditional upon the validity of the statistically unverifiable

aspects of these basic hypotheses. The greater wealth, definiteness, rigor, and

relevance to specific questions of such conditional information, as compared with

any information extractable without hypotheses of the kind indicated, provides

[an argument] against the purely empirical approach. Koopmans (1947, p. 170)

Von Neumann and Morgenstern (1944) urged economists to abandon the imprecise liter-

ary methods that Keynes (1936) had used to address widespread macroeconomic and social

problems and instead to work on well posed small problems.11

It is necessary to begin with those problems which are described clearly, even if

they should not be as important from any other point of view. . . . The situa-

tion is not different here than in other sciences. There too the most important

11For more about Von Neumann and Morgenstern’s opinions about Keynes ’s approach, see Bhattacharya
(2022, ch. 6).
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questions from a practical point of view may have been completely out of reach

during long and fruitful periods of their development. This is certainly still the

case in economics, where it is of utmost importance to know how to stabilize

employment, how to increase the national income, or how to distribute it ad-

equately. Nobody can really answer these questions, and we need not concern

ourselves with the pretension that there can be scientific answers at present. . . .

The great progress in every science came when, in the study of problems which

were modest as compared with ultimate aims, methods were developed which

could be extended further and further. The free fall [of Galileo] is a very trivial

physical phenomenon, but it was the study of this exceedingly simple fact and

its comparison with the astronomical material, which brought forth mechanics.12

Von Neumann and Morgenstern (1944, ch. 1)

4 Artificial Intelligence

So far we have been discussing human intelligence. Let’s now turn to artificial intelligence

or machine learning. What is it?

By artificial intelligence I mean computer programs that are designed to do some of the

“intelligent” things that creative people like Galileo, Darwin, and Kepler have done. Much

“machine learning” uses data, probability theory, and calculus to infer patterns. Designers

of computer chips and algorithms and codes that do machine learning copy Galileo’s falling

body experiments. Think of a function as a collection of “if-then” statements. Think of an

“if” part as the abscissa x of a function y “ fpxq and think of a “then” part the y ordinate.

Using a computer to recognize patterns involves (1) partitioning data into x and y parts, (2)

guessing a functional form for f , and then (3) using a statistical method like “least-squares”

or “least-lines” to infer f from data on x and y. The discipline called “statistics” provides

tools for inferring the function f .

Here’s a simple example. Suppose that at a fixed location, each day of the year you

record the length of “daytime” from sunrise to sunset. Record the day of the year as an

integer running from 1 to 365 on the x axis. Record time from sunrise to sunset on the y

axis. Make a table with x and y as the two columns. This table has 365 times 2 equals 730

numbers. Now plot them and stare. Guess that a function y “ cospα`βxq can approximate

the data. Use calculus to find values (α̂, β̂q of the two parameters α, β that make the function

fit well in the sense that they minimize
ř365

i“1pyi´cospα̂` β̂iqq2. You’ll find that this function

12“Newton’s achievement was based, not only on the regularities observed by Kepler, but also on experi-
ments conducted on the surface of the earth by Galileo.” Koopmans (1947, p. 166)
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fits well (though not perfectly). By summarizing the data (also known as performing “data

compression” or “data reduction”) in this way, you will have “generalized” by discovering

a rule of thumb (a function) that you can use to predict lengths of days for days i ą 365

outside of our sample.

5 Tools for AI

Machine learning and artificial intelligence import ideas from:13

1. Physics

2. Biology

3. Statistics

4. Economics

Let’s take these up one by one.

5.1 Physics

Eighteenth and nineteenth century work by Euler, Lagrange, and Hamilton extended and

perfected ways to use calculus to optimize integrals of functions of quantities over time. That

put in place building blocks for a twentieth first-century Hamiltonian Monte Carlo simula-

tion technique that powers modern Bayesian estimation and machine learning. Nineteenth

century work by Clausius, Maxwell, Boltzmann, and Gibbs created ways to describe thermo-

dynamics statistically. They defined a second law of thermodynamcs in terms of entropy, an

expected value of the logarithm of the ratio of one probability distribution to another. One

of those probability distributions is a flat uniform distribution that statistically represents

complete disorder, the other a distribution that represents “order” in a particular statistical

way. Entropy is how many machine learning algorithms measure discrepancies between pos-

sible models’ probability distributions and an empirical distribution traced out by data. In

ways that would contribute further tools for artificial intelligence and machine learning, Paul

Samuelson (1947) and his coworkers imported these and other techniques from mathematical

physics into economics.

13It is not a coincidence that an important inventor of modern computing and AI, John von Neumann,
contributed to all four of these fields. See Bhattacharya (2022) for an account of von Neumann’s life and his
contributions to all four fields, among others.

12



5.2 Mathematical Biology

Biology studies patterns of reproduction and variation of species across time and space.

Patterns are detected at “macro” and various “micro” levels, depending on the unit of

analysis – either an individual person or animal, or smaller units like DNA, RNA, or the

molecules composing them. Mathematical theories of biology (e.g., Feldman (2014) and

Felsenstein (1989)) are dynamic systems cast as stochastic difference or differential equations.

At the micro-level, key ideas involve encoding DNA as a binary string upon which an analyst

can perform mathematical operations that represent mutation and sexual reproduction via

cutting and recombining. See Holland (1987).

5.3 Statistics

Mathematical statistics uses two distinct meanings of a “probability distribution”:14

• A frequentist interpretation of a probability as a relative frequency to be anticipated

after observing a very long sample of independently and identically distributed random

variables.

• A Bayesian interpretation of a probability as a researcher’s subjective expression of

uncertainty about an unknown “state” or “parameter”.

Mathematical statistics deploys an arsenal of tools for (1) specifying sets of functions

that are characterized by vectors of parameters or by hierarchies of vectors of parameters;

(2) inferring those parameters from data; (3) characterizing the uncertainty that a reasonable

person should ascribe to those inferences; and (4) using probabilistic versions of those fitted

functions to generalize by projecting “out of sample”. These bread and butter techniques of

machine learning in turn rest on differential and integral calculus, tools unknown to Galileo.

5.4 Economics

Economics is about how groups of people allocate scarce resources. Modern economic theory

is multi-person decision theory within coherent environments. The artificial people inside

a coherent economic model are “rational” in the sense that all of them solve well posed

constrained optimization problems that include a common correct understanding of the

14This web site explores these two senses of probability with the assistance of Python code: https:

//python.quantecon.org/prob_meaning.html.

13

https://python.quantecon.org/prob_meaning.html
https://python.quantecon.org/prob_meaning.html


environment.15 Two leading classes of multi-person decision theories in economics are16

• Game theory

• General equilibrium theory

Components of these theories include

• Preferences

• Constraints

• Uncertainties

• Accounting systems that track stocks of assets and flows of payments

• Decentralizations and parallel computations

• Ledgers that describe histories of networks of exchanges of goods and services

• Prices

• Competition

In such models, one agent’s decision rule appears as part of the constraint sets within

other agents’ choice problems. The solution of each agent’s constrained optimization problem

produces a personal value that contains useful information for allocating resources. Decision

making and there is widespread “parallel processing”. Interconnected constraints arise via

a model’s “equilibrium conditions”. A social arrangement called an equilibrium reconciles

diverse selfish decisions with each other and with physical possibilities.

Precise notions of an equilibrium prevail within both game theory and general equilibrium

theory. Defining an equilibrium is one thing. Computing one is another. For years leading

economic theorists have wrestled with curses of dimensionality as they have sought reliable

methods to compute a competitive equilibrium allocation and price system. Landmark con-

tributions to that enterprise were Arrow and Hurwicz (1958), Arrow et al. (1959), Arrow

(1971), and Nikaidô and Uzawa (1960) as well as Scarf (1967), Scarf et al. (2008). Some

of these authors developed algorithms that deploy accounting schemes that keep track of

15When economists speak of “rational expectations” they refer to an assumed “common correct under-
standing of an environment”. “Rational expectations” is an attribute of a model, not a person.

16See Kreps (1997) for an account of common features of these two classes of models, as well as opinions
about possible new directions that have accurately foretold some subsequent applications of AI to economics.

14



individual and social values and gaps between quantities of goods and activities that people

want and quantities that the social arrangement provides.

Such work eventually discovered an intimate connections between computing an equilib-

rium and convergence to an equilibrium by a collection of boundedly rational agents. Bray

and Kreps (1987) and Marcet and Sargent (1989) distinquished between “learning within an

equilibrium” and “learning about an equilibrium.” Marcet and Sargent (1989) and Sargent

(1993) studied convergence to a rational expectations equilibrium by using the mathematics

of stochastic approximation (e.g., see Gladyshev (1965)). Robbins and Monro (1951) intro-

duced stochastic approximation as a recursive way of solving the following problem. Let

Mpxq denote the expected value at level x of the response to a certain experiment. Assume

that Mpxq is monotone but unknown to an experimenter. The experimenter wants to find an

xo that solves Mpxoq “ α. Robbins and Monro describe a recursive algorithm for generating

a random sequence txnu that in probability converges to xo.
17

Related work by Shubik (2004) and Bak et al. (1999) formulated games that can be

used to think about equilibrating processes that are facilitated by price setters. (Inside

a general equilibrium model, there are no price-setters, only price-takers.) Game theorist

Shubik’s work exploited his expertise about another subject at the frontier between general

equilibrium theory and game theory with important lessons for machine learning and AI:

• Monetary theory

For Shubik (2004) an essential purpose of monetary theory was to provide a theory about how

an equilibrium price vector can be set by agents who actually live and work inside a general

equilibrium model. An equilibrium price vector assures that every agent’s budget constraint

is satisfied. In a general equilibrium model, trade is multilateral and budget constraints

for all agents are reconciled in a single centralized exchange with a comprehensive set of

accounts. The classic general equilibrium model is static in the sense that all exchanges

occur once-and-for-all in a single place.18 The classic general equilibrium model of Arrow

and Debreu tells properties of an equilibrium price vector, but no agent inside that model

sets prices: a deus ex machina outside the model mysteriously announces a price vector that

simultaneously clears all markets.19 For Shubik, Ostroy and Starr (1974, 1990), Kiyotaki and

17Hotelling (1941) and Friedman and Savage (1947) had proposed a statistical sampling method to ac-
complish closely related purposes associated with the design of experiments. such work ultimately led to
today’s “Bayesian optimization” machine learning techniques. For example, see Snoek et al. (2012).

18By indexing the commodities traded by calendar time and contingencies, respectively, the general equi-
librium model makes dynamics and risk special cases of that static model.

19Keisler (1992, 1995, 1996) used ideas from statistical mechanics to construct processes that converge to
a competitive equilibrium price vector. His approach is connected in interesting ways to the applications of
stochastic approximation mentioned earlier.
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Wright (1989), and Bassetto (2002), monetary theory is instead about decentralized systems

populated by people who meet only occasionally and who exchange goods and services by

using “media of exchange”. Media of exchange can be durable goods (gold or silver), tokens

(pennies or paper “dollars” or “pounds”), circulating evidences of indebtedness, or entries

in a ledger of a bank or clearing house or central bank. Monetary theorists who work in

this tradition study accounting systems that accompany alternative systems of decentralized

exchange of goods. These accounting systems track individual-specific histories of bilateral

transactions and the exchanges of credits that accompanied them. Such work can lead to

theories of crypto currencies (e.g., Townsend (2020)). In subsection 5.5 we’ll describe how

Holland (1987, 1992) put a system of accounts and decentralized auctions at the heart of his

“artificial brain”. Similar accounts and exchanges of values are components of Monte Carlo

tree search.

Before turning to Holland’s model of a mind, I offer a few more words about how studying

games has contributed to machine learning. Economists constructed algorithms to compute

an equilibrium of a game. Key tools that underlie these calculations include backward

induction (dynamic programming) and extensive form tree search. Because the number of

possible states to be investigated grows exponentially, reducing the number of situations to

be investigated is essential to making headway. Here the minimax algorithm and the alpha-

beta pruning tree search algorithm are mainstays. See Knuth and Moore (1975) and https:

//www.youtube.com/watch?v=STjW3eH0Cik for descriptions of alpha-beta tree search and

watch for the appearance of an accounting system and of a competitive process involving

“survival of the fittest”. A related line of research studied whether a collection of players

who naively optimize against histograms of their opponents past actions converges to a

Nash equilibrium. For examples, see Monderer and Shapley (1996), Hofbauer and Sandholm

(2002), Foster and Young (1998), and Fudenberg and Levine (1998). When convergence

prevails, such “fictitious play” algorithms provide a way to compute an equilibrium (see

Lambert Iii et al. (2005)).

5.5 John Holland’s Model of a Mind

Let’s return to how economics and other fields have influenced AI. Computer scientist John

Holland20 combined ideas from all four of our technical fields to construct computer models

of decision makers living in environments in which they must “learn by doing” in the sense of

Arrow (1971). Holland (1987, 1992) described his approach. Marimon et al. (1990) applied

it to multi-person economic environments of types that Kiyotaki and Wright (1989) had used

20Please see https://en.wikipedia.org/wiki/John_Henry_Holland, https://www.nytimes.com/

2015/08/20/science/john-henry-holland-computerized-evolution-dies-at-86.html.
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to analyze classic questions in monetary economics. An essential component of Holland’s

machinery is a global search algorithm that he called a “genetic algorithm”. It searches

“rugged landscapes” by representing arguments of functions as strings of binary numbers that

can be randomly matched into pairs, then cut and recombined. This is Holland’s mechanical

way of representing “sexual reproduction”.21 Holland’s “genetic algorithm” comprised part

of what he called a “classifier” system. Holland’s classifier system consists of (1) a sequence

of if-then statements, some of which compete with each other for the right to decide on-line

(i.e., in real time); (2) a way to encode if-then statements as binary strings to be subjected to

random mutation, cutting, and recombining; (3) an accounting system that assigns rewards

and costs to individual if-then statements; (4) procedures for destroying and creating new

if-then statements that include random mutations and sexual reproduction based on cutting

and recombining strings; and (5) a sequence of competitive auctions that promotes survival

of fit decision rules. All of this goes on inside the mind of a single decision maker. Systems

of Holland classifiers learned how to be patient in dynamic settings, a subtle outcome that

illustrates Ramon Marimon’s dictum that “patience requires experience”. Holland classifiers

succeeded in computing a “stable” Nash equilibrium for a dynamic economic model that the

model’s authors had not anticipated although they could verify the “guess” that the Holland

classifier system eventually handed to them. See Marimon et al. (1990).

5.6 AI today

In a celebrated achievement, DeepMind’s computer program called AlphaGo succeeded in

learning how to play Go well enough to defeat champion human players. See Wang et al.

(2016). AlphaGo’s algorithm reminds me of how to cook well – add a touch of this to a

handful of that, taste, add something else, and continue experimenting. Among the in-

gredients combined to cook up AlphaGo were ideas gathered from dynamic programming;

Thompson (1933) sampling; and stochastic approximation (Robbins and Monro (1951) and

Wolfowitz (1952)); alpha-beta tree search (Knuth and Moore (1975)); Q-learning (Watkins

and Dayan (1992)); and Monte Carlo tree search (Browne et al. (2012)). A rule of thumb

tunes a parameter that balances “exploration” against “exploitation”.22

Other recent advances in machine learning also import heavily from economics and statis-

tics. Thus, computational optimal transport (e.g., Peyré et al. (2019)) uses a linear program

of Dantzig, Kantorovich, and Koopmans to measure discrepancies between a theoretical

probability and an empirical measure. It then uses that measure to guide computationally

21Michel Mayor’s Nobel prize winning work that discovered exoplanets used the genetic algorithm to
maximize a likelihood function.

22Also see March (1991) and Fudenberg and Kreps (1993, 1995).
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efficient ways to match data to a theory. Economist Harold Hotelling (1930) used Riemannian

geometry to represent parameterized families of statistical models. That idea inaugurated

computational information geometry, an approach systematized by Amari (2016).

6 Imitation and Innovation

Galileo, Kepler, Newton, and Darwin discovered new laws of nature by somehow combining

their understandings of findings and methods of their predecessors with unprecedented flashes

of insight. Respect for precedents, and their ability to venture beyond them, characterized

their work. Other famous scientists used the same general approach, producing for example

a sequence of discoveries by Franklin, Davy, Faraday, Maxwell, and Michaelson and Morley

about electricity and magnetism. Their work set the stage for Einstein’s theory of special

relativity. Each of those scientists began, not from a Blank Slate (the title of Pinker (2003)),

but with their deep understandings and respect for the ideas of their predecessors. All

saw something that their predecessors hadn’t. Somehow they created improved ways of

observing and organizing and interpreting. Thus, by unleashing mathematics that Faraday

did not know, Maxwell organized and unified laws governing electro-magnetic dynamics into

twelve equations that Heaviside would soon reduce to four equations. Their work set the

stage for Einstein’s special theory of relativity.23

To go beyond special relativity, Einstein needed to learn more math that had emerged

from a long line of work that linked geometry to algebra. Descartes (1596 –1650) invented a

coordinate system that enabled him to transform geometry problems into algebra problems

and to write down functions. Fifty years later Newton and Leibniz (1646 – 1716) used

Cartesian coordinates to invent differential and integral calculus. In the first half of the

nineteenth century, Gauss (1777 – 1855) and his student Riemann (1826 – 1866) refined

geometries for curved spaces and parallel lines that meet. Ricci (1853 – 1925) added a sharp

notion of curvature. To extend special relatively to accelerating observers, Einstein learned

how to use Riemannian geometry and Ricci curvature to construct a coherent general theory

of relativity.24

Scientific advances illustrate an interaction between “imitation” and “innovation” fea-

tured in modern theories of economic growth (for example, see Benhabib et al. (2014) and

Benhabib et al. (2020)). For pioneers in electro-magnetism and relativity, the “imitation”

phase was their copying techniques of their predecessors and teachers; the “innovation”

phase was stepping beyond what they had learned because they understood more than their

23Einstein kept a photo of Maxwell on his office wall.
24See Farmelo (2019, ch. 3) for an a history of these ideas.
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teachers.

7 Concluding Remarks

My survey of applications from physics, biology, statistics, and economics illustrates how the

subjects in which Pinker (2003) tells us we are all innately cognitively challenged are being

deployed to create artificial intelligence and machine learning. This is one good reason to

study these subjects. Another reason is their intrinsic beauty, an attribute of good science

emphasized by Weinberg (2015, ch. 11):

The theory of Copernicus provides a classic example of how a theory can be

selected on aesthetic criteria, with no experimental evidence that favors it.

Weinberg’s book has much to say about overfitting and the virtues of tightly parameterized,

theoretically interpretable structural models. These topics are central to understanding and

implementing machine learning and AI.

References

Amari, Shun-ichi. 2016. Information geometry and its applications. Springer.

Anufriev, Mikhail, Jasmina Arifovic, John Ledyard, and Valentyn Panchenko. 2013. Effi-

ciency of continuous double auctions under individual evolutionary learning with full or

limited information. Journal of Evolutionary Economics 23:539–573.

Arifovic, Jasmina. 1994. Genetic algorithm learning and the cobweb model. Journal of

Economic dynamics and Control 18 (1):3–28.

———. 1995. Genetic algorithms and inflationary economies. Journal of Monetary Eco-

nomics 36 (1):219–243.

———. 1996. The behavior of the exchange rate in the genetic algorithm and experimental

economies. Journal of Political economy 104 (3):510–541.

Arifovic, Jasmina and Ramazan Gencay. 2000. Statistical properties of genetic learning in a

model of exchange rate. Journal of Economic Dynamics and Control 24 (5-7):981–1005.

Arifovic, Jasmina and John Ledyard. 2004. Scaling up learning models in public good games.

Journal of Public Economic Theory 6 (2):203–238.

19



———. 2012. Individual evolutionary learning, other-regarding preferences, and the volun-

tary contributions mechanism. Journal of Public Economics 96 (9-10):808–823.

Arifovic, Jasmina and Thomas J Sargent. 2003. Laboratory experiments with an expecta-

tional Phillips curve. In Evolution and procedures in central banking, 23–55. Cambridge,

UK: Cambridge University Press.

Arifovic, Jasmina, James Bullard, and Olena Kostyshyna. 2013. Social learning and monetary

policy rules. The Economic Journal 123 (567):38–76.

Arrow, Kenneth J and Leonid Hurwicz. 1958. On the stability of the competitive equilibrium,

I. Econometrica 522–552.

Arrow, Kenneth J, Henry D Block, and Leonid Hurwicz. 1959. On the stability of the

competitive equilibrium, II. Econometrica 82–109.

Arrow, Kenneth Joseph. 1971. The economic implications of learning by doing. In Readings

in the Theory of Growth, 131–149. Springer.

Axelrod, Robert and William D Hamilton. 1981. The evolution of cooperation. science

211 (4489):1390–1396.

Bak, Per, Simon F Nørrelykke, and Martin Shubik. 1999. Dynamics of money. Physical

Review E 60 (3):2528.

Bassetto, Marco. 2002. A Game-Theoretic View of the Fiscal Theory of the Price Level.

Econometrica 70 (5):21672195.

Benhabib, Jess, Jesse Perla, and Christopher Tonetti. 2014. Catch-up and fall-back through

innovation and imitation. Journal of Economic Growth 19 (1):1–35.
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