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Abstract

We study the roles of asset contractibility, market power and rate of return dif-
ferentials in dynamic insurance when the contracting parties have limited commit-
ment. We define, characterize and compute Markov-Perfect risk-sharing contracts
with bargaining. These contracts significantly improve consumption smoothing and
welfare relative to self-insurance through savings. Making savings decisions part of
the contract (asset contractibility) implies sizable gains for both the insurers and
the insured. The size and distribution of these gains depend critically on the insur-
ers’ market power. Finally, a rate of return advantage for insurers destroys surplus
and is thus harmful to both contracting parties.
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1 Introduction

Households face fluctuations in their incomes but desire stable consumption. Prime exam-
ples of shocks to income are variations in labor status and changes in health. Maintaining
savings in liquid and low-risk assets, for instance in the form of government bonds or sav-
ing accounts, allows households to mitigate the impact of negative income shocks on
their standard of living. Similarly, positive income shocks provide the opportunity to
stock up savings to use in bad times. However, savings are an imperfect way to insure
against idiosyncratic shocks; for instance, the return on a deposit does not increase be-
cause the depositor has been laid off or became sick. Hence, a natural way to complement
self-insurance through savings is to contract with an insurer (private or government-run)
willing to absorb an agent’s individual risk. In a perfect world, the parties would sign
a long-term contract that maximizes the surplus generated by the relationship and fully
specifies the time paths of consumption and savings of the insured for all possible com-
binations of future income states.

In practice, however, economic actors often cannot or are legally barred from commit-
ting to a long-term contract. Take typical labor, housing, personal or property insurance
contracts: costless renegotiation or switching providers is always possible, although some-
times only at fixed time-intervals. In addition, while insurers are frequently aware of an
agent’s net worth or assets, they may or may not have the ability to control private asset
accumulation. The latter ability, however, can be key for the interplay between self-
insurance and market- or government-provided third party insurance (e.g., Arnott and
Stiglitz, 1991). As an example, government social security schemes (old-age insurance)
usually have both voluntary and controlled /forced savings components. Various mixtures
exist around the world.

We study the above issues and trade-offs in a multi-period risk-sharing setting, fea-
turing a risk-neutral insurer and a risk-averse agent endowed with a stochastic income
technology and the ability to save at a fixed rate of return. We assume that the parties
cannot commit to a long-term contract—both the agent and the insurer can only commit
to one-period risk-sharing contracts. In this setting, we show that there are still large
gains from third-party insurance and from being able to make the agent’s saving decisions
part of the insurance contract.

Specifically, we model the interaction between the agent and insurer by assuming
that they periodically bargain over the terms of the contract. Formally, we do so by
adopting the solution concept of a Markov-perfect equilibrium, as in Maskin and Tirole
(2001). This solution captures our notion of limited commitment, since contract terms
are function of only payoff-relevant variables (in our setting, the agent’s assets and the
income realization), and the idea that “bygones are bygones”, that is, the past does not
matter beyond its effect on the current state.

We find that the agent’s asset holdings are a key feature of Markov-perfect insurance
contracts, as the assets determine the agent’s endogenous outside option. Given that, we
analyze the role of asset/savings contractibility by comparing the case of “contractible
assets”, when the insurer can fully control the agent’s savings decisions, with the case of
“non-contractible assets”, in which the agent can privately decide on the amount of his
savings, even though his asset holdings are observed by the insurer. In many situations,
governments, insurance companies, banks and so on may have information about agents’



assets but, for legal or other reasons, are unable to directly control agents’ savings choices.
In other situations, for example, social security, the opposite is true.

We show that asset contractibility affects the insurance contract terms and the degree
of risk-sharing that can be achieved compared to self-insurance, except in the limit when
insurance markets are perfectly competitive (free entry). Intuitively, whenever the insurer
has market power (not necessarily monopoly power) and thus can generate positive profits
from insuring the agent, private asset accumulation provides the agent with an instrument
to “counter” the insurer by controlling his future outside option. Essentially, larger
savings by the agent today imply a larger outside option tomorrow since the agent would
be able to self-insure better. On the insurer’s side, however, a larger outside option for
the insured implies lower profits. We show that this misalignment of incentives between
the contract sides, which has its origin in the commitment problem, causes a welfare loss
to both sides when the agent’s assets are non-contractible.

Numerically, we assess the degree to which the presence of third-party insurance
improves the agents’ welfare beyond what they can achieve on their own through savings.
We show that the welfare gains for the poorest agents (zero assets) can be as high as
4.5% of their autarky consumption, per period. This number is significantly larger than
the cost of business cycle fluctuations (about 0.1%), a common benchmark for welfare
calculations in macroeconomic applications. In terms of the role of assets contractibility,
the largest welfare loss if agent’s savings are non-contractible is about 0.4% of autarky
consumption per period.

We also find that the market power of insurance providers affects significantly the
welfare gains that agents derive in Markov-perfect insurance contracts and, to a lesser
extent, the welfare losses associated with agents’ assets being non-contractible. The
welfare gains from third-party insurance are strictly decreasing in the insurers’ market
power, whereas the welfare costs of asset non-contractibility peak at an intermediate
value of market power, in between the monopolistic insurer case and perfectly competitive
insurance markets.

Finally, our numerical results suggest that both insured and insurers are better off is
there is no return on assets differential between them. A higher intertemporal return, or
equivalently discount rate, for the insurer relative to the insured reduces the total sur-
plus that can be generated in the risk-sharing relation. Furthermore, differences in the
parties rates of return on assets amplify the distortions in the time-profiles of consump-
tion and savings (relative to the equal return benchmark), which arise from the limited
commitment friction.

The current paper builds upon and extends in several dimensions our previous anal-
ysis in Karaivanov and Martin (2015). In that paper, we introduced the idea of Markov-
perfect insurance contracts and showed that limited commitment on the insurers’ side is
restrictive only when they have a rate of return advantage over agents with sufficiently
large asset holdings. The limited commitment friction makes assets carried by the agent
essential in a Markov-perfect equilibrium, as they cannot be replaced with promises of
future transfers. In contrast, if the insurer and insured have equal rates of return on
carrying assets over time, we showed that Markov-perfect insurance contracts result in
an equivalent consumption time-path as a long term contract to which only the insurer
can commit, since assets and promised utility are then inter-changeable. While we keep
the basic idea of Markov-perfect insurance, here we differ in two important aspects. First,



unlike in Karaivanov and Martin (2015), we allow agent’s assets to be non-contractible.
Second, instead of assuming an arbitrary asset-dependent but otherwise exogenous out-
side option for the agent, we endogenize the division of the gains from risk sharing by
defining and analyzing a bargaining problem between the parties.

The paper also differs from the literature on optimal contracts with hidden savings
(Allen, 1985; Cole and Kocherlakota, 2001; among others) which assumes that the prin-
cipal has no ability to monitor the agent’s assets. The main result in these papers is that
no additional insurance over self-insurance may be possible, unlike here. On the tech-
nical side, our assumption of observable assets (even if non-contractible) helps us avoid
dynamic adverse selection and the possible failure of the revelation principle with lack
of commitment (Bester and Strausz, 2001), while still preserving the empirically relevant
intertemporal implications of savings non-contractibility.

More generally, in the dynamic mechanism design literature, allowing agents to accu-
mulate assets in a principal-agent relationship typically yields one of the following three
results, depending on the specific assumptions made about the information or commit-
ment structure: (i) agent’s assets play no role (when the insurer can control the agent’s
consumption); (ii) assets eliminate the insurer’s ability to smooth the agent’s consumption
beyond self-insurance (Allen, 1985; Cole and Kocherlakota, 2001); or (iii) the environ-
ment becomes highly intractable (Fernandes and Phelan, 2000; Doepke and Townsend,
2006). In contrast, we show that Markov-perfect insurance contracts result in simple dy-
namic programs with a single scalar state variable and avoid the curse of dimensionality,
including with non-contractible savings.

2 The Environment

Consider an infinitely-lived risk-averse agent who maximizes discounted expected utility
from consumption, c¢. The agent’s flow utility is u(c), with u.. < 0 < u.(c) and u satisfying
Inada conditions.! The agent discounts the future by factor 8 € (0,1). Each period the
agent receives an output/income endowment, which he can consume or save. Output is
stochastic and takes the values 3* > 0 with probabilities 7* € (0,1) for all i = 1,...,n,
with n > 2 and where > | 7' = 1. Without loss of generality, let y' < ... < y"

The risk-averse agent would like to smooth consumption over output states and over
time. We assume that the agent can carry assets a over time via a savings (storage)
technology with fixed gross return r € (0, 37!). Let the set of feasible asset holdings be
A =[0,a], where a € (0,00) is chosen to be sufficiently large so that it is not restrictive.
In contrast, the lower bound on A is restrictive and represents a borrowing constraint.
Assuming that assets cannot be negative means that the agent cannot borrow, that is,
he can only save.

Suppose first that the agent had no access to insurance markets and therefore can only
rely on self-insurance through savings—running up and down a buffer stock of assets as in
Bewley (1977). In this situation, which we label autarky, the agent’s optimal consumption
and savings decisions depend on his accumulated assets and are contingent on the output
realization. That is, given realized output ¥, the agent carries into the next period assets

!Throughout the paper we use subscripts to denote partial derivatives and primes for next-period
values.



a' > 0 and consumes ¢' =ra +y' — a’.

Formally, the agent’s problem in autarky can be written recursively as:

Q(a) = max Zwi [u(ra+y' —a') + BQ(a’)] . (1)

{a?>0}7_,

By standard arguments (e.g., Stokey, Lucas, and Prescott, 1989), our assumptions on
u ensure that the autarky value function €2(a) is continuously differentiable, strictly
increasing, and strictly concave for all @ € A. The autarky (self-insurance) problem
is a standard “income fluctuation” problem, versions of which have been studied, for
instance, in Schechtman and Escudero (1977) and Aiyagari (1994), among many others.
The properties of the solution are well-known: imperfect consumption smoothing (¢’
differs across states with different 3"); consumption, ¢* and next period assets, a* in each
income state are increasing in current assets a; asset contraction (negative savings) in the
lowest income state(s) and asset accumulation (positive savings) for some range of asset
holdings in the highest income state(s).

Since the rate of return on assets is assumed smaller than the agent’s discount rate,
r < B!, the agent saves only to insure against consumption volatility.? In particular,
there is a precautionary motive for saving due to the fact that the agent wants to mitigate
the chance of ending up with zero assets, a situation in which he would be unable to self-
insure against negative income shocks. Note that, since assets provide the same return
in all output states, the agent is unable to insure perfectly against income fluctuations.
Thus, there is a demand for additional insurance which we address in the next section.

3 Insurance

Suppose there exists a risk-neutral, profit-maximizing insurer. Throughout the paper
we assume that the insurer can costlessly observe output realizations y* and the agent’s
assets a. The insurer can borrow and lend, without restrictions, at gross rate R > 1.
The insurer’s future profits are also discounted at the rate R. The parameter R can
have either a technological or preference interpretation. The special case r = R can be
thought of as the insurer being able to carry resources intertemporally using the same
saving technology as the agent. If, instead, R = 37!, we can think of the agent and
insurer as having the same discount factor—a standard assumption in the literature. In
general, we allow R to take any value in between these bounds, as stated in Assumption
1 below.

Assumption 1 0 <r < R< 371, withr < 371, and R > 1.

3.1 The agent’s savings decision

Suppose the insurer, while observing the agent’s assets a, cannot directly control the
agent’s savings decision, namely the choice of a’. We can think of the insurance arrange-
ment between agent and insurer in any time period as the exchange of output y* for gross

2That is, the agent would not save if output were constant over time.



transfer 7° (this includes the insurance premium or payoff in the different states of the
world). Transfers are allowed to depend on the agent’s accumulated assets a, since assets
affect how much insurance the agent demands.

Suppose the agent is offered insurance for the current period. What is his savings
decision given transfers 7¢? Call period consumption ¢! = ra + 7 — a*, as implied by the
insurance transfer 7%, the gross return on the agent’s current assets ra, and the agent’s
savings decision a”. Let v(a") denote the continuations value for the agent carrying assets
a" into the next period. The function v is an equilibrium object which depends on all
future agent-insurer interactions, which in turn depend on the level of assets carried into
the future. The consumption/savings problem of the agent can then be written as follows

max mlu(ra+7" —a") + Bu(a")]

With Lagrange multiplier &7 > 0 associated with the non-borrowing constraint,
a’ > 0, the first-order conditions are

—ue(ra+ 7" —a") + Bug(a") + £ =0,

for all © = 1,...,n. In other words, given an insurance contract for the current period
and anticipating future interactions (contracts) between the agent and the insurer, which
yield continuation value v, the agent’s savings decision is characterized by:

uc(c') — Bug(a’”) > 0, with equality if a’ > 0. (2)

When agent’s savings are non-contractible, the insurer must take into account the agent’s
savings decision given by (2) when deciding on the insurance transfers 7. We call this
the agent’s incentive-compatibility constraint, as any insurance contract which allows the
agent to make his own savings decisions must respect condition (2).

Below, we also consider the alternative case in which the agent’s savings can be
specified (enforced) as part of the insurance contract. In this case, inequality (2) does
not restrict the design of the insurance contract offered to the agent.

3.2 Markov-Perfect Insurance

We assume that agent and insurer can bargain over the insurance terms each period.
The insurance contract is negotiated every period since we assume a limited commitment
friction—neither the agent, nor the insurer can commit to honor any agreement beyond
the current period. This could be motivated by legal, regulatory, or market reasons—
for example, in many real life situations (labor contracts, housing rental, home and car
insurance, etc.) the parties are allowed to (costlessly) modify or re-negotiate the contract
terms at fixed points of time (e.g., yearly).

If the parties do not reach an agreement, they revert to their respective outside option
from then on. Of course, given the limited commitment friction, both parties know that
any agreement spanning more than one period is subject to re-negotiation and cannot be
committed to. The outside option for the agent is autarky, with value Q(a) as derived
above. The outside option of the insurer is zero profits.



To model the bargaining game between the agent and the insurer we adopt the Kalai
(1977) solution, which picks a point on the utility possibility frontier depending on a single
parameter, 6. This parameter can be interpreted as the agent’s “bargaining power”.
Specifically, in Kalai’s bargaining solution, a larger € implies that the agent obtains
surplus closer to his maximum feasible surplus while the insurer obtains surplus closer to
his outside option. The converse is true for lower values of #. The limiting case ¢ — 1
corresponds to the agent receiving his maximum possible surplus and the insurer receiving
his outside option of zero profits. This can be interpreted as a market setting with perfect
competition and free entry by insurers. In contrast, in the opposite limiting case, § — 0,
the agent receives his outside option, while the insurer receives maximum (monopoly)
profits. Formally, the Kalai bargaining solution postulates a proportional surplus-splitting
rule, which takes the form (1 — 6)S4 = 05!, where S4 is the agent’s surplus, defined as
the difference between the agent’s value in the contract and his outside option, and S’ is
the insurer’s surplus, defined analogously.

Let y = >, m'y* > 0 denote expected output. The insurer’s expected period profit is
therefore y— > | w'7'. Equivalently, using ¢! = ra+7°—a’* we can re-write the insurer’s
profit in terms of agent’s consumption and next-period assets as y+ra— Y, 7 (c'+a").
The participation constraints of the contracting parties are therefore:

Z T () + Bu(a")] > Q(a)

j+ra—Y w'lc +a" — RMI(a")] > 0,

=1

where v and II denote the (endogenous) agent and insurer continuation payoffs, respec-
tively, both as functions of the agent’s asset holdings.

Assuming 6 € (0, 1), we can write the insurance contract with Kalai bargaining as

max y+ra— Z m'[c" +a" — R™I(a")]

i’ Ii>0
{cta"20} i=1

subject to (2) for all i =1,...,n and

(1— 9)[2 w'(u(c) + Bu(a")) = a)] = Oy +ra— > 7'(c' +a" — RI(a"))] = 0. (3)

i=1

Insurer’s profits are maximized subject to the agent’s incentive-compatibility constraint
and the proportional surplus-splitting rule.

Since the insurer observes the output realization y* and there are no private informa-
tion issues or intra-temporal commitment problems, it is optimal that the agent receive
full insurance, that is, ¢! = ¢ for all . Formally, this can be shown by taking the first-
order conditions in the above problem with respect to ¢! and noticing that they are fully
symmetric with respect to i. Intuitively, the risk-averse agent is fully insured against
his idiosyncratic income fluctuations and all income risk is absorbed by the risk-neutral
insurer. Unlike in alternative settings, e.g., with moral hazard or adverse selection, here
there are no gains from making agent’s consumption state-contingent since output re-
alizations are exogenous and not affected by any agent actions or type. Assuming a
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symmetric solution, we also obtain a” = a’ for all 7. In this case, which we assume from
now on, the insurance contract can be written as

max §+ra—c—a + R 'I(d)

c,a’>0
subject to
ue(c) — Pug(a’) > 0, with equality if a’ > 0 (4)
and
(1—=0)[u(c) + pv(d) —Qa)] =0 [+ ra—c—d + RI(d")] =0 (5)

We formally define a Markov-perfect equilibrium and a Markov-perfect insurance con-
tract in our setting as follows.

Definition 1 Consider a risk-averse agent with autarky value Q(a), as defined in (1),
and bargaining power 6 € (0,1) contracting with a risk-neutral insurer.

(i) A Markov-perfect equilibrium (MPE) is a set of functions {C, A,v,11} : A —
R x A xR x Ry defined such that, for all a € A:
{C(a), A(a)} = argmax §+ra —c —d + R 'TI(a’)

c,a’>0

subject to (4) and (5) and where

v(a) = u(C(a)) + fv(Ala))
(a) =y +ra — C(a) — A(a) + R'TI(A(a)).

(ii) For any a € A, the Markov-perfect contract implied by an MPE is the transfer
schedule: T (a) =ra—C(a) — Aa).

Solving for an MPE involves finding a fixed-point in the agent value v and the insurer’s
profit functions II.

We briefly characterize the properties of the MPE with bargaining using the first-order
conditions of the insurance problem. With Lagrange multipliers p, A and { associated
with the constraints (4), (5), and o’ > 0, respectively, the first-order conditions are:

—1 4 ptiee(c) + M1 = Oue(c) +6} =0 (6)
—14 R (") — pBuga(a’) + M(1 — 0)Bvg(a’) — 0[—14+ R ',(d)]}+¢=0. (7)

The values of the Lagrange multipliers, specifically, whether they are zero or not, are
critical to understanding the equilibrium properties.

Lemma 1 In an MPE, the Lagrange multiplier on the surplus-splitting rule (5) is posi-
tive, that s, A > 0.

Proof. Re-arrange (6) as M{(1 — @)u.(c) + 6} = 1 — pug.. Given that u, > 0 and 6 > 0,
the sign of X is the same as the sign of the right-hand side. Since (4) is an inequality
constraint, ;1 > 0. Thus, given u.. < 0, the right-hand side of the previous expression is
strictly positive, which implies A > 0. =



If, in addition, p > 0, then (4) implies an interior solution for future assets, and so,
¢ = 0.2 Conditions (6) and (7) can then be solved to obtain the values of y and X\. The
optimal consumption and savings (¢, a’) implied by the Markov-perfect contract with an
interior solution for assets are characterized by

ue(c) = Pra(a’) (8)
(1= 0)[u(c) + Bu(d’) = Qa)] = 0[g + ra — c — a’ + R~'1I(d')]. (9)

We further describe the properties of the MPE insurance contracts numerically, in
Section 4.1 below.

3.2.1 Discussion

If assets are contractible and there is a strictly positive rate of return differential between
the parties (the case R > r), it would be optimal to have assets carried over time at
the higher rate R. However, since in our setting the insurer cannot commit to future
transfers, the only way it could take over all the agents’s assets would be to appropriately
compensate him today. This would imply inducing disproportionably high consumption
today, which is not optimal for intertemporal smoothing reasons. This implies that the
agent carries assets over time at the lower rate r. Note that the key problem is that the
insurer is unable to commit to a long-term disbursement of the returns from assets via
future transfers. In contrast, if the insurer could commit to an infinitely long contract, one
can show that it is optimal to extract all agent’s assets at the initial date (see Karaivanov
and Martin, 2015 for details).

When assets are non-contractible, the agent can use savings to influence his future
outside option, €2(a’). Hence, a conflict between the parties arises whenever the insurer
has market power—the insurer would prefer if the agent held lower assets, which implies
higher demand for market insurance by the agent due to his lower ability to self-insure
and thus, higher profits for the insurer. In contrast, the agent would prefer larger future
assets, a’ which would raise his outside option, Q(a’) by providing a better ability to self-
insure. The interplay of these incentives is illustrated in the numerical analysis below.

3.3 Special cases: monopoly and perfect competition

Above, we wrote the Markov-perfect insurance problem for any 6 € (0,1). To gain more
intuition about the properties of its solution, we describe what happens in two limiting
cases, as 6 goes to zero or one. The limiting case § — 0 implies that the agent has no
bargaining power and corresponds to the case of a monopolist insurer. Note that, as
6 — 0, the surplus splitting rule (5) converges to u(c) + fv(a’) = Q(a). Since in an MPE,
the agent’s value is v(a) = u(C(a)) + fv(A(a)), it follows that v(a) = Q(a), that is, the
agent always receives present value equal to his outside option. In other words, when the
agent faces a monopolist insurer, all the gains from the contract go to the insurer and the
agent receives the same value as in autarky. Note that this applies regardless of whether

3Generically, an interior solution for asset choice implies a’ > 0. However, it is possible to have an
interior solution where a’ = 0 and where the non-negativity constraint, although satisfied with equality,
does not bind. In either case, ( = 0.



constraint (4) binds or not. However, as we show in the numerical analysis, the savings
decision of the agent affects, in general, the profits that the insurer can extract.

The other limiting case, § — 1, can be interpreted as the agent having maximum
bargaining power (the insurer has zero bargaining power) and corresponds to the setting
of perfect competition (free entry by insurers). Notice that as @ — 1, the surplus splitting
rule (5) converges to § + ra — ¢ — a’ + R™'TI(a’) = 0. Since in an MPE we have,
[(a) =y +ra—C(a) — A(a) + R™'TI(A(a)), this implies TI(a) = 0, that is, the insurer
receives zero expected present value profits. This holds for all asset levels a € A and all
periods. In turn, this implies that II(a) = § 4+ ra — C(a) — A(a) = 0, or equivalently,
II(a) =y — T (a) = 0. In other words, if # — 1, the insurer makes zero expected profits
per period. Since this also implies that I1,(a) = 0 for all a € A, as 6 — 1 the first-order
conditions (6) and (7) simplify to

—1 4 pttee(c) + A =0
—1 — pfvga(a’) + A = 0.

As shown in Karaivanov and Martin (2015), Proposition 5, with free entry by insurers, the
agent’s value function v(a) is strictly concave. Thus, v,, < 0, which, together with u.. <
0, implies that the above conditions are satisfied if and only if = 0. Intuitively, when
all the surplus from the risk-sharing contract goes to the agent, there is no misalignment
between the insurer and the agent in how much assets to save and thus, the incentive-
compatibility constraint (4) does not bind.

4 The Role of Asset Contractibility

4.1 Theoretical analysis

Does asset contractibility matter for the degree of insurance and the time-profiles of
consumption and savings? In other words, how important is it for risk-sharing whether
the insurer can or cannot bind the agent to a specific savings level? To answer these
questions, we investigate whether the incentive-compatibility constraint (4) binds in an
MPE, and under what conditions. If the constraint does not bind, then whether saving
decisions can or cannot be contracted upon would not matter for risk-sharing. If the
constraint does bind, however, then clearly the agent and the insurer have conflicting
views of what savings should be. In the proposition below, we show that, in general,
asset contractibility does matter for the contract terms.

Proposition 1 In an MPE, if I1,(a") < 0 for some a € A such that ' = A(a) > 0,
then the incentive-compatibility constraint (4) binds, that is, the Lagrange multiplier p is
positive.

Proof. Suppose i = 0. Then (6) and Lemma 1 imply 1 — A0 = A(1 — )u.(c) > 0. Since
a’ > 0, we have ¢ = 0 and so we can rearrange (7) as

R (a')(1 = M) = M1 = 0)[uc(c) — Bua(a’)]

10



The left-hand side is negative since, by assumption, I1,(a’) < 0 and since, as shown above,
1 — A0 > 0. The right-hand side, however, is non-negative by (4), A > 0 and § € (0,1) —
a contradiction. m

The proposition above shows that, as long as insurer’s profits are strictly decreasing
in the agent’s assets for some a’ > 0 in A at which the agent is not borrowing-constrained,
then Markov-perfect insurance contracts in which the insurer is able to specify and control
agent savings (equivalently consumption) differ from Markov-perfect contracts in which
the insurer is unable to do so. That is, asset contractibility matters for any asset level a
satisfying the proposition conditions. Insurer’s profits that monotonically decrease in the
agent’s assets (holding bargaining power 6 constant) naturally arise, for example, if the
agent’s preferences exhibit decreasing absolute risk aversion (DARA). In that case richer
agents have lower demand for market insurance (they can do more smoothing via their
own assets) compared to poorer agents. The borrowing constraint a’ > 0 is also less likely
to bind for richer agents. See the numerical analysis section below for an illustration.

We can gain more intuition by looking at the special cases when 6 approaches its
bounds. As shown in Karaivanov and Martin (2013), in the monopolistic insurer case
(the case 8 — 0), if u is unbounded below and satisfies a mild technical condition, MPE
contracts with and without asset contractibility differ and asset contractibility affects the
insurer’s profits. The reason is that the commitment friction creates a misalignment in
the asset accumulation incentives of the contracting parties. Intuitively, the agent can
use his ability to save privately to increase his outside option, since €2 is strictly increasing
in a, ensuring higher future transfers, which counters the principal’s desire, coming from
profit-maximization, to drive the agent towards the lower utility bound ©(0).

As 0 — 1, the case of free entry by insurers, we showed above that the insurer
makes zero expected profits per period for all assets levels a and that y = 0—the savings
incentive-compatibility constraint (4) does not bind. In this case, since all of the surplus
goes to the agent, the objectives of the two sides are perfectly aligned, and because the
insurer makes zero expected profits per period, asset contractibility is irrelevant—the
insurance contract is the same, regardless of whether the insurer can control the agent’s
savings. The result that, with free entry, the insurer makes zero profits per period is
critical, as it does not allow the insurer to exploit his rate of return advantage when
r < R if assets are contractible.

4.2 Numerical analysis

We illustrate and quantify the effects of asset contractibility in Markov-perfect insur-
ance contracts using a numerical simulation. We adopt the parameterization we used
previously in Karaivanov and Martin (2015). Specifically, suppose u(c) = Inc and pick
the following parameter values: 8 = 0.93, r = 1.06, R = 1.07, y* = 0.1, y*> = 0.3 and
7t = 72 = 0.5. These parameters imply expected output 4 = 0.2. For market power, we

choose 6 = 0.5 as benchmark and analyze below the effects of varying it.

To compute the various cases we use the following method. We start off by computing
the autarky problem. We use a discrete grid of 100 points for the asset space but allow
all choice variables to take any admissible value. Cubic splines are used to interpolate
between grid points. The upper bound for assets a is set to 5 which ensures that the
asset accumulation functions always cross the 45-degree line (i.e., the upper bound is
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Figure 1: Consumption and Savings
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never restrictive). Next we compute the Markov-perfect equilibrium assuming 6 = 1
(perfect competition), since in this case asset contractibility does not matter. We use
the first-order conditions to the autarky and MPE problems to compute the numerical
solutions for each case. Having solved the MPE with # = 1 we use it as the starting point
to compute an MPE for other assumptions on market power and asset contractibility.
These problems are solved using standard value function iteration methods.

Figure 1 displays the agent’s consumption, ¢ and net savings, a’ — a, as a function of
the agent’s current asset level a. The solid line corresponds to the case with contractible
assets, i.e., when constraint (4) is not imposed. The dashed line corresponds to the
case when the agent’s choice of @’ is not contractible, that is, when constraint (4) is
imposed. We see that the agent’s consumption is strictly increasing in his assets while
net savings are decreasing in assets. Allowing for the savings decision to be part of
the insurance contract results in higher consumption and lower savings for the agent.
Intuitively, when assets are contractible, the insurer wants to push agent’s assets towards
zero as this generates lower outside option and more profits. In addition, less assets
are carried over time at the agent’s rate of return r instead of the higher return R. The
long-run implications of asset contractibility are also significantly different. When agent’s
assets are not contractible, if we start the agent with some initial assets ay and use the
computed MPE to simulate the insurance contract for infinitely many periods, then the
agent’s assets converge in the limit to a positive value. This can be seen by the fact that
the dashed-line in the right panel of Figure 1, which shows savings a’ — a, is above zero
for low enough asset values and below zero for sufficiently high asset levels. In contrast,
when savings are contractible, the agent’s assets converge to zero in finite time, as proven
in Karaivanov and Martin (2015).

Figure 2 shows the implications of asset (non-)contractibility for the agent’s wel-
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Figure 2: Welfare and Profits
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fare and the insurer’s profits. Agent welfare is measured as the per-period consumption
equivalent compensation that the agent would require in autarky in order to be indifferent
between remaining in autarky and accepting the insurance contract. Formally, for any
a € A, we define the welfare gains as

A(a) = exp{(1 = f)[v(a) = Q(a)]} — 1.

Insurer’s profits are measured as the expected net present value II(a), which is expressed
in output units. As we can see, both the agent welfare and insurer’s profits are strictly
decreasing in agent’s assets a. This is intuitive: at lower asset levels the agent is less able
to self-insure and therefore benefits more from additional insurance. That is, the surplus
generated in an insurance contract, which is proportionally split between the parties, is
larger when the agent’s wealth is lower.

Notice that the welfare gains for the agent in an MPE relative to self-insurance can
be substantial: at the extreme, at zero assets (no ability to self-insure), they amount
to almost 0.8% of consumption per period. The welfare gains are still significant at
higher asset levels, converging towards 0.1% of autarky consumption per period, which
is about the same number as the estimated cost of business cycles fluctuations for the
average agent—see Lucas (1987). The welfare loss that arises if the agent’s assets are
non-contractible (the difference between the solid and dashed lines on the figure) can be
large too: at zero assets, it is about 0.19%. This difference, however, becomes negligible
at high asset levels.

Turning to the insurer’s profits, we see that they are the largest when the insurer
contracts with an agent with zero assets (given our log utility, this corresponds to the
highest demand for insurance and lowest ability to self-insure). In this case, the net
present value of profits equal 54% and 40% of the expected per-period output (5 = 0.2),
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for the cases with and without contractible assets, respectively. As we can see, being
able to contract on the savings decision can also significantly boost insurer’s profits, in
addition to agent’s welfare.

5 Extensions

5.1 Market power

We now analyze how the degree of the insurer’s market power affects the results. That is,
how do Markov-perfect insurance contracts change when we vary the bargaining power
parameter #7 The proportional surplus-splitting rule, (5) directly implies that raising
the agent’s bargaining power 6 strictly increases the agent’s net surplus from market
insurance, v(a) — Q(a), relative to the insurer’s present-value profits profits I1(a).

Using the parameterization from the previous section, we quantify the effects of market
power on the agent’s welfare and the insurer’s profits. Figure 3 shows the consumption
equivalent compensation A(a) and the insurer’s profits at zero assets, plotted as a function
of the parameter #. Recall that higher 6 can be interpreted as lower market power for
the insurer. As we see from the graph, unsurprisingly, the agent’s welfare increases with
his bargaining power, while the insurer’s profits decrease. As we converge to a more
competitive environment (higher 6), the agent’s welfare increases considerably. In the
extreme, at § — 1 (perfectly competitive insurance market), the consumption equivalent
compensation value of insurance in an MPE for an agent with zero wealth is about 4.5%
of his autarky consumption, per period. At the other extreme, when  — 0 (monopolistic
insurer), the profits of an insurer facing an agent with zero wealth are the largest, with
net present value about 65% of expected period output.

Figure 3 also shows that both the agent and the insurer lose (in terms of welfare
or profits) when the agent’s assets are not contractible over the whole range 6 € (0,1).
Interestingly, for the agent, the largest welfare loss from savings non-contractibility, equal
to about 0.4% of autarky consumption, occurs at an interior value for the bargaining
power parameter, at around ¢ = 0.8. Remember that the agent cannot benefit from asset
contractibility in the monopoly case (6 — 0) since in that case all gains from controlling
the aget’s assets go to the insurer. Also, as argued above, the agent does not benefit
from asset contractibility in the case of perfect competition (§ — 1) since in that case
the MPE with and without asset contractibility coincide (see Sections 3.3 and 4.1). For
the insurer, the largest loss from asset non-contractibility occurs as # — 0 (the monopoly
case), with magnitude slightly higher than 14% of expected period output.

5.2 The Rate of Return R

We next analyze the effects of varying the insurer’s intertemporal rate of return, R. In-
creasing R is equivalent to decreasing the factor by which future insurer’s profits are
discounted, that is, making the insurer more impatient. Note that there is no direct pro-
ductivity effect of varying R as the agent’s output technology, and hence total resources,
are independent of R. In addition, the agent’s autarky problem (1) remains the same.

Figure 4 plots the agent’s welfare gains in an MPE relative to self-insurance, as mea-
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Figure 3: Market Power
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sured by A(a), and the insurer’s present value profits II(a) as we vary R over its full
range, from R = r = 1.06 to R = 1/ ~ 1.075. All other parameters, including the
bargaining power 6, are held fixed at their respective benchmark values. In the interest
of providing the clearest intuition for the results, we focus on the case of zero assets,
a = 0. All other asset levels provide a similar qualitative picture (details are available
upon request).

Two main results are evident from Figure 4. First, both the agent’s welfare gains
relative to autarky and the present value of the insurer’s profits are strictly decreasing in
R. The intuition for this result is found by looking at the direct effect of varying R on
the agent’s and insurer’s surplus in the contract. If the decision variables ¢ and a’ were
held fixed, the agent’s surplus, u(c) + fv(a’) — 2(a) is constant in R, while the insurer’s
surplus, ¥ + ra — ¢ — a’ + R7I(d’), is strictly decreasing in R. At a = 0, when assets
are contractible we have a’ = 0 and thus, when R increases, the only way to satisfy the
proportional surplus-splitting constraint (5) is to decrease agent’s consumption. When
a > 0, savings decisions do vary with R and hence, there are further effects on welfare
and profits.* Our numerical simulations show that, for the chosen parameters, the overall
effect still goes in the same direction as in the case of zero assets. The difference in welfare
gains as R varies can be substantial; for example, at zero assets, going from R ~ 1/
to R = r results in a welfare increase for the agent equivalent to 0.14% of his autarky
consumption per period.

Second, Figure 4 shows that our results on the effects of asset (non-)contractibility

4In particular, the agent would prefer to contract with an insurer who has an intertemporal rate
of return R closer to the agent’s rate of return r as this mitigates the distortion in the time-profiles
of consumption and savings arising from the commitment friction (see Karaivanov and Martin, 2015,
Section 3.2 for additional details).
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Figure 4: Rates of Return
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continue to hold for all admissible values of R. Making assets contractible increases
both the agent’s welfare and the insurer’s profits (compare the dashed with the solid
lines). Quantitatively, at zero assets, the welfare gains from making the agent’s assets
contractible are the highest at R = r = 1.06 and are equivalent to 0.23% of autarky
consumption per period, compared to 0.19% at the benchmark value of R = 1.07 or
0.18% at R~ 1/p.

6 Concluding remarks

We study the role of assets contractibility, market power and the rate of return differential
between insured and insurers in a dynamic risk-sharing setting with a limited commitment
friction. We find significant welfare effects along all three dimensions. Potential lessons
from our analysis with relevance for actual insurance markets with commitment frictions
similar to those we model indicate the desirability of increased competition, extending
the ability to condition insurance terms on both the current assets and the savings of the
insured, as well as mitigating the possibility of large return on assets differentials between
insurance providers and households or firms.
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