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Abstract

I construct a dynamic social-network model of the COVID-19 epidemic which
embeds the SIR epidemiological model onto a graph of person-to-person interactions.
The standard SIR framework assumes uniform mixing of infectious persons in the
population. This abstracts from important elements of realism and locality: (i)
people are more likely to interact with members of their social networks and (ii)
health and economic policies can affect differentially the rate of viral transmis-
sion via a person’s social network vs. the population as a whole. The proposed
network-augmented (NSIR) model allows the evaluation, via simulations, of (i)
health and economic policies and outcomes for all or subset of the population: lock-
down/distancing, herd immunity, testing, contact tracing; (ii) behavioral responses
and/or imposing or lifting policies at specific times or conditional on observed states.
I find that viral transmission over a network-connected population can proceed
slower and reach lower peak than transmission via uniform mixing. Network con-
nections introduce uncertainty and path dependence in the epidemic dynamics,
with a significant role for bridge links and superspreaders. Testing and contact
tracing are more effective in the network model. If lifted early, distancing policies
mostly shift the infection peak into the future, with associated economic costs.
Delayed or intermittent interventions or endogenous behavioral responses generate
a multi-peaked infection curve, a form of ‘curve flattening’, but may have costlier
economic consequences by prolonging the epidemic duration.
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1 Introduction

I construct and compute a dynamic social network-based model of the COVID-19 epidemic
and use it to evaluate a range of simulated health and economic policies – herd immunity,
distancing, lockdown, testing, quarantine, and contact tracing. Endogenous behavioral
responses are also analyzed. The analytical framework superimposes the classic SIR model
of infectious diseases (Kermack and McKendrick, 1927; Atkeson, 2020; Alvarez et al.
2020; Wang et al., 2020 among many others) onto a social-network graph of interactions.1

An economic module can be overlaid onto the disease dynamics, similar to Berger et al.
(2020) or Alvarez et al. (2020).2

SIR (or SEIR) Markov models characterize the spread of an epidemic over time in a
population of agents who pass through the states of ‘Susceptible’, (‘Exposed’), ‘Infectious’
and ‘Resolved’ (recovered or dead). Biological and socioeconomic parameters determine
the duration and transition probabilities between the states. Health and economic policies
such as physical distancing, testing and quarantine also influence the spread of the disease
by affecting the rate and number of contacts between agents.

The standard SIR framework assumes random (uniform) mixing of infectious persons
with the rest of the population. While helpful for simplifying the dynamics and computing
outcomes, this population-level random matching assumption abstracts from important
elements of realism and locality: (i) people are more likely to interact with members of
their social network, broadly defined (e.g., family, work, or distance based); (ii) health and
economic policies targeting disease mitigation, as well as individual behavioral responses,
affect the rate of viral transmission via a person’s network of contacts vs. the population
as a whole3 and (iii) social contact heterogeneity can induce path-dependence and role
for ‘superspreaders’ or ‘clusters’ in the epidemic dynamics (Adam et al., 2020; Althouse
et al., 2020).

Incorporating local, social-network based transmission in the SIR epidemiological
model can yield quantitatively different outcomes and policy implications compared to
the standard framework with uniform mixing. Using simulations I show that, for the
same biological parameters, the standard SIR model can overstate the reproduction rate
and infection peak of the epidemic. Relative to the SIR model, the network structure
and degree heterogeneity introduces uncertainty and unpredictability in the epidemic
dynamics and duration as well as in policy outcomes, since the infection can spread in a
non-uniform, state-dependent way. The observed broad range of COVID-19 infection rates
across countries, the presence of clusters and superspreaders and the prolonged plateau of
new daily infections in some countries despite long lockdown periods may be related to
the social network structure and the underlying number and frequency of contacts.

1Previous work on infection spread via networks is mostly theoretical and/or outside economics and
includes Pastor-Satorras and Vespignani (2000), Newman (2002), Dottori and Fabricius (2015), McGee
(2020), Reich et al. (2020), Zhao, (2020).

2Additionally, since the network model tracks individual nodes over time, heterogeneity (e.g., in
savings, employment status; ability to pay rent or bills) can be incorporated.

3Kuchler et al. (2020) use Facebook data and show that areas with stronger social ties to two early
COVID-19 “hotspots” in the U.S. and Italy had more confirmed COVID-19 cases.
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An advantage of the network-augmented model, relative to the standard SIR model, is
that the network model (hereafter NSIR) allows tracking (including via contact tracing)
and distinguishing infections occurring through social contacts vs. at the population-level
(unknown origin or community infections). The NSIR approach also allows modeling and
analyzing richer behavioral responses, e.g., based on the disease state of an agent’s social
contacts or deaths among one’s contacts, in addition to responses based on aggregate
states. The main challenge to the network approach is the choice or calibration of the
social network of contacts which is a key model input.

The social-network augmented NSIR model allows the researcher to specify and vary,
via model and policy parameters, the relative rate of viral transmission within agents’
social network vs. the population and thus nests the standard SIR model as a special case.
Since, unlike SIR, the NSIR model is simulated at the agent level it incorporates agent
heterogeneity, via the agent’s position in the network by construction, but also extendable
in other economically relevant dimensions. The NSIR model is solved via a stochastic
Monte Carlo approach using the Gillespie algorithm (Doob, 1945; Gillespie, 1977), a
numerical method for generating statistically correct trajectories (possible solutions) of a
stochastic system.4

The proposed network-augmented model of COVID-19 is used to assess a broad set of
simulated health and economic policies and behaviors, applying to all or subset of the
population and including but not limited to:

(i) physical distancing – by varying the network structure (a reduction in the nodes’
degree / social contacts) and/or by varying the network-level vs. population-level mixing
parameter.

(ii) testing and quarantine with or without contact tracing – by keeping track of and
varying each agent’s network of allowed contacts in the simulation.

(iii) policy timing and duration – imposing or lifting health or economic policies
at specific times or conditional on observed epidemic aggregates; both contiguous and
intermittent policy interventions are considered.

(iv) endogenous behavioral responses by the agents (e.g., self-quarantine, avoiding
contacts) based on observed infections or deaths among the agent’s contacts or in the
population at large.

I am not an epidemiologist and all analysis and conclusions in this paper should be
interpreted with the appropriate caveats. In addition, at the time of writing there is still
a lot of uncertainty about the COVID-19 epidemiological parameter values and the policy
outcomes are sensitive to that (robustness is explored). My objective is therefore primarily
descriptive – to explore via simulations the implications, interactions and joint effects of
epidemiological dynamics, social networks and policy or behavioral counterfactuals on
health and economic outcomes.

My main findings are summarized as follows:
1. Viral transmission over a network-connected population can proceed slower

4The Matlab codes used in this paper (available at http://www.sfu.ca/~akaraiva/CV19codes.

zip) draw on but significantly extend publicly shared Python code by biologist Ryan McGee, see
https://github.com/ryansmcgee.
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and reach a lower peak than transmission via uniform/random contacts as assumed by
standard SIR models. This is consistent with the findings of Azzimonti et al. (2020) using
New York social interactions data. The resulting longer epidemic duration could imply
larger overall economic costs, e.g., if accompanied by longer lockdown periods.

In the NSIR model with network-based viral transmission:
2. Lockdown, quarantine and physical distancing policies which reduce the agents’

contacts are on average more effective in slowing down the viral transmission compared
to in the SIR model with uniform mixing.5 Large-scale and persistent testing and contact
tracing are required to lower and flatten the infection rate curve. A low testing rate or a
one-off mass testing campaign are not likely to be effective because of the relatively short
serial interval of COVID-19.

3. If lifted early, lockdown or distancing policies mostly shift the infection peak
into the future, with associated further economic costs. Simulations show that one-, two-
and four-month distancing policies starting from 0.5% infected share initially steadily
reduce the number of active cases but could fail to contain the epidemic since a large
number of susceptible non-immune agents remains at large. Mass vaccination, herd
immunity (at the cost of many deaths), or a combination of mass-scale and persistent
testing, contact tracing and enforced (self-)isolation appear the only reliable ways to stop
the epidemic from reigniting if lockdown policies are lifted early.6

4. The epidemic dynamics are sensitive to policy timing and duration.7 Delayed
lockdown or distancing policies or endogenous behavioral responses generate a multi-
peaked infection rate over time, a form of ‘curve flattening’, but may have costlier economic
consequences by prolonging the epidemic duration.

5. Intermittent (“on”, “off”, “on” again) lockdown or distancing policies and
behaviors are demonstrated to be effective in flattening the infection curve. Intermittent
policies can be politically easier to implement and enforce but may entail larger overall
economic or healthcare costs.

6. Behavioral responses by the agents, through reducing their number of rate of
social contacts based on observed infections, on aggregate or in their own network, can
be a powerful and economically less costly alternative to mandated lockdowns but could
induce a cyclical pattern of tightening and relaxation over a prolonged period.

5Even partial lockdown or distancing can break or significantly reduce the transmission in the NSIR
model by removing and isolating key network links, paths and nodes while these policies are less effective
with uniform mixing.

6It may still take long to contain the COVID-19 epidemic when a vaccine is available. Unlike the
virus, a vaccine does not replicate and spread on its own. Hence, a vaccine is only effective if introduced
on a sufficiently large and/or optimally chosen subset of the population. For example, Borgs et al. (2010)
show that a non-uniform (proportional to node degree) distribution of antidote in a network can control
an epidemic while uniform antidote distribution cannot.

7The social-contacts network structure and infection time path (which nodes are infected when) also
affects the spread of the epidemic unlike in the SIR model.
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2 The NSIR Model

2.1 Setup

Consider a large population of N persons modeled as the nodes of a social network/graph
G. The graph edges capture (regular) social interactions which are possible vectors
of infection transmission. The assumed baseline network structure is an input of the
model, however, health policies (e.g., lockdowns, quarantine, etc.), can be interpreted as
(temporarily) changing the social network by eliminating edges (contacts). In addition to
network-level contact, persons/nodes can also interact with any other node (connected
or not) with rate/probability p ∈ [0, 1]. The limiting case p = 1 thus approximates the
random mixing assumption in the standard SIR model.

Each node i = 1, ..., N has an individual state xit at time t. The basic model states
are five: S for susceptible to the disease; E for exposed (infected but not yet infectious);
I for infectious; R for recovered and F for dead. Additional states for ‘tested positive’
(known infected) or ‘in lockdown’ will be introduced in the policy simulations.

The NSIR model is initialized by randomly assigning #I ∈ (0, N) nodes to the
infectious state, that is setting xi0 = I, i ∈ I0 and the rest of the nodes to the susceptible
state, xj0 = S for j ∈ S0, where from now on Xt denotes the set of nodes/agents with
state xit = X at time t.

Conditional on current state xit, the next state xit′ for node i is determined as follows.
The probability for any state transition not specified below, e.g., S to I or E to R is set
to zero.

(a) susceptible agents

xit′ |(xit = S) =

 E with prob. pβ
It
At

+ (1− p)β
∑

j∈CG(i) 1xjt=I

#CG(i)
S otherwise

(1)

where At denotes the number of active agents at t (for example, all living agents, At =
N − Ft) and where CG(i), with dimensionality (node degree) #CG(i), denotes the set
of contacts / edges of node i in the social graph G. The notation 1xjt=I is an indicator
function which equals 1 if xjt = I and zero otherwise. The parameter β captures the
contact rate and infection rate conditional on contact with an infectious person. The

expressions It
At

and
∑

j∈CG(i) 1xjt=I

#CG(i)
are the probabilities that the contact is infectious, in

the population or in one’s social network, respectively.
The first term (multiplied by p) in (1) captures the rate of infection from contact

with an infectious person in the population at large (e.g., public transit, shopping, etc.)
This term corresponds to the uniform mixing (random meeting) transmission vector in
the standard SIR model. The second term in (1) (multiplied by 1 − p) captures viral
transmission that occurs because of an existing infection(s) among i’s social contacts in
G, the set CG(i). In Section 3 I show how (1) can be modified to include testing and
quarantine/isolation.
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(b) exposed agents

xit′|(xit = E) =

{
I with prob. σ
E with prob. 1− σ (2)

The transition from the exposed to the infectious state happens at rate σ set to match
the disease’s incubation period.

(c) infectious agents

xit′ |(xit = I) =


R with prob. γ
F with prob. µ
I with prob. 1− γ − µ

(3)

The expected recovery rate is γ. The fatality rate conditional on being infected is µ.
(d) recovered agents and deaths

xit′|(xit = R) = R with prob. 1 (4)

xit′|(xit = F ) = F with prob. 1

Death (state F ) and recovery (state R) are absorbing states. Possible transition from
state R back to the susceptible state S is ruled out in the simulations but is very easy to
incorporate via an additional parameter. Base population birth or death rates can be
also modeled but I abstract from this here.

There are two main groups of parameters in the model. The parameters β (infectious-
ness), σ (incubation period), γ (survivability) and µ (mortality) are assumed biologically
fixed in the baseline simulations. It is computationally feasible to allow state-based
mortality rate, µ(It) (for example, because of exceeding hospital capacity) as in Alvarez
et al. (2020). In contrast, the parameter p and the social network structure G on which
agents interact are interpreted as socioeconomic variables affected by policy or behavioral
responses. In Section 3 I introduce additional policy parameters and graphs to model
testing, contact tracing, lockdowns, distancing and quarantine.

2.2 Simulation

The model is initialized by choosing the initial number of infectious nodes (I0), with the
rest of the N nodes set in susceptible S state. A baseline network graph, G of size N is
also chosen (see Section 4.1 for details and Section 6 for alternative specifications and
robustness).

Model time evolves stochastically from t to t′ = t + τ , by having the time index t
increased by the amount τ computed from the state-transition probabilities in (1), (3)
and (2) using Gillespie’s (1977) algorithm. One unit of time equals one day. Only the
state of a single randomly selected node is modified at each time increment τ . All other
nodes retain their previous states.

Formally, for each t, the Gillespie algorithm executes the following steps:
(i) draw two random scalars r1 and r2 from the uniform distribution on (0, 1)
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(ii) compute the total probability of any node changing to a new state using (1),
(3) and (2), call it Π

(iii) use r1 to draw the time interval τ until the next state change event as
τ = 1

Π
ln( 1

r1
), using that the state change time interval is exponentially distributed with

mean 1
Π

. Call t′ = t+ τ .
(iv) use the draw r2 to select one of all positive-probability state transitions, xlt

to xlt′ with xlt′ 6= xlt implied by (1), (3) and (2), with corresponding transitioning node
l ∈ {1, ..N}. The chance of selecting a specific transition is proportional to its probability.

(v) perform the state transition from Step (iii) by updating node l’s state and
keeping all other nodes’ states the same as at t

(vi) forward model time to t′ = t+ τ and go back to Step (i)
Model time is forwarded by larger intervals when transition events are relatively rare

(e.g., few initial infections or low values of β, γ, σ and µ) and by small intervals when
transition events are frequent (many nodes with high total transition probability around
the same t). The total rates of susceptible, exposed, infectious, recovered and dead agents
are calculated at any model time t by adding up over i the individual states xit. For
example, the total number of infectious persons is It =

∑
i 1xit=I .

In sum, the NSIR model allows keeping track of and simulating:
(i) each node’s individual disease state (S,E, I, R or F ) over time
(ii) the evolution of aggregates over time, including total infections, total recoveries,

total deaths, etc.
(iii) daily changes in the aggregates (over model time intervals with length ∆t = 1)
(iv) state transitions over time and over the social network G by using G’s

adjacency matrix; for example, this allows tracking the states of nodes with large vs. small
number of contacts (edges in G) and comparing and tracing the spread of the disease via
social-contacts vectors vs. at the population level (random mixing).

2.3 NSIR vs. SIR reproduction dynamics

2.3.1 Basic and effective reproduction numbers

In epidemiology the basic reproduction number, R0 is the expected number of cases that
the first infected person generates, when all other agents are susceptible but not yet
infected. In the standard S(E)IR model without social network component,

d(Et + It)

dt
= β

ItSt
N
− rIt = rIt(

β

r
st − 1)

where r = γ + µ is the removal rate and st ≡ St

At
is the fraction of susceptible agents

at time t out of all active agents At. Early on, or with few deaths, At ' N yielding an
effective reproduction number

RSIR
t =

β

r

St
N

. (5)
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Evaluating at S0 ' N gives the familiar SIR R0 value, RSIR
0 = β

r
. If β

r
> 1 the epidemic

grows (if unchecked) as long as there is a sufficiently large fraction of susceptibles,
st = St

N
> 1
RSIR

0
. In contrast, if RSIR

0 < 1 the epidemic would die out on its own.

I define the effective reproduction number Rt in the NSIR model analogously. Define

σit(G) ≡
∑

j∈CG(i) 1xjt=I

#CG(i)
,

corresponding to the agent i’s probability of infection from one of her social contacts in
graph G at time t. Using (1), in the (no-intervention) NSIR model we have,

d(It + Et)

dt
= pβItst + (1− p)β

∑
i∈St

σit(G)− rIt =

= rIt

(
p
β

r
st + (1− p)β

r

St
It

∑
i∈St

σit(G)

St
− 1

)
The number of infected agents (exposed plus infectious) would grow if the expression in
the brackets is positive. Hence, for st ' St

N
, define the NSIR model effective reproduction

number RNSIR
t as

β

r
[p
St
N

+ (1− p)St
It

∑
i∈St

σit(G)

St
] (6)

At p = 1 this expression equals RSIR
t but in general, including at t = 0, the NSIR model

reproduction number RNSIR
t differs from RSIR

t and depends on the graph G.8

2.3.2 Population vs. network transmission

I next compare the reproduction numbers for the SIR model (p = 1) and the network-only
transmission NSIR model (p = 0) for given values of It and St. Using (6), for p = 0 we
have

RNSIR
t =

βSt
rIt

∑
i∈St

σit(G)

St
(7)

where ∑
i∈St

σit(G)

St
≡ σ̄t(G)

is the average chance of infection across all susceptible nodes i ∈ St at time t, given the
set It of infectious agents i with xit = I. Comparing (5) and (7), observe that

RNSIR
t R RSIR

t ⇐⇒ σ̄t(G) R
It
N

(8)

Intuitively, the standard SIR model assumes a uniform chance of infection for each
susceptible agent which is proportional to the population infection rate It

N
. In contrast, in

the network-augmented NSIR model an individual’s chance of infection is heterogeneous

8Reich et al. (2020) emphasize the importance of the ratio between the second and first moment of
the degree distribution for the infection growth rate.
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and is a function of the social network G. The average time-t infection probability in the
network, σ̄t(G) determines the reproduction number RNSIR

t . For example, consider the
first infection, I0 = 1 of some agent i0, at which RSIR

0 ' β
r
. In contrast, the value of the

NSIR effective reproduction number RNSIR
0 would depend on σ̄0(G), which is a function

of the graph G and of which node was initially infected (path dependence).
Using (5) and (7), it is clear that the growth rate of the disease would differ in general

in the SIR (p = 1) vs. NSIR model (p = 0) and the counts It and St would generally differ
in calendar time t. Thus, to proceed with the comparison, I compare the SIR vs. NSIR
reproduction numbers for the same cumulative infection count m for several example
graphs G. To avoid potential confusion with calendar time, for the rest of this section I
will use I(m) and S(m) to denote the number of infectious and susceptible agents at the
time of the m-th infection.

Result 1: For the same infection count, the SIR model effective reproduction number
equals that of the NSIR model on a complete graph.

Proof sketch: Suppose G is a complete graph (each node is connected to all other
nodes) and N is large. The first infection, m = 1 yields N − 1 susceptible agents with

average chance of infection σi(1) = 1
N−1

each and so
∑

i∈S(1) σi(1)

S(1)
' 1

N
. The second infection

yields S(2) = N − 2 with σi(2) = I(2)
N−1

each and so
∑

i∈S(2) σi(2)

S(2)
' I(2)

N
. Continuing in the

same way, for the m-th infection there are S(m) susceptible agents with σi(m) = I(m)
N−1

each

and so
∑

i∈S(m) σi(m)

S(m)
' I(m)

N
– the SIR and NSIR reproduction numbers are equal. If a

formerly infectious node recovers or dies in the process, then I(m) is reduced in both SIR
and NSIR.

Example 1. Regular graph
Suppose G is a connected regular graph in which each node has degree K ∈ [2, N).

After the first infection, K susceptible agents have infection probability σi(1) = 1
K

while
for the rest σi(1) = 0, yielding

∑
i∈S(1) σi(1) = 1. Then, since S(1) ' N , we obtain

σ̄(1) ' 1
N

= I(1)
N

, that is, RNSIR
0 = RSIR

0 . Consider now the second infection, of
some node j1 which by construction is one of the contacts of the first infected node
j0. Hence only K − 1 susceptible agents could be infected by j0 and j1 each.9 Thus,∑

i∈S(2) σi(2) = I(2)(K − 1) 1
K

and so σ̄1(G) ' I(2)
N

K−1
K

which is strictly less than I(2)
N

and

so RNSIR < RSIR. A similar argument applies for further infections. As a result, for the
same infection count m, the average chance of infection in a regular-graph NSIR model is
lower than the population infection rate I(m)

N
in the SIR model.

Example 2. Ring graph
Suppose G is a connected ring graph, such that each node i = 1, ..N is only connected

to two nodes, i− 1 and i+ 1 (where node index 0 maps to N and N + 1 maps to 1). For

the first infection σ̄(1) ' I(1)
N

and RNSIR
0 = RSIR

0 , as in Example 1. By construction,
any subsequent infectious node must be a contact of a previously infectious node, thus

9If a node h is connected to both j0 and j1 we can think of splitting the total probability σh as 1/2
coming from each.
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at any time the set of infectious and recovered/dead nodes, I is contiguous (consists of
nodes that are neighbors on an arc j, j + 1, ..j + l). Hence, at each next infection count
step, m = 2, 3, ... there are only at most 2 susceptible nodes in a ring graph (the outside
neighbors of the set I) which have positive probability of infection σi = 1/2.10 There
would be 1 or 0 susceptible nodes that can be infected if an end-node of I has already
recovered/died. For the rest of the susceptible nodes σi = 0, since in a ring graph they
are not connected to any nodes in I. Therefore, σ̄(m) ≤ 1

S(m)
which is (much) smaller

than I(m)
N

for m small. Thus, using (8) we obtain RNSIR < RSIR. If, as time progresses,
both end-nodes of the set I become recovered/dead before a new node is infected (this
can occur with positive probability) then the epidemic dies out in the network model but
not necessarily in the SIR model (if interior nodes in I remain infectious).

Example 3. Star graph
Suppose G is a star graph in which a single node j is connected to all N−1 other nodes

and there are no other edges. If the first infected node is j then σ̄(1) ' 1 > I(1)
N

= 1
N

and
so RNSIR

0 > RSIR
0 . If the first infected note is instead one of the ‘rays’, then σ̄(1) ' 1

N

but since the second infected node is necessarily j, we obtain again σ̄(2) ' 1 > I(2)
N

.

These examples show that the graph structure and the network node path followed
by the infection over time (the subgraph of infected nodes) are key determinants of the
effective reproduction number and hence infection growth (see also Figure 11 in Section
4.5). Degree heterogeneity combined with high-degree nodes infected early on could raise
the NSIR reproduction number above the SIR value (see also Reich et al., 2020), while
graphs in which the degree distribution is relatively homogeneous are likely to have lower
reproduction rates than in the SIR model. Degree heterogeneity could also be critical in
determining policy outcomes, e.g., the infection reaching a superspreader can accelerate or
re-ignite the epidemic – see Section 4.4 and Figures A and E in the Appendix for further
discussion and examples.

2.3.3 Local vs. bridge links

The ring graph Example 2 suggests that policies and behavioral responses (for example,
related to large gatherings, travel, border closures) which restrict the epidemic on a
smaller or localized set of nodes can have significant impact on the effective reproduction
number and therefore on the overall infection count, hospitalizations, deaths and related
economic costs.

I illustrate this idea further via simulations on Figure 1 which plots the infection rate
and total death rate over time in the NSIR model with a regular graph G with degree d
constructed in a specific way (the Figure uses p = 0 and the baseline model parameters
in Table 2 and no interventions). Figure 1 is just an example, for this section only (the
main simulation results use the graphs described in Section 4.1).

10For example, if set I consists of nodes 2,3,4,5 positioned in order on the ring graph, the end-nodes
are 2 and 5.
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The regular graph in Figure 1 when d is even (d = 20 or 50) is constructed by setting
all nodes on a circle and then each node i is connected to the d/2 nodes immediately
before (i− 1, ...i− d/2) and immediately after it (i + 1, ..., i + d/2). The ring graph in
Example 2 corresponds to the case d = 2. Thus, for d even, each node is only connected
to other nodes in its locality, that is, an infectious node can only infect susceptible nodes
near it (up to distance d/2).

In contrast, when d is odd (d = 21 or 51 in Figure 1) each node of G is connected to
the (d− 1)/2 nodes immediately before and after it (analogously to the d even case) but,
in addition, to node i+N/2, that is, the node “across” from i on the graph circle. This
means that each infectious node now has a positive probability of spreading the virus to a
new, “far” area of the graph G – a “bridge” link. Figure 1 shows that a minor difference
in the graph degree (20 vs. 21 or 50 vs. 51) can have a significant effect on the infection
and death rates. Specifically, when bridge links are present in the social contacts graph
G (the odd-degree cases d = 21 and 51) the share of active infections and total deaths
can be 2 or 3 times larger than in the ‘local contacts only’ cases (even-degree, d = 20 and
50).11 The conclusion is that interventions that aim at restricting the epidemic on a local
level and eliminate bridge contacts (e.g., air travel) can be effective in suppressing the
epidemic.

Figure 1. Regular graphs example – Local vs. bridge links.

On Figure 2 I explore further the role of the network structure for viral transmission
dynamics and the infection rate over time. The Figure computes the infection curve for
a series of graphs, starting with a regular (ring-style) graph in which each node is only
connected to nearby nodes (the dotted line) and comparing it to three Watts-Strogatz
graphs with the same median degree 12 and number of nodes (N = 10, 000) but with
different values for the parameter b that governs the probability of re-wiring an edge to a
new node. Larger values of b correspond to more re-wiring. i.e., adding more bridging
contacts with non-local nodes. The results show that an increased number of cross-links
added to the contacts graph can raise the infection peak, total infections, and cumulative
deaths significantly (e.g., the peak infection rate is 0.8% in the regular graph, b = 0 vs.
7.8% in the Watts-Strogatz graph with b = 0.5), consistent with the theoretical discussion
above.

Figure 2. Watts-Strogatz graphs example.

3 Policies and scenarios

The NSIR model can be used or extended to incorporate a wide variety of health and
socioeconomic policies and scenarios related to mitigating or failing to control the spread
of the disease.

11In contrast, there is almost no difference between simulations using d = 18 vs. 20 or 48 vs. 50 (not
displayed in the figure).
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1. Herd immunity – simulating the NSIR model without any policy intervention or
behavioral response.

2. Testing
Testing is modeled by introducing an additional state P (“tested positive”). Assume

for simplicity that only infectious (state I) agents can test positive. The transition
probabilities in (3) are modified to:

xit′ |(xit = I) =


R with prob. γ
P with prob. θ
F with prob. µ
I with prob. 1− γ − µ− θ

(9)

where θ is the fraction of currently infectious agents tested per unit of time. Agents with
xit 6= I are assumed to always test negative (allowing the possibility of positive test for
state E is simple). Keeping track of “tested negative” agents can be easily incorporated
too (e.g., to keep track of testing costs or testing coverage over time).

The transition probabilities for the agents who have tested positive (state P ) are:

xit′ |(xit = P ) =


R with prob. γP
F with prob. µP
P with prob. 1− γP − µP

(10)

where the recovery and fatality parameters γP and µP can be the same of different than
γ and µ in (3) and (9).

The agents who test positive, xit = P are assumed to be isolated or in (self-)quarantine
and not mixing with others in the population; that is, At = N − Ft − Pt in (1). However,
the P agents could still infect contacts in their immediate social network Q, defined as a
sub-graph of G with the same nodes but fewer edges per node (see more details below).
That is, the second term in (1) is modified to

(1− p)β
(∑

j∈CG(i) 1xjt=I +
∑

j∈CQ(i) 1xjt=P

#CG(i)

)
3. Contact tracing
The network aspect of the NSIR model is well-suited to study contact tracing, that is,

following up, identifying and isolating the contacts of agents who have tested positive.
Contact tracing is modeled by adding a parameter φ and a new term in (9), interpreted
as the additional probability of identifying an agent i as infectious (and moving i to state
P ) for each of i’s contacts j who have tested positive.

xit′|(xit = I) = P with prob. min{1, θ + φ
∑

j∈CG(i)1xjt=P}

4. Distancing and quarantine – physical (social) distancing can be incorporated
in two complementary ways, both of which are explored in the simulations in Section 4.

12



The first way of modeling distancing is by decreasing the value of the parameter p. This
corresponds to setting a lower rate of global (population level) interactions and higher
rate of local (network-level) interactions in (1). A second way of modeling distancing is
by varying the network structure, that is, replacing the baseline social network G with
another network D which is a sub-graph of G with fewer edges connected to each node
(lower degree).

Quarantine, an extreme form of distancing is modeled by setting p = 0 and assuming
a very small number or zero social contacts for each quarantined node (their narrow social
graph Q).

5. Lockdown – assume that fraction λ ∈ (0, 1) of all agents are locked down and
only the remaining fraction 1− λ of agents interact, similar to Alvarez et al. (2020). This
is done by introducing an indicator variable (‘locked down’, L or ‘not locked down’, ¬L)
for each node i and modifying (1) as follows:12

Prob(xit′ = E | xit = S ∧ ¬L) = pβ
(1− λ)It

(1− λ)N − Ft
+ (1− p)β

∑
j∈CG(i) 1xjt=I∧¬L

#CG(i)
(11)

Prob(xit′ = E | xit = S ∧ L) = β

∑
j∈CQ(i) 1xjt=I

#CQ(i)

Locked down agents, the second line in (11), are assumed to be exposed only to their
narrow social network Q, a sub-graph of G (e.g., close family) with the same number of
nodes but fewer edges per node.

6. Behavioral responses
The NSIR model allows incorporating a rich set of endogenous behavioral responses to

the epidemic. The agents can decide to reduce the number or rate of their contacts, based
on observable information or individual cost-benefit calculations (see also Chang and
Velasco, 2020, Keppo et al. 2020 or Toxvaerd, 2020 in non-network models). Specifically,
suppose p < 1 and define the following social-contact graphs: E0 = G and Ek ⊂ Ek−1

for k = 1, ...M , where ⊂ X denotes a sub-graph of X with the same nodes but fewer
edges/contacts per node. For example, if M = 2 we can think of E0 = G as the “normal
times” social network; E1 ⊂ G as a “reduced contacts” network (e.g., work and necessity
shopping); and E2 ⊂ E1 as a “close family” network.

In the simulations in Section 4.3 each agent is assumed to switch to a more restricted
(lower-degree) network, based on the observed infection rate in the population (aggregate-
level information) or, alternatively, based on positive case(s) in their own social network
CG(i) (individual-level information).

Each policy or behavioral scenario 1 through 6 can be imposed or lifted in the
simulations at a pre-specified model time t ∈ (0, tmax) or conditional on reaching a specific
aggregate state value (e.g., number of positive tests or deaths per day, total positive cases,
etc.). I investigate a range of scenarios in the following sections.

12The first term assumes that the probability of contact with a random person remains unchanged
for the agents not in lockdown (e.g., interact with others at work). An alternative would be to assume

reduced frequency of contacts, for example, pβ(1− λ) (1−λ)It
(1−λ)N−Ft

.
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4 Simulation results

4.1 Baseline parameters and initial conditions

Table 1: Baseline parameter values and initial conditions.

Parameter Value Description Source, etc.
r 0.2 removal rate Anderson et al.; 5-day avg. duration post incubation
µ 0.0037r mortality rate 0.37% IFR, Streeck et al.
γ r − µ recovery rate based on r and µ
β 0.5 infectivity rate approx. 3-day initial doubling time/implied R0= 2.5
σ 1/5.2 incubation, days−1 Wang et al.; median incubation period 5.2 days
θ 2%, 5% mass testing rate hypothetical / assumed
φ 10% contact tracing rate hypothetical / assumed

Init. condition Value Description
N 10,000 population / network size
I0 1, 50 initial number of infections
tmax 200, 500 maximum simulation duration in days
G n.a. modified Barabasi-Albert graph with median degree 10 (min=0, max=200)
Q n.a. modified Barabasi-Albert graph with median degree 1 (min=0, max=14)

Table 1 reports the baseline parameter values used in the model simulations. The
baseline expected removal rate r is set to 0.2 which corresponds to a 5-day average period
of infectiousness (Anderson et al. 2020; Fernandez-Villaverde and Jones, 2020), following
a 5.2-day average exposed stage duration (the parameter σ). I also explore a longer
infectiousness period, r = 0.1 in the robustness checks in Section 6. The baseline infection
fatality rate (IFR) is set to 0.37% using Streeck et al. (2020)’s German randomized study.
An 0.66% estimated IFR with Wuhan data, (e.g., Verity et al., 2020) and 1% IFR are
also explored in the robustness Section 6.2. The IFR value is important for the death
total but, since µ is small and death is an absorbing state, it otherwise changes very little
the infection rate dynamics (see Figure 13 in Section 6.2).

The value of the COVID-19 infectiousness β is calibrated to fit the observed approxi-
mately three-day early doubling time of the disease (e.g., Farboodi et al., 2020) and/or
a basic reproduction number R0 of 2.5.13 In the baseline simulations below I set the
recovery and mortality rates for agents who tested positive (state P ) to be the same as
the baseline values, γP = γ and µP = µ.

A key ingredient of the NSIR model is the social contacts graph G. I use as baseline a

13The calibrated parameters were actual as of early May 2020. Versions of most of the figures with
alternative values for the key disease parameters, corresponding to slower infection growth and higher IFR
(r = 1/16, µ = .0066r and β = .156) are available at: http://www.sfu.ca/~akaraiva/Karaivanov_

covid2020old.pdf.
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modified (pruned) version of a Barabasi-Albert (B-A) graph.14 The reason for choosing this
baseline graph is that neither the standard scale-free B-A graph nor the standard small-
world Watts-Strogatz (W-S) graph match well certain network properties documented in
actual COVID-19 or other epidemic transmission networks (Althouse et al. 2020; Adam
et al., 2020; Tsiotas and Magafas, 2020; Beraud et al., 2015; Keeling and Eames, 2005),
namely broad degree heterogeneity and long/heavy right tail (superspreaders).

Standard B-A graphs match well the breadth and long right tail of the degree distri-
bution (allow for superspreaders) but truncate the minimum node degree to a value close
to the median, essentially ruling out nodes with few contacts. Watts-Strogatz graphs
capture well short paths and local clustering realistic in many social networks but feature
a relatively homogeneous degree distribution (all nodes have similar degree) and lack
a long right tail, that is, they exhibit insufficient heterogeneity and broadness in the
number of contacts and lack of superspreaders. The modified B-A graph G used in this
paper matches both the broad heterogeneity of the degree distribution, including nodes
with zero or low degree, and a long/heavy right tail – features also emphasized in the
theoretical analysis in Section 2.3. Robustness simulations with W-S graphs are reported
in Figure 2 and Section 6 showing that the main patterns and results remain robust.

Figure B in the Appendix compares the degree distributions of the baseline graph G
with that of a standard Albert-Barabasi graph (the input graph used in the edge removal
procedure described in footnote 15) and a standard Watts-Strogatz graph with mean
degree 12. Figure C depicts the degree distribution of the baseline graph G and the
closed-contacts graph Q constructed in the same way as G but with larger number of
removed edges.

4.2 Results

I exhibit simulation results from different policy and behavioral scenarios in the NSIR
model. All graphs in this Section show sample simulation paths (one possible time path of
the dynamic system), however, the same pseudo-random number sequences are used so the
graphs are comparable across the scenarios. Summary Table 2 in Section 6.1 and Tables
3 and 4 in report average values from 100 simulations each, using the same parameters
but 100 different pseudo-random number sequences (these sequences are held constant
across the different parameter/policy specifications for comparability).

4.2.1 No intervention vs. testing and contact tracing

Figure 3 plots simulation paths in the NSIR setting with network transmission (p=0, the
solid lines) and the SIR setting with uniform transmission (p=1, the dashed lines) for
three basic scenarios – no intervention, testing and quarantine, and testing, quarantine

14The baseline social contacts graph G is constructed starting from a Barabasi-Albert graph with
9-edge preferentially attached nodes and then randomly removing a fraction of edges to generate node
degrees lower than 9 (see the Matlab codes in footnote 4). The resulting modified B-A graph G has
median degree 10 and mean degree 12.6
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and contact tracing. The Figure plots the percent of infectious nodes (in state I) over
time across the different scenarios and settings.

The black lines on Figure 3 assume epidemic dynamics absent any intervention and/or
behavioral responses (herd immunity). The blue lines use a testing rate θ = 0.05, that
is, 5% of the currently infectious agents are assumed to be detected per day. i.e., a 25%
average total chance of positive test for an infectious agent. This hypothetical testing
rate is much higher compared to current daily testing rates in the world so these results
should be interpreted as a “mass testing” counterfactual.15 The agents who test positive
(enter state P ) are assumed to be quarantined and interact only on a close-contacts social
network Q (see Section 3). The red lines on Figure 3 assume contact tracing at rate
φ = 0.1 added to the mass testing and quarantine.16

The simulation results depicted on Figure 3 confirm that testing and contact tracing
slow the infection growth rate and reduce the total infected, peak infected and deaths in
both main model settings (see also Table 2), however, these reductions are larger in the
NSIR, p = 0 setting. Tables 3 and 4 in the Appendix further quantify these results by
reporting averages over 100 simulations. The larger policy impact in the network setting
is especially pronounced for contact tracing (Table 4) - the decrease in total infections
or deaths in the NSIR setting can be double that in the SIR setting, relative to the
respective no-tracing baseline. Intuitively, testing and contact tracing in the network
setting (p=0) can isolate high-degree infectious nodes (superspreaders) early and thus
reduces the infection rate by a larger amount – this effect is absent in the uniform-mixing
SIR, p=1 model setting, as previously discussed in Section 2.3.17

Figure 3. No intervention, mass testing, quarantine and contact tracing.
Notes: the black lines assume no policy interventions or behavioral responses. The light blue lines
assume mass testing rate θ = 0.05 and putting positive cases (state P ) in quarantine, network Q. The
red lines add contact tracing at rate φ = 0.1 to the testing and quarantine setting.

4.2.2 Distancing policies

In this Section I simulate several physical distancing policies in the NSIR model with
network-level transmission, p = 0. The duration and timing of the policy is represented
by the shaded area on the graphs. During the distancing period it is assumed that all
agents’ interactions occur on the truncated social network Q defined as a sub-graph of

15The simulations assume persistent testing at rate θ, not a one-off testing campaign. A one-off
campaign would only detect fraction θ of the currently infectious agents and thus is much less effective.

16A 0.1 contact tracing rate means 10% additional daily probability of an agent testing positive for
each of the agent’s contacts who have tested positive. Recently recovered or dead contacts can be easily
incorporated.

17Tables 3 and 4 also show that a 0.1% testing rate has very small effect on the infection aggregates,
except a 3.9% reduction in deaths in the p=0 setting. To make a serious dent in overall infections and
deaths, very intensive testing and quarantine is required (θ = 10%), with the downside of a significantly
prolonged (+41%) epidemic duration. Table 4 further shows that, holding the testing rate constant,
increasing the intensity of contact tracing yields additional large reductions in total infections, deaths
and the infection peak with this effect being stronger in the NSIR, p=0 model.
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the original social network G whereby each node’s degree is randomly scaled down (an
agent’s contacts are reduced by 10 times on average). To explore different policy lengths
and timings all simulations are initialized with 0.5% infectious agents; the timelines on
Figures 2 and 3 and Table 2 are relative to that moment. Shorter or less strict policies
can be effective at lower initial infection rates.

Figure 4 (panels A to F) exhibits six different example scenarios which vary the
assumed distancing policy duration (‘short’ – 30 days; ‘medium-long’ – 60 days; ‘long’
– 120 days) and the policy timing (‘early’, at t = 0; or ‘delayed’, at t = 30). At the
calibrated parameters, distancing policies of short and medium-long duration fail to
contain the epidemic in the simulated outcomes. In scenario C, even a 4-month long
distancing policy imposed at the 0.5% infection rate mark only delays the epidemic.18

Scenario C also illustrates how the network path dependency in the NSIR setting relative
to the SIR model (which node infects when) matters (see Figure E in the Appendix). In
example scenario F the epidemic is successfully suppressed by imposing a sufficiently long
(120 days) distancing policy with delay.

The simulation results in Figure 4 show that delaying the introduction of a distancing
policy may be beneficial in some cases – compare the left-side panels with the right-
side panels. Intuitively, an appropriately-timed delayed policy can create a two-peaked
infection curve (as opposed of a single high peak), which is a form of “curve flattening”.
However, such delays may possibly overwhelm a country’s health system capacity (not
modeled here) or result in larger economic costs, an issue explored further in Sections 5
and 6.

In Figure 5 (panels G through L) I evaluate intermittent distancing policies, that
is, policies consisting of two separate periods of physical distancing (contacts on social
network Q), with “back to normal” (contacts on social network G) time in between. The
notation (x)-y-(x) in the panel captions means x days of distancing, followed by y days of
policy relaxation, followed by x days of distancing again. Current events as of May 2020
suggest that such intermittent policies may be easier to implement or enforce politically
in many countries.

There are two main takeaways from the hypothetical policy evaluations in Figure 5
(see also Table 2 in Section 6). First, two shorter distancing periods spaced farther apart
(as in panels I or J of Figure 5) could be more effective in flattening the infection peak
compared to a single longer distancing period imposed early on (panels B and C of Figure
4) or compared to two early distancing periods close to each other (panel G of Figure
5).19 Second, the policy timing matters a lot – for example, longer distancing period early
on, or a second period of distancing that is too late, are less effective in flattening the
infection peak (compare panels K and L with panels H and J in Figure 5).

Figure 4. Distancing policy – duration and timing.

18This happens in 20% of the sumulation runs with different random seeds. In the remaining runs
policy C contains the epidemic with 1.6% total infection rate and 0.01% death rate.

19On average, scenario I results in 7% (6.6%) less total infections and 4% (2.5%) lower annualized
economic cost than scenario B (scenario G).
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Figure 5. Intermittent distancing policies.

4.2.3 Lockdown policies

On Figure 6 I simulate and compare the effectiveness of a lockdown policy with fraction
of locked down agents λ equal to zero (no lockdown), 30%, 70% and 90% for the pure
SIR model (p = 1) and the network-only NSIR model (p = 0). The lockdown intervention
is defined as in Section 3 and is assumed indefinitely long (there is no testing or contact
tracing). The simulations are initialized with 0.5% initial infection rate. The main
difference between the lockdown and the distancing policies explored in the previous
sub-section is that lockdowns affect both the population-level transmission and the network-
level transmission, by reducing the contact rate for fraction λ of the population, see
(11). In contrast, the distancing policies defined in Section 4.2.2 only affect network-level
transmission (replacing the graph G by Q) but apply to all agents.

In the SIR model with only population-level uniform mixing (p = 1, the left-side
panels of Figure 6), the effectiveness of lockdowns is limited since both the numerator

and denominator in the infection probability term β (1−λ)It
(1−λ)N−Ft

in (11) are reduced nearly
proportionately for low death counts Ft and hence the reproduction number among the
agents not in lockdown remains high.20 The simulation shows that even a 90% (indefinitely
long) lockdown only reduces the infection rate and peak but does not eliminate the
epidemic. In contrast, in the NSIR model with network-level transmission only (p = 0,
the right-side panels of Figure 6), a mild λ = 30% lockdown flattens the infection curve
significantly by taking out many potential contacts and vectors of transmission while
a moderate 70% (indefinitely long) lockdown contains the epidemic. While these are
simulated examples, the robust implication is that the global vs. network-level mixing
degree (the parameter p) plays a key role in lockdown efficiency.

In Figure 7 I further investigate the effectiveness of a 70% lockdown with different
finite durations in the network-only NSIR model, p = 0, staring from a 0.5% initial
infection rate. Without testing (the left-side panels), lockdowns with duration shorter
than 120 days mostly delay the infection peak but do not contain the epidemic. Summary
Table 2 in Section 6 further quantifies that a 30-day lockdown only reduces total infections
by 0.5% and the infection peak by 5% on average. A longer 90-day lockdown in contrast
reduces total infections by 49%, the infection peak by 52% and total deaths by 48% on
average, relative to the no-intervention benchmark.21 These results do depend on the
assumed initial infection rate (0.5% in Figure 7) – the minimum required lockdown period
is shorter if started at a lower infection rate.

Next, Figure 8 explores several illustrative example simulations of lockdowns followed
by relaxation. A short or inefficiently timed (panels A, B, C, E) and/or lax (C, D)

20Expression (11) assumes that the individual contact rate for agents not in lockdown remains the
same as without lockdown. The lockdown effectiveness would be higher if the contact rate is also reduced,
e.g. as in Alvarez et al. (2020).

21However, these averages are composed by two types of outcomes – the 90-day lockdown either fully
contains the epidemic or only delays the peak and makes a small dent in infections and deaths (see Figure
7 for the latter case).
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lockdown may result in (i) a slow and prolonged decline in infections, with asymmetry in
the growth rates of infection ramp-up vs. decrease (e.g., as observed in Italy or Spain)
and (ii) a second, larger and/or longer epidemic wave (panels B, E). In contrast, in panel
F a strict well-timed lockdown reduces the infection rate significantly below the peak,
although in this simulation the epidemic carries on at lower intensity for a long time.

4.2.4 Lockdown exit – role of testing and contact tracing

I next perform simulations to investigate the complementarity between lockdown policies
and follow-up testing and contact tracing. Specifically, Figure 9 considers a 30-day
lockdown for 70% of the population in the NSIR model with p = 0. I simulate alternative
lockdown exit scenarios, varying the testing and/or contact tracing rate. All agents who
test positive are assumed to be quarantined or (self-)isolating and interact on the reduced
degree close-contacts graph Q with average node degree 1 defined in Section 4.1 (see also
Figure D in the Appendix).

The values for the testing rate θ and the contact tracing rate φ used in the simulations
on Figure 9 are hypotheticals, corresponding to continuous mass testing and contact
tracing. The results show that opening up social and economic interactions after a relatively
short lockdown without testing or with little testing in place can soon result in a new,
higher infection peak and larger total number of deaths, because of the large remaining
fraction of susceptible persons. Second, testing and contact tracing are complementary
– mass testing combined with intensive contact tracing can significantly mitigate the
epidemic while mass testing alone may be insufficient to prevent a new infection wave.
The simulations suggest that, for the calibrated parameters, very high rates of testing
and tracing are needed to prevent a new peak after a short 30-day lockdown. Prolonging
the lockdown period (assuming that moving it forward in time is not possible) is likely to
be more effective in reducing infections and deaths although it carries larger economic
(and possibly political) costs.

In the Appendix (Figure D) I perform the same set of simulations for the SIR model
with global transmission only, p = 1. Comparing Figure 9 with Figure D reveals that
testing and contact tracing are less effective with population-level mixing compared to in
the network-contacts model, for the reasons discussed in Section 4.2.1.

Figure 6. Lockdown effectiveness.

Figure 7. Lockdown length.

Figure 8. Lockdown success or failure.

Figure 9. Lockdown exit, testing and contact tracing.
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4.3 Behavioral responses

The NSIR model allows incorporating behavioral responses by the agents, based either on
individual-level information (from their own social contacts) or aggregate-level information.
In Figure 10 and Table 2 I analyze five simulated scenarios of behavioral responses in
the network-only NSIR model, p = 0. Behavioral response scenarios A, B and C assume
testing rate θ = 0.05 and model a (e.g., fear-driven) reduction in an agent’s number of
contacts if the agent learns that one of his social contacts has tested positive, that is,
if xjt = P for some agent j ∈ CG(i). This behavioral response works as self-triggered
contact tracing.

Formally, a susceptible agent i for whom ∃j ∈ CG(i) with xjt = P at some time t,
switches to a lower-degree social network Q̃ with contacts CQ̃(i) where Q̃ is a sub-network

of G with lower degree per each node. The median degree of network Q̃ is set to 5 in
simulation A and to 1 in simulation B. Scenarios A and B assume a permanent switch,
to assess the upper bound of the effect. Compared to the baseline setting, Figure 10
(a single simulation path) and Table 2 (average over 100 simulation paths, see Section
6.1) show that these behavioral responses reduce the infection rate, peak and death toll
by significant amounts. The total number of infected is reduced on average by 25%
in scenario A and 48% in scenario B; the infection peak is reduced by 45% and 60%
respectively, and the total death count is reduced by 17% and 41% respectively (see Table
2).

Behavioral response simulation C (see Figure 10 and Table 2) assumes that the switch
to the restricted-contacts network Q̃ is temporary. Specifically, a susceptible individual i
with xit = S switches to graph Q̃ only for the times t for which s/he has a social contact
who has tested positive and still in state P , i.e., ∃j ∈ CG(i) with xjt = P while i uses
the baseline social network G otherwise. Such adaptive behavior still lowers the infection
peak but the reduction in the overall infection and death rates is smaller compared to
that in simulations A and B – 15% reduction in total infections and 10% reduction in
total deaths (see Table 2).

In behavioral response scenarios D and E (Figure 10, middle and bottom panel and
Table 2) I assume that agents react to new positive cases in the population. Specifically,
the susceptible agents observe the infection aggregates and choose to reduce their contacts
by switching from graph G to graph Q̃ if there is a large increase ∆ in new active cases
Pt (∆ is set to 100 per 10,000), over the preceding 20 days. The agents revert back to
contact graph G if there are less new cases than the threshold ∆ over the preceding 20
days. Simulation D uses a 2% testing rate θ while simulation E uses 5% testing rate.
Figure 10 shows that these behavioral responses result in multiple but low infection peaks,
corresponding to alternating periods of endogenous distancing and relaxation. Compared
to the scenarios with 2% or 5% testing only and no endogenous behavioral response, the
behavioral response scenarios D and E reduce total infections by on average 16% and
25%, the infection peak by 34% and 63%, and total deaths by 7% and 22%, respectively
(see Table 2).

Figure 10. Behavioral responses – endogenous distancing and relaxation.
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4.4 Superspreaders

As explained earlier, the effective reproduction number in the NSIR model depends on the
network structure and the social contacts of the currently infectious nodes. To illustrate
this point further I explicitly look at the role of superspreaders, that is, nodes with a
large number of edges. Specifically, I take the baseline no-intervention p = 0 simulation
from Figure 3 and compute the percent increase in the effective reproduction number
RNSIR
t , as defined in (7), registered immediately after a ‘superspreader’ node becomes

infectious (see row 3 in the Table below).
I define as superspreaders the top ten nodes with the largest degree in the baseline

graph G. Out of these ten nodes, seven become infected in the simulation, listed in row
1 of the table below (with their degree in row 2). The immediate change (increase) in
Rt because of a superspreader turning infectious (row 3) is compared to the average
preceding Rt change (computed as the average change in Rt over the preceding 10 model
time-steps / state transitions) in row 4. These results show that superspreaders can lead
to significant jumps in Rt in the NSIR model. In contrast, in the SIR model Rt changes
continuously no matter which node becomes infections since only the total number of
currently infectious nodes It matters for the effective reproduction number, see (5).

superspreader node # 34 29 18 19 36 57 22
node degree 200 188 180 142 138 131 124
Rt change from superspreader 9.9% 3.0% 2.2% 2.6% 2.1% 5.1% 5.6%
average preceding Rt change .006% −.01% .008% −.04% .003% −.04% −.05%

Figure A in the Appendix illustrates further the importance of superspreaders and
node degree heterogeneity in the NSIR model, compared to the SIR model with population-
level transmission. Figure A compares the infection curves resulting from a single initial
infectious person who is either a superspreader (node 34 with degree 200) or an average
spreader (node 21 with degree 10). I do this for p = 1 (random matching, SIR setting),
p = 0.5 (mixed NSIR) and p = 0 (network-only NSIR). In the SIR setting the identity
of the initial spreader (or any later one) has no effect on the infection dynamics by
construction – only the total number of infectious It matters. In contrast, in settings
with network-transmission (p < 1) an early superspreader results in much earlier and
higher infection peak.22 These examples highlight the necessity for quickly identifying
superspreaders or for restricting the situations in which superspreader scenarios are
common (e.g., mass gatherings, bars, cruise ships, etc.), as also documented in the medical
literature (e.g., Althouse et al., 2020 or Adam et al., 2020).

22In the p = 0 setting the initial superspreader node generates large number of secondary cases very
quickly, who in turn infect others, leading to 758 infected nodes (7.6% of the population) at t = 60 as
opposed to only 24 infected nodes at t = 60 in the simulation with average initial spreader.
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4.5 Effective reproduction number

I compute and compare the effective reproduction number Rt across different model
scenarios. In general, for any scenario (with corresponding endogenous St, It and Et) we
can compute23

RNSIR
t =

∑
i s.t. xit=S

Prob(xit′ = E|xit = S)

rIt
.

The top panel of Figure 11 plots the reproduction number of the SIR model (p = 1)
vs. the NSIR model with network transmission only (p = 0) in the absence of any
interventions or behavioral responses. The lines in the top panel are plotted against
cumulative infection count, as analyzed in Examples 1-3 above.24 The Figure shows that
for the chosen modified Barabasi-Albert graph G the NSIR model has lower reproduction
rate Rt than the SIR model, with the gap being the largest in the early stages (see
Appendix B for more formal discussion on comparing the reproduction numbers in the
SIR vs. NSIR models).

The middle and bottom panels in Figure 11 plot the reproduction number RNSIR
t

over actual calendar time (days) for several of the simulation scenarios considered in the
previous sections. Compared to the SIR model (p = 1) baseline (the thick dashed line
on Figure 11), network-level transmission (p < 1) ‘flattens’ the reproduction number –
for the assumed social network G, the value of RNSIR

t is initially below that of the SIR
model but it is higher later on (after approximately 60 days on the figure) and may stay
around 1 for a prolonged time if the infection rate is slowed down by testing and contact
tracing (see the bottom panel). The impact of distancing policies in bringing RNSIR

t

below 1 is fast and strong, however, the Figure also shows that, when the policy is lifted,
the reproduction number may quickly rise above 1 again.

Figure 11. NSIR model – effective reproduction number Rt in different sce-
narios.

5 Economic module

As a simple illustration of the economic costs analysis of the COVID-19 epidemic using
the NSIR model, I follow Berger et al. (2020) to define and compute an index of economic
activity based on the number and relative productivity of active vs. quarantined or sick
agents in the economy. Clearly this measure is very rough and excludes indirect (e.g.,
additional costs from deaths and hospitalization or psychic costs), long-term (job loss,
inability to pay debts, destruction of employment attachment), sectoral (e.g., hospitality
vs. IT), or general equilibrium effects associated with the (duration of) epidemic or
lockdown policies.

23Tested positive agents (if any) are included in It in this formula.
24The infection count is not equally spaced in calendar time since there are many new infections when

the disease is peaking than in the its early or late stages.
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Define the following simple index of economic activity over time, Yt which keeps track
and varies with the numbers of active and healthy agents vs. locked-down / quarantined
agents vs. sick or dead agents.

Yt =
1

N
[(1− λ)(St + Et +Rt + αIt) + λρ(St + Et +Rt + αIt) + ραPt]

where λ ∈ [0, 1] is the fraction of agents in lockdown, ρ ∈ (0, 1) is the factor with which
the productivity of locked down agents is reduced, and α is the fraction of infectious
agents (It or Pt) who are asymptomatic (assumed as productive as healthy agents). The
rest, 1 − α of sick agents are assumed to have zero productivity. All “tested positive”
agents are assumed in quarantine (productivity ρ). In the simulation results reported
in Table 2 and Figure 12 I assume ρ = 0.5 as in Berger et al. (2020) and α = 0.18 as
estimated in Mizumoto et al. (2020). The lockdown rate λ is a policy variable. A value
of 1 for the index Yt is interpreted as “normal times”, that is, all agents being healthy
and fully productive.

Figure 12, the top panel plots the economic index for the NSIR model with network
transmission (p = 0) and the scenarios in Figure 3 in Section 4.2.1. In the middle and
bottom panel I illustrate the effect on Yt of various policies defined earlier. In these
simulations it is assumed that during the distancing period all agents’ productivities
are reduced by the factor ρD = 0.7. These results are just illustrative and assume large
economic costs from broad lockdown or distancing (self-isolation).

Summary Table 2 in Section 6 reports the economic loss measured by the index Yt
across the multiple scenarios considered. Specifically, column “GDP loss” reports the
average losses, compared to the baseline Yt = 1 and annualized to account for the different
durations of the epidemic. Column “max GDP fall” in Table 2 displays the largest
decrease in the economic index Yt over the epidemic duration. As expected, because of
the mandated reduction in production, the distancing or lockdown scenarios entail the
largest average (up to 9% annualized decrease in Yt) and maximum economic losses (up
to 35% decrease), with the losses increasing in the intervention duration. The second
largest economic costs are observed in the no-intervention scenarios (7–9% maximum
decrease in Yt), because they result in a large share of infected agents who are assumed less
productive. In contrast, the lowest economic losses result in the testing / contact tracing
and behavioral response simulation scenarios, where the combination of no mandated
lockdown and low infection shares mitigates economic costs.

Clearly, these results should be interpreted only as illustrative of the productivity
losses and the trade-off of between lockdown/distancing vs. infections/deaths since only
direct reductions in productivity or output are considered and multiple other factors are
omitted: additional cost of deaths, healthcare costs, job losses or (except in the behavioral
response scenarios) reductions in economic activity due to fear (e.g., restaurants, travel),
etc.

Figure 12. Economic impact illustration – NSIR model.
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6 Summary and robustness

6.1 Summary of results

Table 2: Summary of simulation results.

Scenario total total peak peak epidemic GDP max GDP
infected deaths infectious day1 duration1 loss2 fall3

no intervention, p = 1 89.5% 0.34% 11.7% 47 145 1.3% 9.3%
no intervention, p = .5 87.7% 0.33% 10.8% 49 150 1.3% 8.6%
no intervention, p = 0 81.6% 0.31% 8.5% 58 170 1.2% 6.7%

all simulations below use the NSIR model with p = 0
mass testing, θ = 2% 77.4% 0.28% 7.4% 62 182 1.2% 6.0%
mass testing, θ = 5% 70.6% 0.26% 5.8% 69 206 1.1% 4.8%
5% testing and 10% contact tracing 64.6% 0.24% 4.9% 70 221 1.1% 4.0%
accelerating testing4 77.6% 0.29% 7.6% 60 173 1.2% 6.1%

distancing policy A 78.6% 0.30% 7.9% 110 219 3.7% 30.3%
distancing policy D 75.1% 0.28% 4.9% 99 254 3.6% 31.7%
distancing policy E 73.0% 0.28% 4.3% 131 330 6.1% 31.7%
distancing policy F 24.5% 0.09% 3.2% 48 151 8.6% 31.7%
distancing policy I 68.8% 0.26% 7.5% 111 243 5.9% 33.2%
distancing policy J 31.2% 0.12% 3.6% 79 173 7.6% 31.6%
distancing policy L 36.3% 0.14% 4.0% 76 152 7.4% 31.1%

lockdown, 70%, 30 days 81.1% 0.31% 8.1% 101 214 4.1% 35.3%
lockdown, 70%, 90 days25 30.4% 0.12% 3.1% 68 163 8.6% 35.3%
lockdown, 70%, 90 days, 5% testing 15.2% 0.06% 1.4% 45 132 7.7% 35.3%

behavioral response A5 61.6% 0.23% 4.9% 66 207 1.0% 4.0%
behavioral response B5 43.5% 0.17% 3.6% 58 193 0.8% 3.0%
behavioral response C6 68.8% 0.25% 5.5% 65 218 1.1% 4.5%
behavioral response D7 64.8% 0.24% 4.9% 45 292 1.1% 3.9%
behavioral response E7 52.6% 0.19% 2.3% 46 423 1.0% 1.9%

Notes: All values are averages over 100 simulations with different random seeds. The same random seeds are used in each
scenario. Each simulation is initialized at 0.5% infection rate (I0 =50). 1. The infection peak and duration are computed
relative to that initialization. 2. GDP loss = annualized decrease in the economic index Yt defined in Section 5.1; 3. max
GDP fall = largest instantaneous fall in Yt; 4. Initial rate θ =.01 increasing by 10% every 10 days; 5. agents with contacts
who tested positive reduce their graph degree (#contacts) on average in half (A) or 10 times (B) thereafter; 6. agents reduce
their #contacts only during periods in which they have a contact who tested positive; 7. agents reduce their graph degree
upon observing large number of new active cases over the previous 20 days.

25The epidemic is contained (approx. 2% total infected) in 64% of these simulations and in 80% of the
90-day lockdown, 5% testing simulations in the next row.

24



Table 2 summarizes the results from the model simulations in the previous sections
(see there for the corresponding discussion). Each Table row reports averages over 100
simulations with the same model parameters and policy setting but different pseudo-
random number generator seeds that are held constant across the rows (model scenarios).

6.2 Alternative specifications and robustness

There is still a lot of uncertainty and variation in the COVID-19 epidemiological parameter
estimates and other model ingredients in the current early state of the literature. The
baseline parameters I have used in this paper are believed to be current as of early May
2020, however, depending on different data sources and clinical studies, different authors
use different values for the removal and mortality rates tied in the model to the parameters
r and µ (see Section 2), e.g., larger mortality rate or slower removal rate.26

In Figure 13 (top panel) I explore the implications of using alternative epidemiological
parameters relative to the baseline calibration in Section 4.1. In simulation ‘slower removal
A’ I keep the initial doubling time the same, so β− r = 0.3 but assume lower removal rate
r = 0.1, corresponding to a longer, 10-day on average, infectious period instead of 5 days
(this raises the SIR R0 to 4). This creates a higher infection peak and shifts the active
infected curve It forward in time, since there is slower exit from state I. Alternatively, in
specification ‘slower removal B’, I assume r = 0.1 but keep R0 = 2.5 as in the baseline
(i.e., use β = 0.25). The result is a higher infection peak but the infection rate curve
moves back in time as the epidemic spreads slower due to the lower infectiousness rate.
A higher mortality rate, µ = 0.0066r or µ = 0.01r, corresponding to IFR of 0.66% or
1%, has a very minor effect on the infection curve. It does, however, impact total deaths
Ftmax (not reported on the Figure) since they are a fraction µ of cumulative infections,
Ftmax ' µ(N −Rtmax). Finally, I keep r = 0.2 as in the baseline but explore raising the
SIR R0 to 5 (i.e., β = 1) – this results in a much earlier and higher infection peak.

The middle panel of Figure 13 displays simulations exploring lower initial infection
rates I0 = 0.1% or I0 = 0.01%. The result of these alternative initial conditions is largely
just a time shift in the infection curve, suggesting that in empirical work it is important
to carefully calibrate the initial condition to match the infection peak.

Finally, in the bottom panel of Figure 13 I perform simulations with alternative
specification of the social contacts graph G – by assuming a higher density of contacts
(median node degree equal to 13, instead of 10 in the baseline); lower density of contacts
(median node degree 8); or a Watts-Strogatz graph G with mean degree 12. The
specification using a denser graph moves the infection peak slightly forward and upward
in time, while the opposite is true for the specification with less dense graph. Otherwise
I find that the shape of the infection curve It is not very sensitive to these alternative
assumptions about the contacts graph G. A necessary step for future empirical work is to
calibrate the network G using actual data, e.g., as in Azzimonti et al. (2020).

26Note that the observed removal rate may be contaminated by policy effects (e.g., if health authorities
isolate symptomatic individuals) so using data from policy-treated time periods and locations to estimate
the epidemiological parameters should be treated with caution.
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Figure 13. Alternative specifications.

7 Conclusions

I analyze the combination and interaction of a compartmental epidemiological model
and a network model of social contacts (an NSIR model). I explore, via calibration and
simulations, how network-based transmission and the network structure affect the epidemic
dynamics as well as the outcomes and effectiveness of a broad range of policy interventions
and behavioral responses, compared to the standard SIR model with population-level
uniform mixing.

I find that viral transmission over a network-connected population can proceed slower
and reach lower peak compared to transmission via uniform/random mixing. Network-
based viral transmission introduces uncertainty and path dependence in the epidemic
dynamics, with important role for bridge links and superspreaders. Testing, quarantine
and contact tracing tend to be more effective in the network model, as these policy
interventions can quickly isolate infectious nodes with a large number of contacts. Similarly,
interventions that can break major transmission vectors across local sub-populations, such
as restrictions on non-local travel or bans on mass gatherings are also very effective. Other
implications of the NSIR model remain in line with those in the standard SIR models.
If lifted early, distancing policies mostly shift the infection peak into the future, while
intermittent interventions or endogenous behavioral responses can generate a flattened,
multi-peaked infection curve but may have costlier economic consequences by prolonging
the epidemic duration.

The main advantage of the network approach, compared to standard aggregate SIR-
type models is that the NSIR model captures heterogeneity and locality of social contacts
as possible vectors of transmissions. This allows a micro-level, agent-based modeling of
health and economic policy outcomes and individual behavioral responses. In addition,
the social contact heterogeneity induces path-dependence and role for superspreaders
or clusters in the epidemic dynamics (see Adam et al., 2020; Althouse et al., 2020 for
empirical evidence). The main challenge to the network approach is that, in addition
to the standard epidemiological parameters governing disease incubation, infectiousness,
recovery and mortality, the specification and identification of the social contacts graph,
initial conditions and node path followed by the epidemic require additional attention in
future empirical work. Adding further detail, including agent-level, on the economics side
of the model can also yield important insights.
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Appendix

Table 3: Testing, network vs. uniform transmission
NSIR (network), p = 0 SIR (uniform), p = 1

change relative to no testing change relative to no testing

testing rate, θ = 0.1% 2% 5% 10% 0.1% 2% 5% 10%
total infected % -0.3% -5.1% -14% -30% -0.2% -3.6% -9.9% -23%
infection peak % -0.4% -13% -31% -56% -0.4% -10% -25% -48%
total deaths % -3.9% -8.3% -16% -30% -0.6% -7.1% -9.2% -20%
duration, days -0.6% +7.6% +22% +41% -0.6% +4.1% +13% +31%

Table 4: Contact tracing, network vs. uniform transmission.
NSIR (network), p = 0 SIR (uniform), p = 1

change relative to no contact tracing change relative to no contact tracing

tracing rate, φ = 0.01 0.1 0.2 0.5 0.01 0.1 0.2 0.5
total infected, % -1.1% -8.5% -15% -27% -0.4% -3.8% -7.1% -13%
infection peak, % -2.9% -16% -30% -51% -0.7% -6.5% -12% -24%
total deaths, % -1.6% -8.1% -11% -28% -1.9% -5.7% -8.4% -15%
duration, days -2.0% +7.5% +21% +45% +0.2% +4.3% +10% +23%

Note: all results in this table use testing rate θ = 5%.

Figure A. Role of superspreaders (single initial case, no intervention). Notes:
The dashed line corresponds to infection starting from node 21 (‘average’ spreader with 10 social contacts);
the solid red line corresponds to infection starting from node 34 (‘superspreader’ with 200 contacts). The
lines coincide in the SIR model (p = 1).

Figure B. Baseline graph G vs. Albert-Barabasi and Watts-Strogatz graphs.

Figure C. Baseline graph G and close-contacts graph Q.

Figure D. Lockdown exit, mass testing and contact tracing – global trans-
mission only, p = 1.
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Figure E. Network path dependency – 10 different distancing policy J sim-
ulation runs.
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Figure 1: Regular graphs example – Local vs. bridge links
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Figure 2: Watts-Strogatz graphs example
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Figure 3: No intervention, mass testing, quarantine and contact tracing
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red lines add contact tracing at rate φ = 0.1 to the testing and quarantine setting.
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Figure 4: Distancing policy – duration and timing
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Figure 5: Intermittent distancing policies
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Figure 6: Lockdown effectiveness
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Figure 7: Lockdown length
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Figure 8: Lockdown success or failure
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Figure 9: Lockdown exit, testing and contact tracing
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Figure 10: Behavioral responses – endogenous distancing and relaxation
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Figure 11: NSIR model – effective reproduction number Rt in different scenarios
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Figure 12: Economic impact illustration – NSIR model
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Figure 13: Alternative specifications
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Figure A: Role of superspreaders (single initial case, no intervention)
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Figure B: Baseline graph G vs. Albert-Barabasi and Watts-Strogatz graphs
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Figure C: Baseline graph G and close-contacts graph Q
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Figure D: Lockdown exit, mass testing and contact tracing – SIR case, p = 1
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Figure E: Network path dependency – 10 different distancing policy J simulation runs
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