
Digital Platforms, Blockchains, and Financial Contracts�

Alexander Karaivanov

Department of Economics

Simon Fraser University

March 2024

Abstract

I analyze the mapping between fundamental elements of financial contracts and transac-

tions – property rights, enforcement, commitment, information – and the algorithmic tools

and constraints of digital technologies such as blockchain platforms and automated (‘smart’)

contracts. I then describe and formalize the microeconomic foundations, algorithmic build-

ing blocks, and possible uses of blockchain digital platforms for implementing constrained-

optimal multiperiod contracts in incomplete markets settings with information or enforcement

frictions and as collateral mechanism supporting on-platform and off-platform transactions and

payments. Specific economic applications are provided and analyzed.

�Correspondence address: akaraiva@sfu.ca. I thank David Andolfatto, Alex Berentsen and participants in the
Society for Economic Dynamics conference and the Vienna Macroeconomics workshop for useful discussions and
comments. Financial support from the Social Sciences and Humanities Research Council (SSHRC), grant 435-2018-
0111 is gratefully acknowledged.

1

1 Introduction

Digital platforms and markets have grown rapidly with the recent technological advances in collect-

ing, storing, indexing, searching, matching, and quick transmission of large amounts of granular

data. Blockchain-based digital platforms are a fast growing segment of digital financial markets.

On March 14, 2024 the two leading blockchain platforms, Bitcoin and Ethereum processed over

1.5M daily transactions and had market capitalizations of $1.4T and $465B respectively.

A blockchain is a decentralized and free to join and access networked computer database of

transactions and other digital records (e.g., ‘smart contracts’ or ‘tokens’), organized in a sequence

of interconnected time-stamped data blocks. Network nodes (user accounts) hold or have access to

a complete copy of the database, hence blockchain platforms are often referred to as ‘distributed

ledgers’. Digital fund ownership and transaction verification (e.g., prevention of double spending

of funds or re-writing of the ledger) is performed via consensus algorithms (e.g., ‘proof or work’)

enabled by specialized computer code and cryptography (private-public key pairs, hash functions),

without the need for a trusted central party. Economic incentives to verify, execute, and record

transactions on the platform are provided by transaction fees paid by the users and by the issuance

of digital (‘crypto’) currency as reward to verifiers.

In this paper I explore the relationship between fundamental concepts and constructs upon

which financial contracts and transactions are based (property rights, information, commitment,

enforcement) and the algorithmic tools and constraints of digital platforms and blockchain tech-

nology, with specific economic examples. Unlike many overview papers, I explicitly describe

and model the micro-level details about how on- and off-platform financial transactions and con-

tracts can be implemented via blockchain technology. The ultimate goal is constructing a mapping

between theoretical concepts and solutions from mechanism design and the algorithmic building

blocks of digital platforms and blockchains (accounts, transactions, single or multi signatures,

timelocks). I characterize the strengths and limitations of blockchain technology in implement-

ing and enforcing financial contracts and payments, with applications to settings with financial

market frictions and obstacles to credit or risk-sharing (incomplete markets, private information,

limited enforcement). I analyze whether and how these financial market frictions can be addressed

or mitigated by digital-platform transactions and (smart) contracts via mechanism-design based

implementations.

The main takeaways are as follows. Blockchain technology excels at securing, verifying and

transferring ownership of digital funds and objects. It also excels at recording, securing and mak-

ing publicly accessible complete current and historical record of all data written on the blockchain

but, naturally, not what happens off it. A key limitation of self-enforcing transactions performed

via blockchain-based digital contracts is the need forcollateral (escrow) for enforcing promised

2

future payments; that is, the algorithmic tools alone are insufficient. Any promise of payment

must be backed up by escrowed/locked funds, otherwise it is unenforceable. However, I show how

blockchain technology can be used to enable collateralizing and securing off-platform payments,

saving on transaction fees. Leveraging the main advantages of blockchain digital platforms (history

and information verifiability and security of proving ownership) with enhanced trust, commitment

and enforcement mechanisms (including trusted third parties) can further facilitate the implemen-

tation of complex contingent contracts and solutions from mechanism design and contract theory

in real-life applications, while saving on collateral costs.

I abstract from issues related to cybersecurity, mining, or achieving consensus on blockchain

platforms. These technological elements, while very important, are taken as given in this paper and

assumed to operate as intended and as specified by the computer code. All discussion about infor-

mation, commitment and enforcement in digital contracts and transactions is predicated on this

assumption and should be interpreted accordingly, specifically when comparing to other existing

technologies or institutions such as courts, formal financial intermediaries, centralized databases,

etc. I also do not address monetary or regulation-related issues, e.g., stable coins, monetary policy,

the possible impact of blockchain technology on central banks, etc.

Related literature

Much of the early research on blockchains or digital platforms in economics consists of review

papers (Koeppl and Kroninck, 2017; Chapman et al., 2017; CPMI, 2017; He et al., 2016; Catalini

and Gans, 2016) or focuses on currency and monetary issues (e.g., Yermack, 2014; Raskin and

Yermack, 2016; Chiu and Wong, 2014; Andolfatto 2018; Berentsen and Schar, 2018). A separate

technical literature emphasizes security and the prevention of double spending (Nakamoto, 2008;

Buterin, 2013; Peyrott, 2017), also with game theory applications (Eyal, 2015; Kiayias et al.,

2016). Chiu and Koeppl (2019) are among the first to propose an economic model of transaction

verification incentives in a blockchain, calibrate it to data, and perform policy analysis. Early

conceptualizations of smart contracts and digital ownership are Szabo (1996, 1998). On policy

and regulation see Kiviat (2015) and Chapman et al. (2017), among others.

I contribute to this literature by focusing on blockchain platforms as a leading example of

digital platforms through which payments, credit and insurance in incomplete market settings can

be coded and implemented. In doing so, I draw on a large theoretical literature emphasizing the role

of history-dependence and the use of promised utility as state variable in multiperiod settings with

private information (Spear and Srivastava, 1987; Abreu et al., 1990; Phelan and Townsend, 1991;

Atkeson and Lucas, 1992; Fernandes and Phelan, 2000; Cole and Kocherlakota, 2001; Albanesi

and Sleet, 2006; Karaivanov and Townsend, 2014), or with limited commitment (Thomas and

Worrall, 1988; Phelan, 1995; Kocherlakota, 1996; Ligon et al. 2000, 2002; Kehoe and Perri,

3

2002; Broer at al., 2017). I introduce and model blockchain specific and digital-platform based

mechanism-design elements, as in Chiu and Koeppl (2019) or Karaivanov et al. (2023).

This paper is most closely related to recent work conceptualizing and analyzing possible cur-

rent or future applications of distributed ledgers, blockchains, and digital platforms in economic

activity and distributed finance (DeFi), drawing on mechanism design and contract theory. Con-

tributions include the comprehensive overview by Townsend (2020), Holden and Malani (2018)

on hold-up, Cong and He (2019) on collusion, Gans (2019) on international trade, Routledge and

Zetlin-Jones (2018) on currency pegs.1 I draw on these works but differ by modeling in detail the

algorithmic tools and constraints of blockchain technology as related to ownership rights, commit-

ment, enforcement, and information in financial contracts.

2 Blockchain technology and tools

I start by introducing the key elements and tools of blockchain digital platforms in a stylized form,

emphasizing their economic significance for enabling financial contracts and transactions. I use

terminology that is mostly based on the Bitcoin implementation and borrows from, but is not

always equivalent, to the terminology in various blockchain ‘white papers’ (e.g., Nakamoto, 2008

or Buterin, 2013).

2.1 Transactions

I use the termblockchainto mean a database of recordedtransactionsorganized in time-stamped

data ‘blocks’, together with associated computer code and algorithmic rules. Cryptographic tools

(Merkle-Patricia trees, hash functions, etc.) ensure the integrity of the recorded data and the inter-

connectedness (‘chain’) between the data blocks, however, I abstract from these technical issues

here.

1. Transactions – inputs and outputs

Transactions are the main element of a blockchain database. Define a transaction� as the pro-

cess of unlocking (‘spending’) pre-existing unspent digital fundsxt�k (inputs) and locking them

into new unspent fundsxt (outputs). This can be as simple as sending / transferring funds from

one person or account to another, however, more general interpretations, e.g., involving automated

(‘smart’) contracts are possible. New digital funds (cryptocurrency) originate from special ‘coin-

base’ transactions as a reward to ‘miners’ or validators but I abstract from this here; the focus is on

transactions using pre-existing inputs.

1See also Chiu et al (2022, 2023), Chiu and Wong (2021), Lee et al (2022), Aronoff and Townsend (2023),
Townsend and Zhang (2023).

4

2. Cryptographic locking scripts (keys)

Funds on the blockchain are secured (locked) by cryptographic locking scripts (e.g., crypto-

graphic private keys). Only the possessor of a matching key/script can unlock (spend) the locked

funds. I model locking scripts as the scriptlt�k, paired with given inputsxt�k.

3. Signing a transaction

The process of supplying an unlocking script,ut (also known as ‘signature’) to the inputs of a

transaction is called signing the transaction. If the supplied unlocking script matches the locking

script for the unspent input fundsxt�k (that is,ut = lt�k), then the input fundsxt�k can be spent,

that is, transferred and re-locked into outputxt by a new specified locking scriptlt.2

Definition 1: Transaction

A transaction� is defined as the mapping

� : (fxt�k;lt�kg; ut)! fxt; ltg

where subscripts denote time (block height) and where

� the transaction inputs, fxt�k; lt�kg consist of unspent funds,xt�k with corresponding locking

script(s), lt�k. A transaction can have several inputs

� the transaction signature, ut is a supplied unlocking script. A transaction can require several

signatures

� the transaction outputs, fxt; ltg are new unspent locked funds,xt with locking script(s), lt. A

transaction can have several outputs.

The blockchain data T are theset of all posted and confirmed transactionsf� itgi;t on the

blockchain, wherei indexes a transaction andt indexes its block, up to the current date.3 These

data can be used to trace back all past funds transfers or balances, for example, by sender or

recipient account, or using other criteria. There is a natural mapping between the blockchain data

T and the concept of ‘history’ in contract theory / mechanism design which I will discuss in more

detail below.
2Technically, signing a transaction asserts cryptographically that a node (e.g., the sender) has the correct private

key or script required to unlock the referred input funds but does not reveal that key.
3In actual blockchain platforms there could be submitted transactions that are unconfirmed for some time (not

recorded on the blockchain), e.g., Bitcoin’smempool. I abstract from this issue here and use the term “posted” for
transactions that are both submitted and confirmed.

5

2.1.1 Locking scripts

I model the following types of locking scriptsl that exist in major blockchain implementations

(e.g., Bitcoin)

(a)simple key

lt�k = k
a

whereka is a single-user private key required to spend/unlock the inputsxt�k.

(b) multisig key

lt�k = anym out ofn keysfka; kb; :::; kng wherem � n

For example, the ‘2-of-2 multisig’ key,

lt�k = k
a ^ kb

where^ is the logical operator “and”, means that two private keys,ka and kb are required to

unlock the inputsxt�k. That is, to be valid the transaction must be signed by two signatures

proving possession of both keys.

(c) composite script

lt�k = s

I will use two main types of composite locking scripts:

– timelock script– a combination of private keyskj, timelocksT i > 0, and the logical

operators “and”̂ and “or”_; for example,

s1 = (k
a; T 1) or s2 = (k

a ^ kb; T 1) or s3 = (k
a; T 1) _ (kb; T 2)

The timelockT i is a period of time (either astronomical time or number of blocks) that must

have passed, relative to a fixed starting point (e.g., the block in which the transaction was recorded),

for the transaction inputs to be unlockable. Scripts1 indicates that the input funds can be unlocked

(used) if the keyka is supplied and timeT 1 has passed. Scripts2 also has timelockT 1 but requires

the multisig keyka ^ kb. Scripts3 requires keyka with timelockT 1 or keykb with timelockT 2.

– timelocked redeemable secret(e.g., as implemented in Bitcoin’sHash Time Locked Con-

tracts, HTLC):

s = H _ (k; T)

whereH = H(�) is the hash function value of some secret message�.4 Anyone with knowledge
4Hash functionsH(w) are special mathematical functions that take a message (string)w of any length as input and

6

of � can redeem the locked input funds immediately. Alternatively, a user can redeem the inputs

by signing with keyk after waitingT periods.

2.1.2 Writing vs. posting a transaction

In the following analysis I distinguish between

writing a transaction– the act of defining a transaction’s inputs, locking script, signa-

ture(s) and outputs, as defined in Definition 1.

posting a transaction– the act of submitting a written transaction for execution through a

software node connected to the blockchain platform. Here I abstract from waiting time, effectively

assuming for simplicity that all posted transactions are confirmed and recorded on the blockchain

without delay.

An important difference between writing and posting a transaction on the blockchain is that

writing a transaction does not involve paying transaction fees (reward to miners or validators) while

posting the transaction does. Once posted and executed a blockchain transaction is irreversible.5

2.1.3 Valid vs. invalid transactions

A transaction� will be calledvalid transactionif it executes on the blockchain as written and

intended, that is, if it results in a successful transformation of past locked funds into new locked

funds. Once a posted blockchain transaction is valid it remains valid and cannot expire.

A transaction� will be calledinvalid transactionif executing it on the blockchain platform/code

would result in an error (code exception). Possible reasons can be: the referred input funds have

been already spent; the supplied unlocking signatures do not match the locking scripts for all ref-

erenced inputs, or coding errors.

It is important to note that a transaction� can beinvalidated on purposeby writing and posting

another transaction (‘double-spend’) that spends� ’s inputs. A written transaction can only be

invalidated in this wayprior to posting it to the blockchain, not after. Posting a valid transaction

therefore can be used not only to transfer funds (by unlocking and re-locking) but also to render

invalid other written (but not posted and confirmed) transactions by spending their inputs. I will

show that this technological feature of blockchains is very useful for constructing multi-period and

multi-party financial transactions.

output a value,H(w) of fixed length. Importantly, hash functions are easy to compute but practically impossible to
invert.

5A new transaction can be constructed to “reverse” the actual ownership of digital funds but such transaction
involves a new set of inputs and outputs and will be recorded as a different transaction.

7

2.1.4 Accounts and balances

For the purposes of this paper, a blockchain account is identified with a simple (private) key,

ka. Account balances can be derived from the record of all transactions on the blockchain (the

blockchain dataT) as the sum of all funds unlockable by the account’s private key (e.g., in Bitcoin);

or are retrievable from the blockchain data as part of the virtual machine state (e.g., in Ethereum).

2.2 Algorithmic constraints

Given the definition of transaction (Definition 1), the blockchain platform code imposes and en-

forces the following constraints on inputs, outputs, locking scripts and signatures for a transaction

to be valid and successfully posted on the blockchain:

1. funds availability – each inputxit is an unspent (available to be unlocked) outputxjt�k
from a previous valid transaction

xit = x
j
t�k for somej and somet� k < t (C1)

2. no double spending– no two valid transactions can spend/unlock the same input funds

xit�k

@ �1; �2 2 T andxit�k such thatxit�k is an input of both�1 and�2 (C2)

3. proof of ownership – the supplied signature(s)uit for each inputxit must match (cryp-

tographically satisfy) the locking scriptljt�k of the previous output,xjt�k it attempts to unlock/use6

uit = l
j
t�k for the samet; i; j; k in (C1) (C3)

The locking script could bemultisig in which case two or more signatures may be required to

satisfy (C3).

4. input-output balance – the total value of a transaction’s output funds cannot exceed

the total value of its input funds X
i

xit�k �
X
j

xjt (C4)

where the superscriptsi andj indicate multiple inputs/outputs, if applicable. Allowing for strict

inequality in (C4) can capturetransaction fees(blockchain processing fees) that normally accrue

to the miner of the block in which the transaction is recorded. Below I ignore transaction fees for

6In Bitcoin the most common scenario is that a signature applies to all inputs but targeted signatures are techno-
logically feasible too.

8

simplicity. Note that no new funds are injected via transactions7 and no funds are “lost” (the funds

for miners’ fees are locked in their accounts). In Bitcoin one of the outputs could be ‘change’ –

e.g., part of the total input funds going back to the sender (locked by her key).

Constraints C1-C4 prevent ‘double’ or fraudulent spending which is one of the foundational

ideas of blockchain technology (Nakamoto, 2008). The constraints ensure that a transaction cannot

spend funds that are not available and that are not unlockable. If an attempt is made to spend/use

inputsxit�k that have already been spent by a previous posted transaction, the current transaction

will be rejected by the blockchain as invalid. In practice, e.g., in the Bitcoin implementation,

the blockchain code and node network keeps track of the complete set of unspent funds (the so-

called ‘UTXO set’), which is updated after each recorded block of transactions. Other blockchain

algorithms (e.g., Ethereum) directly keep track of account balances as part of the blockchain virtual

machine state.

5. respecting timelocks– timelocked outputsxjt�k cannot be spent before their timelock

(if it exists) has expired

t � t� k + T jt�k for the samet; j; k in (C1) (C5)

3 Blockchain digital platforms and financial contracts – tools,

possibilities and limitations

This section discusses how the algorithmic tools of blockchain digital platforms introduced in

Section 2 can assist the design, implementation, and execution of financial contracts and transac-

tions. I discuss each of four fundamental building blocks of contracts – property rights, commit-

ment (trust), enforcement, and information (verifiability). The strengths and limitations of digital

blockchain technology with respect to each of these building blocks are summarized at the end of

each sub-section.

3.1 Property rights

Contracts require well-defined property rights. In blockchain platforms property rights over digital

funds or assets (e.g., unspent Bitcoin or Ethereum balance) are fully algorithmic and are established

and verified by cryptographic tools in the form of computer code. Examples of these tools include

thescriptSig, scriptPubKeyfunctions in Bitcoin or the transactionnonceandECDSAsignatures in

7The focus of this paper is transactions between blockchain nodes and this I also abstract from the special “block
reward” (coinbase) transactions that accrue to miners.

9

Ethereum.

First, using the Section 2 terminology,locking scriptssecure and establish ownership over

digital funds. Matching signatures to locking scripts is used to transfer ownership. A locking

script/key cannot be forged – it is either objectively correct or not; this is a technological strength.

However, a key or script can be stolen/copied or lost – a limitation. This observation links to a

large and important cybersecurity literature which, however, I do not discuss here.

Second, property rights over digital funds or assets in blockchains are normally of thebearer

type and are not tied to a particular user identity. That is, anyone who produces the required

unlocking signature matching the locking script can spend/use the funds (see Section 2). Impor-

tantly, in most or all currently existing blockchain platforms there are no external legal property

rights; that is, rights or claims existing outside of the digital algorithmic tools just described. The

anonymity of accounts and lack of central trusted party or regulation currently rule out other exist-

ing methods to record or verify property rights over digital funds and assets. However, this feature

of blockchains could be modified in the future.

Third, themultisig and timelock locking scripts can be used as flexiblecovenantsto restrict

digital property rights. Multisig locking scripts require the presentation ofm out ofn signatures,

therefore preventing unilateral unauthorized spending. Timelocks can be used to restrict usage

property rights, since timelocked funds cannot be spent by anyone before the timelock expiration,

for example, supplying the correct signature (private key)ka alone cannot unlock and use funds

that are locked by an unexpired timelock script(ka; T a).

� Strengths: cryptographically secure proof of ownership; low cost of acquiring and transfer-

ring ownership; flexible covenants – multisig, timelocks.

� Limitations: no record/verification outside the blockchain; purely bearer type ownership.

3.2 Commitment and trust

Economists use the term commitment to describe (or assume) a party’s ability to make credi-

ble/deliverable promises about future actions. For example, a reputable online seller commits to

ship the purchased item after receiving payment from a buyer. Related to this, the termlimited

commitmentis often used to indicate situations in which only one of the contract parties is bound

by their promises or that commitment is possible only in the short-term (e.g., single period), or

with probability less than one. A vast economics literature on time inconsistency and lack of

commitment exists analyzing these settings.

I abstract from any external/third-party commitment devices or institutions and focus solely

on the digital algorithmic tools that can be used to ensure commitment to future payments or

10

property right transfers. Blockchains are often described as ‘trustless’ decentralized platforms.

However, the term ‘trustless’ is not entirely precise – while most blockchain platforms (e.g., Bit-

coin, Ethereum) indeed do not rely on a trusted authority in the traditional sense (e.g., courts of

law, the banking system, etc.), they do strongly rely on the users’ trust in the computer code and

algorithms on which the platform is based and runs.8

Specifically, for a transaction� , as described in Definition 1, to be valid, i.e., represent acom-

mitmentto pay/transfer an amount from account A to account B it is essential that:

Condition C1:the referencedinputsxt�k must be available and accessibleat the moment

of posting the transaction on the platform. This requires having the requisite signature / unlocking

script(s),ut, including satisfying any timelocks.

The availability of input funds is critical and demonstrates that blockchain transactions and

smart contracts are not automatic or set in stone once written or submitted to the platform. A

transaction� can be rendered invalid (effectively canceled) by spending its input funds with another

valid transaction,� 0 prior to � being posted and confirmed on the platform. I show an application

of this idea in Section 4.

The second implication of Condition C1 is that a necessary prerequisite for any future payment

commitment is that the required funds must befully collateralized. That is, the promised funds

must be locked and still available to be unlocked at the time the payment or transfer is due. In

practice this can be achieved using the algorithmic tools described in Section 2 –multisig scripts,

timelocksand combinations thereof. Multisig locking scripts, e.g.,lt�k = k
A ^ kB ensure that one

of the parties cannot spend or syphon the funds without the agreement of the other. Hence, only

when the economic incentives of both parties are aligned can the funds be transferred, ensuring

mutual trust. Timelocks directly lock digital funds from use by any party and can algorithmically

ensure that the funds are still available at the intended usage or payment date. Note that potential

self-control problems are also avoided in this way.

Condition C2: the transaction which establishes the promised funds’ availability (known

as ‘collateral transaction’ or ‘funding transaction’, see Section 4) must be confirmed on the blockchain

platform (transaction fees must be paid). This activates the algorithmic tools and secures the digital

property rights ensuring the future availability of funds.

� Strengths: commitment and trust can be established and maintained algorithmically.

� Limitations: commitment and trust are limited to the available algorithmic tools (timelocks,

multisig) and require locking funds as collateral/escrow (costly).

8This includes technical issues such as achieving and maintaining consensus about the blockchain records, suscep-
tibility to malicious attacks, network throughput and others, which I do not discuss here.

11

3.3 Enforcement

Contractenforcementrefers to executing the terms of the contract as stated and intended. Here I

focus on enforcing digital transactions or contracts that transfer funds between accounts. Digital

transactions are enforced algorithmically (automatically) by the platform computer code, as long

as theproperty rightsandcommitmentconditions ensuring transaction validity are satisfied:

– input funds ownership is proved cryptographically

– all locking script conditions (multisig, timelocks) are satisfied by providing all necessary

signatures or posting the transaction at the correct time

– transaction fees to post the transaction on the platform are paid.

Conditional on the above, the receiver of the transaction output(s) does not need to do any-

thing (except possibly wait) after a transaction is posted and validated on the blockchain platform.

Contract verifiability and execution is thus algorithmic and automated, via unambiguous computer

code. This reduces uncertainly about what is promised (a form of counterparty risk) and also

reduces legal interpretation risk, see Holden and Malani (2018) for further discussion.

An enforcement problem could therefore arise only when a transaction (for example, a promise

of future payment) isinvalid and hence rejected by the platform code when submitted. This could

happen, for example, if the transaction’s input funds have already been spent in another previously

validated transaction (in Bitcoin) or, equivalently, if there is insufficient balance in the sender’s

account at the time of posting (in Ethereum). Note that the recipient has no resort in such situations,

since external enforcement is unavailable.

� Strengths: enforcement is automated, without human element; low enforcement costs

� Limitations: only valid transactions can be enforced – the pre-conditions for property rights

and commitment must be satisfied (e.g., costly collateral); no third-party / external enforce-

ment exists (courts, arbitration, etc.)

3.4 Information

By design, blockchain digital platforms record complete granular information of all recorded trans-

actions going back to the initial block 0. Also by design, everything that is posted on the platform

distributed ledger is public information and free to access. The minimal data recorded on the plat-

form are transactions data (input, output, value) but more complex data can be recorded too (e.g.,

coded ‘smart’ contracts or digital tokens and NFTs in Ethereum). The data are organized in an

interconnected chain of time-stamped data blocks via hash functions, Merkle trees, etc. Cryptog-

raphy makes it nearly impossible to modify past written data – recorded data are permanent. The

data immutability is a design feature, not a limitation.

12

The public, complete and permanent nature of blockchain data has a natural parallel with the

notion ofhistory in mechanism design theory. The transactions data can also be used to determine

account balances or other aggregates at any moment of time. Platforms such as Ethereum also

allow Turing-complete code execution which can embed complex if/then/else, and/or conditions,

loops, and multi-dimensional contingencies based on real-time and historical information recorded

on the platform.

While blockchain platforms excel at storing huge amounts of public information via the recorded

transaction data, this does not automatically solve or avoid potential contractual problems that

may arise from asymmetric information (hidden actions, hidden income, unobserved characteris-

tics). Essentially any information not recorded in the platform database can be private information

for other users or counterparties. In addition, most blockchain platforms are permissionless and

(pseudo-)anonymous so that users can have multiple accounts which makes difficult matching

transactions to specific individuals or firms unless they want to reveal such identifying informa-

tion. Therefore, further coordination and efficiency gains from required posting or (self-)reporting

of information are possible. See Townsend (2020) for further discussion, including on possible

gains from obfuscating information, depending on the economic setting.

� Strengths: complete, permanent, and public record of granular current and historical infor-

mation; capability for automated code execution with complex multi-dimensional contin-

gencies based on the recorded information

� Limitations: off-platform information can remain hidden, including strategically; the im-

mutability of recorded data may cause problems (e.g., permanently locked funds; coding

errors)

3.5 Technological strengths and limitations – discussion

Blockchain technology excels at securing and verifying property rights over digital assets via cryp-

tographic locking scripts and signatures. It also excels in recording a complete and immutable his-

tory of on-platform transactions (the blockchain data). The leading platform implementations also

provide algorithmic tools for making and enforcing future payment commitments (e.g., multisig,

timelock, and composite locking scripts).

The main limitation of blockchain platforms in terms of writing and enforcing financial con-

tracts and transactions is the need for full collateral backing of future promised payments.9 The

9In addition, there are costs of posting transactions (transaction fees) and waiting for confirmation, however, these
economic costs are likely lower than the corresponding direct and indirect costs of other transaction or payment
methods especially among parties who are strangers.

13

collateral requirement can be costly, as I show in the economic applications in the next section.

However, in Section 5 I show that the same collateral (locked funds) can be used together with

the algorithmic tools from Section 2, to backmultiple off-platform payment transactions, hence

mitigating this technological limitation.

The essentiality of collateral arises from the anonymity of blockchain accounts and the bearer

form of digital property rights. How about reputation as a possible commitment mechanism? It

is possible to use a blockchain platform to record reputation-related information, for example, as

digital token balance akin to a credit or user rating. However, it is unclear how outsiders (e.g.,

new contract parties) can verify the authenticity of such reputation ratings, e.g., a trader may self-

generate transactions with other accounts that s/he controls and/or rate himself highly, similar to

creating or purchasing fraudulent reviews on business rating websites.

Another common commitment mechanism involves using punishment threats not based on

collateral, for example, the threat of autarky or no future trade. Contract parties could write such

self-enforcing mechanisms using digital platform technology (smart contracts). However, doing so

may significantly limit the set of feasible trades and reduce efficiency (see the risk-sharing example

in Section 4). It is possible to punish a counterparty with no future trade if a contractual payment

is not made, however, without external enforcement or the possibility to restrict access in a per-

missionless anonymous platform, it is hard to prevent the offender from contracting with another

lender, borrower or seller. In addition, such no-trade punishments are often time-inconsistent (both

parties would like to re-negotiate ex-post if gains from trade exist) and there is the issue of how to

prevent fraudulent punishment.

4 Applications and examples

In this section I present two specific economic applications, multiperiod risk sharing and interna-

tional trade, to illustrate the main contracting issues and frictions from contract theoretical point

of view and discuss how digital platform algorithmic tools can be used to address these issues and

frictions. Implementation strategies using the algorithmic tools from Section 2 are then discussed

in Sections 5 and 6.

4.1 Risk sharing

Townsend (1982) studies a multiperiod optimal risk sharing problem. A risk-averse agent with

preferences over consumptionu(c) and discount factor� 2 (0; 1) has an i.i.d. stochastic income

processfytgTt=0 which takes valuesyj, j = 1; :::;#Y on the discrete setY (e.g., low or high

income). The agent can enter a contract with a risk-neutral financial intermediary (‘the insurer’)

14

who can provide credit or insurance against the income shocks. The agent’s income can be public

or private information. In the latter case, assuming for simplicity a two-period setting and two

possible values for the agent’s income, Townsend shows how a multiperiod insurance contract

which conditions risk-sharing transfers on thehistory of output realizations dominates in terms

of efficiency a simple debt contract while both the insurance contract and the debt contract attain

higher utility than autarky.

Using standard arguments, an infinite-horizon contracting problem in this setting can be written

recursively in terms of the agent’s promised utility (present value of future utility),w as the state

variable:10

�(w) = max
f�j ;w0jg

#Y
j=1

E(��j + ��(w0j)) subject to: (1)

E(u(yj + �j) + �w
0
j) = w [promise keeping]

u(yj + �j) + �w
0
j � u(yj + �l) + �w0l for anyj; l = 1; :::;#Y [truth telling]

where�(w) is the insurer’s profit function and the expectation is taken over the income states

distribution. This dynamic programming formulation is equivalent to making the optimal transfers

�j conditional on the complete history of agent messages about past income realizationsy1; :::; yt�1

andyt = yj at any periodt,

�j(w) = �(y1; :::; yt�1; yj)

The first-best outcome is full insurance, that is, the agent receives constant consumptioncj = �c

in all income states, by making or receiving transfer�fbj = �c � yj. This outcome is, however,

not incentive-compatible if the agent’s incomeyj is private information, since the agent would

have incentive to report the income level that results in the largest payout. Therefore ‘truth-telling’

constraints must be imposed on the transfers to ensure, by the Revelation principle, that the agent

would optimally report her actual income, resulting in the on-path contractual transfer (contribution

or payout)�j and promised utilityw0j, as opposed to reporting some otheryl (e.g., lower income)

and receiving the off-path values�l andw0l.

This setting is a prototypical application of mechanism-design theory to derive a complex fi-

nancial contract (a mix of credit and insurance) in the presence of private information. Typically

the constrained-optimal contract can be solved only numerically. Therefore, a platform-based dig-

ital contract could be coded to compute and implement the optimal allocation solving problem (1),

by keeping track of the agent’s history of messages about income or, equivalently, by keeping track

10Townsend (1982) did not use this recursive formulation but recognized the optimality of conditioning transfers on
income history, which is mathematically equivalent to keeping track of promised utility. If the time horizon is finite,
all variables are time dependent.

15

of promised utilityw in a token account (see Section 6). Blockchain technology is perfectly suited

for storing such granular data and for coding the automatic computation of the insurance transfers

(contributions/premia or indemnities/payouts), provided the economic structure (the income pro-

cess, preferences, etc.) is known or can be estimated or learned. Structural estimation techniques

(e.g., Karaivanov and Townsend, 2014) or (machine) learning algorithms may be used to calibrate

the code using pre-existing or pilot study data. The optimal contract attains higher welfare than

autarky (no insurance) or a simple debt-contract (which also satisfies the truth-telling constraints),

see the numerical example below.

Numerical example

Suppose there are two periods and two output levelsyL = 3 and yH = 5 each occurring

with probability � = 0:5 and preferencesu(c) = c � :05c2 and� = 1. Then we obtain the

following solution for the insurance transfers�, for different assumed contractual settings ranging

from autarky to full insurance. In Table 1 the superscripts on� denote the time period and the

subscripts denote the realized income history, e.g.LH means low income in period 1 and high

income in period 2.

Table 1. Risk-sharing example

two-period setting �1H �1L �2HH �2HL �2LH �2LL ex-ante welfare

1. autarky 0 0 0 0 0 0 6:3

2. hidden income

a. debt �:5 :5 :5 :5 �:5 �:5 6:325

b. insurance11 �:56 :64 :45 :45 �:53 �:53 6:33

3. full insurance (first best) �1 1 �1 1 �1 1 6:4

Contracting problem (1) and its solution assume commitment by both parties, that is, the req-

uisite insurance transfers�j can be enforced costlessly. But what if a party does not make the

required transfer transaction, e.g., by spending its input funds? As discussed earlier, this can hap-

pen if the required funds are not locked or secured in advance. Specifically, suppose that the agent

could renege after observing their income, but before having to make the transfer�j and the insurer

can commit to punishing such agent with no-trade (autarky) afterwards. Then an additional ‘lim-

ited enforcement’ constraint is introduced in the contracting problem (see Thomas and Worrall,

1988 or Karaivanov and Martin, 2015 for more examples),

u(yj + �j) + �wj � u(yj) + �V a, 8j [limited enforcement, agent]

11For simplicity Townsend (1982) restricts the per-period insurer profits to zero. Instead I assume zeroex-ante
expectedprofits for the insurer, yielding a minor welfare gain.

16

whereV a =
P1

t=0 �
tE(u(yt)) is the agent’s autarky value. Imposing this additional constraint

on problem (1) ensures that the agent will not have an incentive to renege on any contributions

(insurance premia) but can further the degree of risk-sharing relative to the first-best (see Figure 1

for illustration).

Discussion

Blockchain technology cannot solve the private information (hidden income) problem per se,

unless income accrues or is recorded directly on the platform without human intervention. How-

ever, a digital contract coded on the platform can implement the private information constrained

optimum by keeping track of history or promised utility based on the agents’ self-reported mes-

sages about income.

Blockchain-basedcollateralcan in turn help with the commitment problem. One possible way

is to lock sufficient funds ex-ante that allow to support any possible sequence of due transfers.

I describe a “payment channel” implementation of this idea in Section 5.2. An alternative is to

only lock sufficient funds to ensure that the insurance contract is self-enforcing, that is, a party has

no economic incentive to renege at any moment of time and after any history of income realiza-

tions. For example, if we focus only on the agent’s commitment problem, then locking fundsC

as collateral, to be repossessed if the agent reneges on a due transfer�j < 0, would satisfy the

self-enforcement conditions as long asC satisfies, for allj,

u(yj + �j � C) + �wj � u(yj � C) + �V a (2)

A similar argument can be made about the insurer, by requiring posting sufficient collateral for the

histories with�j > 0.

By having the technological ability to lock funds as collateral digital financial platforms (e.g.,

blockchain-based) can therefore support the optimal history-contingent contract. The algorithmic

tools used are a digital token account to record the history of agent messages or promised utility

and the cryptographic locking scripts and signatures used to secure the collateral.

4.2 International trade

Consider next an example related to international trade, as in Gans (2019). A buyerB wants to

purchase a product from a seller,S. The buyer’s value for the product isV . It costsC for the seller

to produce and ship the product, whereC < V . Clearly, a mutually beneficial trade opportunity

exists, for some priceP 2 (C; V). There are two potential enforcement-related issues related to

this trade contract:

(i) hold up – the buyer may receive the product but decide not to pay (or offer ex-post to

17

pay less than agreed upon)

(ii) moral hazard – the seller could ship an inferior product, with lower costc 2 [0; C) and

lower value to the buyerv 2 [0; V).
Gans (2019) describes a sequential mechanism design solution for this setting based on Moore

and Repullo (1988) and argues how digital platform technology (a smart contract) can be used to

implement it. The proposed solution is a sequential mechanism consisting of three stages in which

the buyer and seller take turns making ‘take it or leave it’ offers.

Stage 1(announcement) The buyerB announces the received good’s quality:V or v

(v = 0 could be interpreted as ‘not received’). IfV is announced thenP is paid, end.

Stage 2(challenge) Ifv is announced at Stage 1, the sellerS can challengeB’s claim. If

there is a challenge the buyer is fined an amountF which is remitted to the seller. Then, the seller

offers the buyer a choice between:

2.1 keep the received product and pay pricep wherep < P , end.

2.2 return the product for refundf .

Stage 3(settlement) If the buyerB chooses option 2.2,B is issued a refundf by the seller

and the seller pays fine2F to a third party, end.

The extensive game form is illustrated on Figure 3. It can be proved that, for appropriate

conditions on the parameters, the unique equilibrium is that the seller ships the contracted good

(with valueV) and the buyer pays the contracted priceP (see Gans, 2019 and references therein

for details).

Discussion

While blockchain technology and smart contracts can be used to automate the specified pay-

ments in the proposed game-theoretic solution, observe thatcollateral (funds locked in escrow) is

required to ensure commitment to the contract. First, the buyerB must lock in escrow fundsP +F

to ensure ability to pay for the good,P and the potential fineF in the off-equilibrium path where

B challenges the sellerS. The fine is necessary to prevent frivolous challenges in Stage 2. Second,

the sellerS must post funds2F as collateral to support the settlement Stage 3 (possiblyF of these

funds could be from the buyer’s fine thatS received in Stage 2, if appropriately script-locked). The

contract also calls for a third party to receive the fine2F in Stage 2 but this could be automated by

‘burning’ the digital funds (sending to a null address).

The amount of collateral required for the contract implementation can be sizable. Gans (2019)

discusses a numerical example withV = 30; v = 0; c = 5; P = 15; C = 10, F = f = 6

and p = 10 which satisfies the sufficient parametric conditions for unique equilibrium(V; P).

Observe that for these parameters the total surplus from trade isV � C = 20 while the total

collateral/escrow required from the buyer and the seller isP + 3F = 33 (or at leastP + 2F = 27,

18

if the buyer’s fine can be re-used as part of the seller’s fine2F in Stage 3). I discuss a payment

channel implementation in Section 5.2.

5 Digital platform payments and collateral

I describe the concept ofpayment channel(Decker and Wattenhofer, 2015) to describe how digital

technology algorithmic tools can be used to enable and support incentive-compatible self-enforcing

transfers and payments between two agents. An extension to multiple agents, as in Bitcoin’s Light-

ning network, is also briefly discussed. I focus on the economic issues related to incentives, com-

mitment, and enforcement of blockchain-based digital payments and abstract from technical issues,

e.g., 50-percent attacks, congestion, or cybersecurity concerns.

In the preceding sections I argued that committing to and enforcing promises of future pay-

ments via a blockchain platform requires sufficient collateral. In addition, posting transactions on

the blockchain is costly – transaction fees must be paid and there could be throughput constraints

and time delays after posting. Therefore, the key challenge is to design how to:

(i) use the blockchain platform as conduit andcollateral mechanismto support digital

payments and

(ii) use the blockchainminimally,with the smallest number of posted transactions.

The following exposition mainly follows the Bitcoin implementation of payment channels,

however, this is not essential for the main results and conclusions.

5.1 State transitions and payment channels

Consider a payment contract between two agents,A andB. We can think of the contract as the

agents starting at an initial state(at; bt) whereat is A’s balance andbt is B’s balance at timet,

and having to transition to a new balance state(at+1; bt+1) in an incentive-compatible and self-

enforcing way. A simple example of suchstate transitionproblem is a one-time paymentp from

A toB, in which case

at+1 = at � p andbt+1 = bt + p.

Below I outline an incentive-compatible blockchain-based implementation to the state transi-

tion problem known as apayment channel, based on Antonopoulos (2017) in the context of Bitcoin.

The key idea is to use a transaction posted on the blockchain to collateralize the set of all possible

balances between the two parties, that is, the set of all values(a; b) = (A � z; z) for a fixed total

sumA, called the channel capacity, and anyz 2 [0; A].

19

5.1.1 One-way payment channel

To illustrate the idea of using blockchain-based collateral to enforce payments, consider the sim-

plest case of a one-way payment channel – that is, transfers go only one way (e.g., A’s balanceat

always decreases while B’s balancebt always increases over time). Such one-way payment chan-

nel can be implemented as the following sequence of steps using the the algorithmic tools from

Section 2.

1. collateral set-up. Write a collateral (funding) transaction which establishes the maxi-

mum payment that can be implemented:

�c : (fx0; l0g; u0)! fc; lcg

For simplicity, assume that the input fundsfx0g of �c are provided byA, locked by his private

key l0 = ka, and are unlockable by signing withu0 = ka. The valuec =
P

j x
j
0 is the collateral

amount which is locked by the 2-of-2multisig locking script

lc = k
a ^ kb

The use of a multisig locking script is important, as it ensures that no single party can unlock and

use the funds without the other party’s signature/key.

2. refund set-up.Before posting the collateral transaction�c on the blockchain platform

the contract parties also write a second ‘refund’ transaction:

�r : (fc; lcg; uc)! fc; lrg

in which the collateral fundsc are secured by atimelockT > 0 (e.g., 20 days in the future) which

establishes the maximum duration of the payment channel, that is,

lr = (k
a; T)

PersonA passes the transaction�r toB to sign (that is, to supply thekb part of the required unlock

signatureuc = lc). B agrees to sign since presumably she has something to gain from the contract.

The refund transaction�r, once signed byB, protectsA in caseB disappears. It is is kept byA as

a guarantee and not posted on the blockchain.

3. posting collateral. The collateral transaction�c is posted on the blockchain byA

signing it by l0 = ka. This locks the fundsc (requiring the multisig scriptlc to unlock) and

establishes the payment channel. Note that both parties’ private keys are needed to unlock/use the

20

funds.

4. state transitions.After steps 1 through 3 the payment channel is established and ready

to support state transitions of the form

(a; c� a)! (a0; c� a0)

where the first argument in the brackets isA’s balance and the second argument isB’s balance and

wherea0 < a, that is,A is sending a payment of sizea�a0 toB. These state transitions correspond

to unilateral transfers of digital funds (payments) fromA toB.

To perform a state transition the parties write the following blockchain transaction with two

outputs corresponding respectively to the balances due toA andB.

�s : (fc; ka ^ kbg; ka)!
(
a0; ka

c� a0; kb

)

A signs transaction�s by his keyka and passes it toB. B can post�s on the blockchain by signing

it by kb (which would satisfy the required locking scriptlc = ka ^ kb) or she could wait, e.g.,

if she is due additional payments fromA. Further state transitions can be made by writing new

transactions (separate communication between the parties may be required, or the process may be

automated) which spend the same input fundsfc; lcg but have different outputs, for example,a00

andc � a00 wherea00 < a0 and so on. Note that, along this transaction chain, wheneverB holds

a transaction entitling him/her to a larger balance (e.g.,c � a00 vs. c � a0), thenB no longer has

incentive to post a previous/older transaction. In addition,A is prevented from posting any old

transactions by not havingB’s signature/key.

5. settlement.The final state transition (‘settlement’) transaction,��s must be posted on

the blockchain before expiry of the timelockT set in step 2.

Observe that in the described mechanism the blockchain platform is used to post only two

transactions – the collateral transaction�c and the final settlement transaction��s, while multiple

payments fromA to B can be completed in the meantime. All these payments are fully secured

and incentive-compatible by using the algorithmic tools from Section 2, specifically:

– themultisig locking scriptlc = ka ^ kb in the collateral transaction�c ensures that either

party cannot expropriate the collateral fundsc; in particular, it preventsA from posting an old state

(an old transaction�s) which givesA larger balance than the current state (e.g., preventsA from

skipping or not making a payment for services provided byB). This protectsB.

– thetimelockT in the refund transaction’s locking scriptlr = (ka; T) protectsA by en-

suring thatA can get their funds back ifB unilaterally quits (does not sign and post any settlement

21

transaction).

5.1.2 Bilateral payment channel

The unilateral payment mechanism described in Section 5.2.1 is only self-enforcing whenA is

paying toB (that is, more and more ofc becomes due toB over time). To see that, suppose the

intended state transition was(a; c � a) ! (a0; c � a0) with a0 > a (that is,B needs to make a

payment toA). But then nothing would preventB to post the old transaction already signed byA

(that is, the transaction givingB the larger previous balance,c � a) and benefit. To prevent such

deviations and allow state transitions in both directions, the two parties must hold (asymmetric)

refund transactions, as described below.

A bilateral payment channel supporting any state transition(a; c�a)! (a0; c�a0) with a > a0

or a < a0 can be implemented using the algorithmic tools of Section 2 as follows:

b1. collateral. The first step is to write and post a collateral (funding) transaction of the

form

�c : (fa0; ka; b0; kbg; uc)! fc; lcg

Note that now the collateral transaction has two inputs,(a0; k
a) and(b0; kb), originating respec-

tively fromA andB and unlockable by their corresponding signatureska andkb. It is possible that

one ofa0 or b0 equal zero – that is, all collateral may be provided by a single party. As in Section

5.2.1, the collateral transaction has a single output with valuec and is locked by a multisig keylc,

requiring both parties to sign. Here, using (C3), we have

c = a0 + b0 and lc = k
a ^ kb.

b2. state transitions.The next step is to perform the transition from balance state(a; c�
a) to state(a0; c� a0), where initiallya = a0. Here and later on in the state transitions chain, both

states witha0 > a or a0 < a are possible, e.g.,A paysB or B paysA. The state transitions must

be enforceable by the algorithmic tools. That is, each party must be able to obtain their contractual

due amount without relying on trust or cooperation from the other party or third-party enforcement.

This is achieved by writing and exchanging two transactions�sa and�sb, held respectively byA

andB and counter-signed by the other party’s key (�sa is signed bykb and�sb is signed byka):

�sa : (fc; ka ^ kbg; kb)!
(
a0; (ka; T) _ rb

c� a0; ka

)
(A)

22

and

�sb : (fc; ka ^ kbg; ka)!
(

a0; kb

c� a0; (kb; T) _ ra

)
(B)

These transactions do not need to be posted on the platform, but would be valid if they are signed

and posted. In (A) and (B) above,ra and rb are special ‘revocation’ scripts (to be explained

below), that are exchanged in every state transition and held byA andB respectively. Note that

the transactions�sa and�sb serve simultaneously two roles: (i) a potential refund/guarantee (via the

timelockT and revocation scriptrj) and (ii) implementing the intended state transition (payment).

How do (A) and (B) enable the state transition? Transaction�sa held byA has input fundsc

and has been pre-signed withB’s key, kb as part of its required unlock signatureuc. Hence, ifA

also signs�sa using her keyka, its input fundsc would be unlocked, since they are locked by the

scriptlc = kb ^ ka. Transaction�sa has two outputs. The second output,(c� a0; ka) would release

B’s contractual balancec � a0 immediately ifA signs, since its locking script isl1sa = k
a without

any timelock. However,A’s due fundsa0 (the first output of�sa) remain locked by the composite

locking script

sa � (ka; T) _ rb.

This output can be unlocked byA using her private keyka but only after the timelockT expires, or

alternatively, it can be unlocked immediately by using the revocation scriptrb (held byB). Impor-

tantly, the scriptrb must remain in possession ofB until the parties agree to transition to another

state. An analogous argument applies for transaction�sb by exchanging thea andb superscripts

accordingly.

To transition to a new balance state, e.g., to(a00; c�a00) the parties first create and give each other

revocation keysra andrb (so that the previous state can be revoked if posted) and then counter-sign

new transactions of the form (A) and (B) with the same inputs but new output balances and new

revocation keys. The revocation key exchange and counter-signing must be done algorithmically

and simultaneously to avoid any hold up.

Why are the state transitions (payments) implemented by�sa and�sb self-enforcing? Suppose

A attempted to renege on the contract and posted (by signing withka) the transaction��1sa corre-

sponding to a previous/old balance state (e.g., because such action would giveA more funds,a�1

than currently due). ThenB would receivec � a�1 immediately and hasT periods (the timelock

onA’s output in��1sa , see (A)) to detectA’s deviation and use transaction��1sa ’s revocation keyrb

to claim the outputa�1 as well, essentially seizingA’s share of the collateral and punishing the

deviation. The same argument applies forB in a symmetric situation. Because of these collateral-

enabled penalties neither party would have an incentive to post an old transaction. However, what

if a party disappears, that is, does not exchange a revocation key or does not counter-sign the next

23

state transition transaction? Then the other party can still post the last signed valid transaction after

waiting for its timelock to expire and so is protected against such deviations as well.

5.2 Payment channels – applications

I return to the risk sharing and trade applications introduced in Section 4 and show how collateral-

backed payment channels can be used to implement the constrained-efficient outcome in each

setting. A debt contract setting is also analyzed.

Multiperiod insurance

In the multiperiod risk sharing setting of Townsend (1982), think of the agent and insurer

starting at state(0; 0) (each has zero balance due) and some initial promised utilityw0 (stored in a

digital token account). Then, depending on the realized history of agent’s income(yj1 ; yj2 ; :::), the

following chain of state transitions is implemented:

(0; 0)! (�1j1 ;��
1
j1
)! (�1j1 + �

2
j2
;��1j1 � �

2
j2
):::! (

TX
t=1

�tjt ;�
TX
t=1

�tjt)

where�tjt denotes the optimal insurance transfer to the agent (payout if positive and contribu-

tion/premium if negative) at timet if the reported income state isjt. For this series of state

transitions to be implementable via a blockchain-based payment channel, the parties need posted

collateral which spans the maximum possible balance due to either side. It is sufficient to set

c = maxfj �min
1� � j; j

�max
1� � jg

where�min is the largest possible transfer from the agent in the mechanism-design solution and

�min is the largest possible transfer from the insurer, see Section 4.1.

Trade

Consider a repeated version of the Gans (2019) setting in which the buyer and seller engage

in a maximum ofT trades. Assume that if a party reneges on the contracted outcome (the seller

S sends good with valueV and the buyerB pays priceP), then the relationship is terminated. In

such case, as discussed in Section 4.2, a payment channel with collateral

c = TP + 2F

can support the required state transitions:

(0; 0)! (�P; P)! :::! (�TP; TP)

24

where the first state is the buyer’s balance. The additional collateral amount2F is needed in case

of a deviation, see Section 4.2 for details.

Debt contract

A payment channel can be also used to set up a simple debt contract (one-period loan agree-

ment). Suppose a lenderA and a borrowerB wish to enter a blockchain-based loan contract to

provideB with fundsl for a fixed term (e.g., one year) at interest rater. As assumed throughout

this paper, suppose that no external enforcement is possible. That is, the contract must be imple-

mentable solely via the algorithmic tools and constraints from Section 2. This implies that in order

for A to be certain that she will be repaid(1+ r)l, the minimum amountb0 thatB must post in the

payment channel collateral transaction�c must satisfy:

b0 � (1 + r)l.

Suppose also that the lenderA providesa0 in �c wherea0 > l, i.e.,A has enough funds to enable

the loan. Disbursing the loan can be written as the following state transition, where the output

fundsl are immediately redeemable byB (using the private keykb)

(a0; b0)! (a0 � l; b0 + l)

If the loan is repaid as intended (i.e., the borrowerB repays the contracted amount(1 + r)l to the

lenderA), the following balance state is reached at the end of the loan term:

(a0 + rl; b0).

Essentially,A gains the interest on the loan,rl whileB keeps his collateral funds. This is achieved

by a settlement transaction in whichA is paid (1 + r)l andB’s collateral value(1 + r)l is re-

leased/unlocked back toB.

If, instead,B fails to repay within the specified time in the contract (a timelock is used), the

following alternative state is reached in which the lenderA seizes (part of)B’s collateral:

(a0 + rl; b0 � (1 + r)l)

A real-world example for digital-platform loans is MakerDAO’s borrowing facility imple-

mented on the Ethereum blockchain. A user can lock Ethereum cryptocurrency (ETH) as col-

lateral and receive a DAI (token) denominated loan at a minimum 1.5-to-1 collateral-loan ratio

($150 worth of ETH gives $100 worth of DAI). If the loan is repaid the ETH collateral is released

back to the borrower; if not, the collateral is liquidated in favor of the platform (the lender).

25

5.3 Multi-party transactions

The basic idea behind bilateral state transition payments described above can be extended to trans-

actions involving more than two parties (an example is the Lightning Network in Bitcoin). Es-

sentially, if a path of bilateral collateralized payment channels can be constructed between any

two platform clients (nodes)C andD, then these two nodes can make payments to each other

even if they do not have a direct payment channel between them. The maximum possible transfer

amount is determined by the ‘weakest link’, that is, the bilateral channel with the lowest collateral

(capacity) on the path.

Relying only on internal enforcement, via algorithmic and cryptographic tools, the main chal-

lenge of such transfers hopping over anonymous nodes is how to guarantee that each node will

pass the funds or digital assets ownership forward andprove that it has done so. Notably, each

intermediate node between the end-nodesC andD should not be able to unlock and use the funds

because in such case the senderC would have no recourse (there is no external enforcement).

A way to solve this enforcement problem is an algorithmic tool calledtimelocked redeemable

secret (TRS)script,H(�) (called HTLC in Bitcoin) whereH(�) denotes the hash function of some

secret statement�. A hash function is a mathematical function that is easy to compute/verify (it is

easy to computeH(�) when one knows�) but nearly impossible to invert, that is, one cannot find

� from just knowingH(�). When payment is agreed upon, the intended final recipient/payeeD

creates the secret� and sends its hashH(�) (but not� itself!) to the sender/payerC. The senderC

then creates a transaction with output fundsF locked by the TRS scriptl1 = H(�)_ (kC ; T 1) and

passes it to the first intermediate node,I1 on the chain betweenC andD. HereC is assumed to

have an established a collateralized payment channel withI1. Note that nodeI1 cannot redeem the

fundsF (sinceI1 does not know the secret� needed to obtainH(�)) but she can be incentivized,

by means of a small fee added toF , to pass along the TRS-locked fundsF to another node,I2 with

whomI1 has an established collateralized channel and locked by the scriptl2 = H(�) _ (kI1 ; T 2)
with T 2 < T 1, and so on. The pathI1; I2; ::: is constructed algorithmically. The role of the

timelocksT i is to ensure that each node along the chain would be able to get their funds/fee back

in case the secret is never provided byD.

WhenD is finally reached, e.g., from some nodeIn then, sinceD knows the secret statement�,

she claims the outputF by debiting it from its payment channel state balance withIn. ClaimingF

algorithmically triggers sending the secret� to In who in turn claimsF (plus a small fee) from her

payment channel state balance withIn�1 and so on, until we reachC. The end result of the chain

of bilateral state transitions is a payment ofF fromC toD, exactly as contractually intended. Note

that no additional use of the blockchain is required in the process, except for posting collateral for

establishing the pre-existing bilateral channels on the payment chain path.

26

6 Digital financial contracts – a roadmap

In this section I outline how a wide range of mechanism-design solutions can be implemented via

a digital platform (e.g., using blockchain technology) and digital (‘smart’) contracts, i.e., computer

code executable on the digital platform. Unlike in the previous sections, I do not describe in detail

the algorithmic and cryptographic tools used but assume that they are available in the background,

for example, via the implementation methods in Section 5, including the ability to post and use

platform-based collateral. Instead, in this section I analyze more generally how digital platform

accounts and information can be used to implement (constrained-) optimal contract allocations in

several settings with exogenously or endogenously incomplete financial markets.

Consider agentsi = 1; :::N who transact via a digital platform (e.g., blockchain-based). Each

agenti has two accounts, an expenditure account with balanceait and a digitaltokenaccount with

balancewit. The token account will be used to record history-dependent state variables, including

non-monetary, (e.g., ‘promised utility’, credit rating, or debt level). Define transaction� ijt to mean

a transfer of funds from accounti to accountj at timet.

The recorded history (platform data)T up to timeT consists of all transactions�T � f� ijt gij;t
and commonly agreed upon/observed external states,et (e.g., date, GDP, weather, aggregate shock)

for t = 1; ::; T � 1. Account balancesait andwit, summarized in the vectorsAt andWt, can

be constructed from the transactions data going back tot = 0 (as in Bitcoin) or queried from

the platform (as in Ethereum). Define the platform state at timet as�t � fAt;Wt; etg. Using

superscripts to denote history up toT , all public digital data arehT = [�T ;�T].

A financial digital contract with initial datet1 and end datet2 among agentsJ � f1; ::Ng is

defined as the mapping

�(J ; t1; t2) : �! T

from (a subset of) the time-t state�t to a matrix of contractual transactions (transfers)Tt, 8t 2
[t1; t2]. The contract terms can be contingent on both past and future events (e.g.,ait1 > 5, et2 = 3).

Once initiated, the contract is automatically executed and cannot be modified or terminated unless a

pre-specified stopping condition is reached. Transactions are valid if the payment/transfer amount

is available and its ownership is successfully cryptographically verified or invalid otherwise (see

Section 2).

Focus on bilateral financial digital contracts, defined as state-contingent transactionsT using

the following four digital platform accounts:

(1) node 1’s expenditure account (e.g., insured or borrower)

(2) node 2’s expenditure account (e.g., an insurer or lender)

(3) an escrow account (node 3)

27

(4) a token account for node 1 (transactions using it are denoted� 11)

The optimal digital contract specifies contingent transfers solving the expected-payoff maxi-

mization problem,

max
T (s)

EU(T (s))

s.t. T (s) 2 �(s)

where the state variables is (a subset of) the current platform state� andU is a payoff function

for node 1 or node 2, depending on the application). The feasible set�(s) imposes restrictions on

the transactionsT (s) (see examples below) such as: payment channel state transition, financing

constraints (e.g., borrowing limit), promise keeping constraint, incentive-compatibility constraints,

or truth-telling constraints. Both one-period and multiperiod smart contracts (using dynamic pro-

gramming, by definingU(T (s)) = u(�(s)) + �V (s0) whereu is the current payoff,s0 is the

next-period state, andV (s0) is the next-period value) can be incorporated.

Example A (working capital loan)

An entrepreneur with preferencesu(c) defined over consumptionc uses technologyf(k)map-

ping working capitalk into stochastic outputy 2 fy1; ::; y#Y g. In this example the state variable is

the (commonly observed) output realization,s = e = y. The entrepreneur has no assets and needs

to borrow the working capitalk. Call the borrower’s account node 1 and let node 2 be the lender’s

account. A one-period debt contract with interestr > 0 solves the following problem:

max
�21

Eu(f(� 21)� � 12)

s.t. � 12 = (1 + r)� 21

where� 21 is the loan size (a transaction from the lender2 to the borrower1) and� 12 = (1+ r)� 21

is the repayment amount (a transaction from node1 to node2). Involuntary default, when the

loaned amount exceeds the available output,� 12 > y, can be incorporated by adjusting the interest

rate� 12=� 21 accordingly. Strategic default can be addressed by using the escrow account assuming

the borrower can post collateral.

Example B (defaultable debt)

Consider adefaultable debtsetting between a borrower, node 1 and a lender, node 2. Let 1 have

initial assetsb � 0 and balancew in his digital token account (this can be interpreted as ‘credit

rating’). The borrower puts� 13 2 [0; b] as collateral into the escrow account (node 3), secured

by the algorithmic tools discussed earlier. The contract then releases a loan of size� 21(� 13; w; e)

28

(where� 21 < � 13) and stipulates a repayment (principal plus interest)�̂ 12(� 21; w; e) wheree is a

verifiable external state (e.g., the central bank reference interest rate).

At the end of the period the agent decides to repay� 12. If � 12 = �̂ 12 (the agent repays the

contracted amount) then the loan is deemed repaid in full, the agent’s token account (credit rating)

is updated tow+� 11, and the collateral in the escrow account is returned to the borrower,� 31 = � 13.

If instead the agent defaults, that is,� 12 = 0 (partial default can be incorporated too), the lender

receives the contracted payment from the escrow account via transaction� 32 = �̂ 12 and the agent’s

token balance is updated, i.e., his credit rating is ‘downgraded’, tow � ~� 11. It is possible to

distinguish between strategic and involuntary default by recording the appropriate information

(e.g., agent’s income or business profits) on the platform.

Example C (moral hazard)

Consider a risk-neutral insurer and a risk-averse agent with preferencesu(c; z) wherec is con-

sumption andz is a costly action (effort, diligence) unobserved by the insurer. The agent receives

stochastic incomey 2 fy1; ::; y#Y g which is i.i.d. over time. LetP (yjjz) denote the probability

of realizing income levelyj given action levelz. Income is observable and recorded in the public

statee, so the digital state iss � (w; y) wherey is current income andw is promised utility. The

optimal risk-sharing contractT (s) can be implemented by using the token account (4) to store

promised utilityw as a digital token balance (similar to ‘experience rating’) encoding income his-

tory. In the beginning of each period, given the contractT (s), the agent chooses the action levelz.

Next, incomey is realized and remitted to the insurer as� 12(s). Then the digital contract transfers

� 21(s) to the agent’s expenditure account (consumption) and� 11(s) to the agent’s token account.

The constraints�(s) include

� 12(w; yl) = yl for anyl 2 1; :::;#Y

the incentive-compatibility constraint ensuring that the agent will supply the contracted action level

z as opposed to some other levelẑ,

Ez[u(�
21(s); z) + �(w + � 11(s))] � Eẑ(u(� 21(s); ẑ) + �(w + � 11(s))) for all ẑ 6= z

and the promise keeping constraint ensuring that the agent is appropriately rewarded or sanctioned

depending on the realized income history

E(u(� 21(s); z) + �(w + � 11(s))) = w.

Example D(hidden income)

29

An infinite-horizon version of the hidden income problem can be also implemented using a

token account for promised utility. Consider a risk-averse agent and preferencesu(ct) where

ct is consumption and a risk-neutral insurer. The agent’s income streamfytg is i.i.d. over time

andy can take valuesy1; ::y#Y . Unlike in the previous example, there is no costly action but the

agent’s income is unobserved by the insurer. The risk-sharing problem can be written as a dynamic

program using the agent’s promised utilityw as state variable that encodes the history of output

realizations.

�(w) = max
fT g

E(�� 21j + ��(w + � 11j))

s.t. u(yj + �
21
j) + �(w + �

11
j) � u(yj + � 21l) + �(w + � 11l) for anyj; l = 1; ::#Y

E(u(yj + �
21
j) + �(w + �

11
j)) = w

where the first constraint is the truth-telling constraint (incomeyj is realized but the agent considers

reportingyl) and the second constraint is the promise-keeping constraint. The initial promised

utility token balancew0 can be chosen to give zero ex-ante profits to the insurer or satisfy an

ex-ante participation constraint for the agent.

7 Conclusions

I describe how key economic concepts underlying (financial) contracts – property rights, informa-

tion, commitment, and enforcement – map to and can be implemented though digital algorithmic

tools and code – transactions and full history thereof, simple and multisig locking scripts, signa-

tures and timelocks. Blockchain technology excels at recording, securing (locking) and digital

verification (unlocking) of funds ownership and other information. The main limitation is the need

for collateral – any promised future payments must be fully backed and secured. Complex lock-

ing scripts including multiple signatures and timelocks can be used to enable payments, based on

posted collateral funds. While the need for digital collateral appears a costly limitation, I show

how that collateral can be leveraged to back multiple off-platform transactions via pre-established

payment channels which saves on transaction fees and waiting time costs.

The main takeaways are as follows. Digital platforms such as blockchains and digital smart

contracts have the potential to be a very powerful tool for implementing complex mechanism-

design solutions with multiple contingencies and conditionalities and based on current real-time or

recorded information. Their usefulness is predicated but also limited by the algorithmic tools and

constraints on which the platform computer code is based. Specifically, enforcement of payments

has to be secured by collateral. Conditional on that, digital platforms can be used to implement

30

constrained optima and automate complex mechanism design solutions in real-world settings with

private information (e.g., unobserved characteristics or actions) and limited enforcement.

My main goal in this paper was to distill and break down blockchain technology and digital

contracts to their fundamental building blocks and provide detailed analysis of their strengths and

limitations, as opposed to using the terms ‘blockchain’ or ‘smart contract’ as catchall phrases for

implementing digital transactions. I show how economic theory, specifically mechanism design,

can be used to assist digital platform developers and programmers regarding what types of al-

gorithmic tools to include in future implementations or upgrades, for instance, basic ready-made

financial contracts such as loans or contingent insurance products. Combining the technological

strengths of digital (blockchain) platforms in granular information recording and verifiability, proof

of ownership, security and privacy with enhanced enforcement and trust mechanisms (possibly in-

cluding trusted third parties) can yield further benefits while saving on collateral requirements and

transaction costs.

References

[1] Abreu, D., D. Pearce and E. Stacchetti (1990), “Toward a Theory of Discounted Repeated

Games with Imperfect Monitoring”, Econometrica 58: 1041-63

[2] Albanesi, S. and Sleet, C. (2006), “Dynamic Optimal Taxation with Private Information”,

Review of Economic Studies, 73: 1-30

[3] Andolfatto, D. (2108), “Blockchain: What It Is, What It Does, and Why You Probably Don’t

Need One”. Federal Reserve Bank of St. Louis Review.

[4] Aronoff, D. and R. Townsend (2023), “A Smart Contract to Increase Intermediation Capacity

in the Repo Market”, working paper, MIT

[5] Atkeson, A. and R. Lucas, (1992), “On Efficient Distribution with Private Information”, Re-

view of Economic Studies, 59: 427-53

[6] Antonopoulos, A. (2017),Mastering Bitcoin: Programming the Open Blockchain, O’Reilly

[7] Berentsen, A. and F. Schar (2018), “A Short Introduction to the World of Cryptocurrencies”,

Federal Reserve Bank of St. Louis Review.

[8] Broer, T., M. Kapicka and P. Klein (2017), “Consumption risk sharing with private informa-

tion and limited enforcement”, Review of Economic Dynamics 23: 170-90

31

[9] Buterin, V. (2013), “Ethereum White Paper”, manuscript

[10] Catalini, C. and J. Gans (2016), “Some Simple Economics of the Blockchain”, NBER Work-

ing Paper 22952

[11] Chapman, J., R. Garratt, S. Hendry, A. McCormack and W. McMahon (2017), “Project

Jasper: Are Distributed Wholesale Payment Systems Feasible Yet?”, Bank of Canada Fi-

nancial System Review

[12] Chiu, J. and T. Koeppl (2019), “The Economics of Cryptocurrencies: Bitcoin and Beyond”,

Staff Working Paper 2019-40, Bank of Canada

[13] Chiu, J. and T-N. Wong (2014), “E-Money: Efficiency, Stability and Optimal Policy”, Work-

ing Paper 2014-16, Bank of Canada

[14] Chiu, J. and T-N. Wong (2021), “Payments on Digital Platforms: Resiliency, Interoperability

and Welfare”, Staff Working Paper 2021-19, Bank of Canada

[15] Chiu, J., C. Kahn and T. Koeppl, (2022), “Grasping De(centralized) Fi(nance) Through the

Lens of Economic Theory”, Staff Working Paper 2022-43, Bank of Canada

[16] Chiu, J., E. Ozdenoren, K. Yuan and S. Zhang (2023), “On the Fragility of DeFi Lending”,

Staff Working Paper 2023-14, Bank of Canada

[17] Cole, H. and N. Kocherlakota (2001), “Efficient Allocations with Hidden Income and Hidden

Storage”, Review of Economic Studies, 68: 523-42

[18] Committee on Payments and Market Infrastructures, CPMI (2017), “Distributed Ledger

Technology in Payment, Clearing and Settlement: An Analytical Framework”, BIS

[19] Cong, L. and Z. He (2019), “Blockchain Disruption and Smart Contracts”, Review of Finan-

cial Studies

[20] Decker, C. and R. Wattenhofer (2015), “A Fast and Scalable Payment Network with Bitcoin

Duplex Micropayment Channels”, in Pelc, A., Schwarzmann, A. (eds)Stabilization, Safety,

and Security of Distributed Systems.

[21] Eyal, I. (2015), “The Miner’s Dilemma”, 2015 IEEE Symposium on Security and Privacy

[22] Fernandes, A. and C. Phelan (2000), “A Recursive Formulation for Repeated Agency with

History Dependence”, Journal of Economic Theory, 91: 223-247

32

[23] Gans, J. (2019), “The Fine Print in Smart Contracts”, NBER Working Paper 25443

[24] He, D., K. Habermeier, R. Leckow, V. Haksar, Y. Almeida, M. Kashima, N. Kyriakos-Saad,

H. Oura, T. Sedik, N. Stetsenko, and C. Verdugo-Yepes (2016), “Virtual Currencies and Be-

yond: Initial Considerations”, IMF Staff Discussion Note 16-03.

[25] Holden, R. and A. Malani (2018), “Can Blockchains Solve the Holdup Problem in Contracts”,

working Paper, No.2018-12, Becker-Friedman Institute, Chicago

[26] Karaivanov, A. and F. Martin (2015), “Dynamic Optimal Insurance and Lack of Commit-

ment”, Review of Economic Dynamics 18(2), p.287-305

[27] Karaivanov, A. and R. Townsend (2014), “Dynamic Financial Constraints: Distinguishing

Mechanism Design from Exogenously Incomplete Regimes”, Econometrica 82:887-959

[28] Karaivanov, A., B. Mojon, L. Pereira da Silva and R. Townsend (2023), “Digital Safety Nets

– A Roadmap”, BIS Papers 139

[29] Kehoe, P. and F. Perri (2002), “International Business Cycles with Endogenous Incomplete

Markets”, Econometrica, 70: 907-28

[30] Kiayias A., E. Koutsoupias, M. Kyropoulou, Y. Tselekounis (2016), “Blockchain Mining

Games”, 2016 ACM Conference on Economics and Computation, 365-382

[31] Kiviat, T, (2015), “Beyond Bitcoin: Issues in Regulating Blockchain Transactions.” Duke

Law Journal. Vol. 65: 569

[32] Kocherlakota, N. (1996), “Implications of Efficient Risk Sharing Without Commitment”,

Review of Economic Studies, 63: 595-609

[33] Koeppl, T. and J. Kronick (2017), “Blockchain Technology – What’s in Store for Canada’s

Economy and Financial Markets?”, Commentary No.468, C.D. Howe Institute

[34] Lee, M., A. Martin and R. Townsend (2022), “Optimal Design of Tokenized Markets”, MIT

[35] Ligon, E., J. Thomas and T. Worrall, (2000), “Mutual Insurance, Individual Savings and

Limited Commitment”, Review of Economic Dynamics 3: 216-246.

[36] Ligon, E., J. Thomas and T. Worrall, (2002), “Mutual Insurance and Limited Commitment:

Theory and Evidence in Village Economies”, Review of Economic Studies, 69: 209-244.

[37] Nakamoto, S. (2008), “Bitcoin: A Peer-to-Peer Electronic Cash System”, white paper

33

[38] Peyrott, S. (2017), “An Introduction to Ethereum and Smart Contracts”, manuscript

[39] Phelan, C. (1995), “Repeated Moral Hazard and One-Sided Commitment”, Journal of Eco-

nomic Theory 66: 488-506.

[40] Phelan, C. and R. Townsend (1991), “Computing Multi-Period, Information-Constrained

Equilibria”, Review of Economic Studies, 58: 853-81.

[41] Raskin, M. and D. Yermack (2016), “Digital Currencies, Decentralized Ledgers and the Fu-

ture of Central Banking”, NBER Working Paper 22238

[42] Routledge, B. and A. Zetlin-Jones (2018), “Currency Stability Using Blockchain Technol-

ogy”, working paper

[43] Spear, S. and S. Srivastava (1987), “On Repeated Moral Hazard with Discounting”, Review

of Economic Studies 53: 599-617

[44] Szabo, N. (1996), “Smart Contracts: Building Blocks for Digital Markets”, Extropy 16

[45] Szabo, N. (1998), “Secure Property Titles with Owner Authority”, manuscript

[46] Thomas, J. and T. Worrall (1988), “Self-Enforcing Wage Contracts”, Review of Economic

Studies, 55: 541-55

[47] Townsend, R. (1982), “Optimal Multiperiod Contracts and the Gain from Enduring Relation-

ships under Private Information”, Journal of Political Economy 82:1166-96

[48] Townsend, R. (2020),Distributed Ledgers: Design and Regulation of Financial Infrastruc-

ture and Payment Systems, MIT Press

[49] Townsend, R. and N. Zhang (2023), “Technologies that replace a central planner”, AEA

Papers and Proceedings 113:257-262.

[50] Yermack, D. (2014), “Is Bitcoin a Real Currency? An Economic Appraisal”, NBER Working

Paper 19747

[51] Yermack, D. (2016), “Corporate Governance and Blockchains”, NBER Working Paper 21802

34

Figure 1: Multi-period Risk Sharing

5.7 5.8 5.9 6 6.1 6.2 6.3 6.4 6.5
agent utility for y1=yL

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7
ag

en
t u

til
ity

 fo
r y

1=y
H

private information
limited enforcement
first best

autarky

first best

debt

hidden income
hidden income + limited enforcement

Note: The Figure illustrates the two-period numerical risk-sharing example from Section 4.1 for dif-

ferent financial settings: autarky, debt, private information (hidden income), limited enforcement, and full

insurance (first best). The arrows point to the optimal allocation (in utility terms) in the different settings

conditional on the agent’s first-period incomey1 (high or low).

35

