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1. Introduction

There are many situations in which people cannot commit to long-term contracts or are in fact legally constrained to
short-term contracts. After some time, at least one party is usually free to rescind or request a change in the contract
terms. For example, the majority of labor contracts are relatively short-term agreements: employees cannot legally commit
to never quit and employers can terminate or change contract terms at a cost depending on the jurisdiction. Housing rental
agreements are usually signed for no longer than a year with both sides able to terminate upon proper notice. Various
insurance, TV, and phone service contracts have similar features. In this paper, we study one such situation assuming that
the parties cannot commit to a contract longer than one period.

Consider a long-term interaction between a risk-averse agent facing idiosyncratic income risk and a risk-neutral insurer.
We analyze the best dynamic way for the insurer to extract profits from the agent when the insurer has a savings tech-
nology with a (weakly) superior rate of return than that of the agent. It is clear that if both parties could commit to an
infinitely-long contract at time zero, the efficient outcome involves the insurer assuming control of the agent’s initial assets,
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investing them in the superior savings technology, and appropriately compensating the agent with transfers over time.! The
insurer’s ability to commit to compensate the agent in the future, after taking his assets, and the agent’s commitment to
not walk away from the contract ex-post, are key for this first-best arrangement to work. If such commitment is absent,
then the insurer faces a trade-off between rent extraction and production efficiency and hence, the agent is left with some
of his assets to be carried at the inferior rate of return. Since assets determine the agent’s outside option, their extraction
can occur only gradually, distorting the optimal front-loading of consumption. In addition, the fact that the agent can walk
away at some point of the contractual relationship limits how low his welfare can be driven in the long run, which further
reduces total surplus.

The time profiles of the agent’s consumption and the insurer’s profits depend on the degree of the insurer’s market
power, which we allow to be anything between the two extremes of perfect competition and monopoly. Under perfect
competition, expected profits are zero in net present value. If insurers lack commitment, free entry prevents them from
earning positive expected period profits, which in turn implies they will not accept negative expected profits at any point
in time. Thus, competitive insurers’ expected profits are exactly zero and only period-by-period actuarially fair insurance is
offered, with the agent’s initial assets invested in the low-return technology until they are depleted. When the insurer has
market power, the lack of commitment limits, but does not eliminate, his ability to extract profits efficiently.

To be more specific, suppose insurers can carry resources over time at the gross rate of return, R, while agents have
access to their own savings technology with fixed exogenous gross return, r, where r < R. Assume that the insurer observes
the agent’s assets and that the agent’s savings decisions are contractible.? At the beginning of each period, an insurer can
offer any new contract he likes and the agent is free to accept or go to his outside option. The agent’s outside option depends
on his current asset holdings and therefore evolves endogenously over time.> We use the solution concept of Markov-perfect
equilibrium (MPE), formally described in Maskin and Tirole (2001), to characterize dynamic insurance contracts in our
setting. Markov-perfect equilibria capture the idea that only current, payoff-relevant variables (here, income realizations and
the agent’s assets) affect the terms of equilibrium contracts and fit the notion of “bygones are bygones”—characteristics we
consider natural in a lack of commitment environment.

Our main result is that the assumption that the insurer can commit only to a one-period contract, as opposed to an
infinitely long contract, matters only if both of the following conditions hold: (i) the two parties’ rates of return differ
(R >r) and (ii) the agent has sufficiently large initial assets. Intuitively, when the insurer’s return is strictly higher than the
agent’s, there are gains from the insurer extracting the agent’s assets up front and carrying them over time at the superior
rate of return. However, this is possible only if the agent is appropriately compensated with promises of future consumption
for which commitment by the insurer beyond the current period is indispensable. Lacking such commitment, we show that
asset holdings by the agent become an integral part of Markov-perfect insurance contracts since they determine the value
of the agent’s outside option and hence the value of future transfers. In addition, the insurer’s lack of commitment distorts
the slope of the optimal consumption profile by introducing a “wedge” in the standard Euler equation whenever r < R.

In contrast, when either (i) the agent and the insurer face equal rates of return (r = R) or (ii) the agent begins with zero
or sufficiently low assets, we show that focusing on Markov-perfect insurance contracts is not restrictive at all: the same
consumption time path and welfare are achieved in a one-sided commitment contract in which the insurer pre-commits
to an infinitely long contract subject to a per period participation constraint by the agent. In the latter contract, assets and
promised utility are interchangeable instruments that can be used by the insurer to ensure the agent stays on. As a result,
a multiplicity of asset paths is possible. This multiplicity is avoided in an MPE where, as already mentioned, the agent’s
asset holdings are a non-trivial feature of dynamic insurance which opens the way for calibrating versions of the model to
data (see Karaivanov and Martin, 2012).

The agent’s inability to commit beyond the current period, that is, being free to leave the contract at the beginning of
each period, avoids the immiseration problems present in other papers in this literature. In the general case that we con-
sider, when the product of the insurer’s return R and the agent’s discount factor g is less than 1, the optimal consumption
path in the first best (full commitment to an infinitely long contract by both sides) is downward-sloping toward zero. Thus,
eventually the agent will be worse off than his best alternative (autarky or any outside option that yields more than zero
consumption forever). In contrast, in an MPE, consumption converges to a strictly positive value in finite time since the
agent can always walk away. Hence, with the agent unable to commit beyond the current period, as long as his initial assets
are positive, Markov-perfect insurance contracts always differ from the first-best contract, independent of the parties’ rates
of return.*

1 For example, if the agent is more impatient than the insurer, it is optimal to front-load the agent’s consumption.

2 Hereby we differ from the literature on optimal contracting with hidden savings (Allen, 1985; Cole and Kocherlakota, 2001; among others) which
assumes that the principal has no ability to monitor the agent’s assets. On the technical side, our assumption of observable savings helps us avoid dynamic
adverse selection and the possible failure of the revelation principle with lack of commitment (Bester and Strausz, 2001). We show that the savings
contractibility assumption is not restrictive in the first best and with perfectly competitive insurers.

3 One possibility used by many authors is going to autarky forever, but we allow more general cases.

4 The only case in which these two contracts are equivalent is when the agent starts with zero assets and SR = 1, since in this case the first-best contract
is a repeated one-period contract.
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Unlike much of the previous literature on limited commitment (Thomas and Worrall, 1988, 1994; Ligon et al., 2002;
Kocherlakota, 1996; Krueger and Uhlig, 2006; among many others),” we assume that agents cannot renege after observing
their income realization, that is, within the period. Reneging on an insurance contract after high income is realized is the
primary reason full insurance may not be possible (at all, or in the short run) in those settings. In contrast, we obtain
full insurance immediately and at all time. The lack of commitment friction we study is thus not about incentives to
renege after obtaining windfall income, but about their ability to costlessly leave a contract before the period’s uncertainty
is resolved, should its terms become worse than one’s outside option—not unlike in labor, health insurance, or similar
contracts. The applications we have in mind are therefore not about agents acting opportunistically to obtain short-term
gains from breaking a contract but about agents’ freedom to continue or terminate a contractual relationship.

Our work is most closely related to that of Krueger and Uhlig (2006), Phelan (1995), and Kovrijnykh (2013). As in this
paper, Krueger and Uhlig (2006) study dynamic risk-sharing between risk-neutral insurers and risk-averse agents who face
idiosyncratic income uncertainty. Their model is most similar to our “one-sided commitment” setting—insurers can fully
commit to an infinitely long contract, while agents can renege in each period and move to another insurer without any
cost or delay. A key difference is that agents in their paper can renege after observing the income realization. Thus, their
main question is whether intratemporal insurance can be provided given the agent’s commitment problem and potential
for opportunistic behavior. Krueger and Uhlig show that the answer depends crucially on the relative size of the discount
factors of the insurers and agents. Autarky, partial insurance, or even full insurance in the long run can be supported in
equilibrium depending on the model parameters. Phelan (1995) studies dynamic risk-sharing with limited commitment in a
competitive setting. His model is similar to ours in that the agent can renege on a contract before income is realized. Unlike
here, Phelan assumes that the agent’s income is unobservable to the insurer and studies the implications of this asymmetric
information problem on the level of insurance provided. Setting fr = 1, he shows that partial insurance can be achieved in
equilibrium and that the long-run consumption distribution is non-degenerate.

In contrast to the Krueger-Uhlig and Phelan papers, the main question we study is not whether full insurance can or
cannot be achieved (in our model it is always achieved) but the implications of lack of commitment across periods by agents
and insurers on the time path of consumption relative to the first best and on private asset accumulation by the agent.
Asset accumulation is not discussed by the above authors since the insurance contracts they study can be implemented
through promised utility alone because of the insurers’ full commitment ability. Additionally, our results cover the cases of
non-competitive insurers and allow a general form for the agent’s outside option.

Kovrijnykh (2013) studies a borrower-lender relationship with probabilistic enforcement. In essence, each period, after
receiving a payment from the borrower, the lender may get an opportunity to renege on (change) his promised invest-
ment. Kovrijnykh finds that social welfare in this environment—regardless of whether contracts can be signed for one or
infinitely many periods—can be lower than social welfare in an environment in which the lender cannot commit to honor
the agreement within the period. As in the limited commitment literature cited above, Kovrijnykh thus studies opportunistic
behavior (by the lender, in her case). She focuses on marginal increases in commitment power from no commitment to par-
tial commitment by varying the contract enforcement probability. Our setting is different—we assume perfect enforcement
within the period and interpret lack of commitment as the inability to bind oneself to actions beyond the current period.
We show that under certain conditions (notably, equal rates of return on assets), an increase in the principal’s commitment
ability from one period to infinitely long yields equivalent welfare outcomes whereas otherwise full commitment dominates
one-period commitment.®

More generally, our paper relates also to the work of Acemoglu et al. (2006) on optimal taxation with lack of commitment
and the literature on “markets vs. mechanisms”, for example, Bisin and Rampini (2006), Acemoglu et al. (2008), and Sleet
and Yeltekin (2008)—who build various political economy models of governments unable to commit and analyze the extent
to which they can improve on private-information constrained incomplete markets.

The rest of the paper is organized as follows. Section 2 presents the environment and characterizes the first-best contract
with full commitment by both sides. Section 3 relaxes the commitment assumption, characterizes the properties of Markov-
perfect contracts, and compares them to “one-sided commitment” contracts. Section 4 considers two natural extensions.
First, we analyze the special case when insurance is provided in a perfectly competitive market with free entry. Second,
we analyze the case when the agent and insurer bargain over the terms of the contract, which serves as an example of how
to endogenize the agent’s outside option which is taken as given in the previous sections. Section 5 concludes. All proofs
are in Appendix A.

5 Thomas and Worrall (1988) characterize firm-worker contracts in which each party can deviate to autarky forever. Thomas and Worrall (1994) study
limited commitment in a foreign direct investment problem with risk of expropriation. Ligon et al. (2002) analyze risk-sharing among agents who can revert
to self-insurance through storage at any time. Kocherlakota (1996) studies risk-sharing between agents who cannot commit to not revert to autarky forever
at any period. He analyzes the set of subgame-perfect equilibria and shows that, if agents are sufficiently patient, there is no efficiency loss associated with
the inability to commit.

6 Sleet and Yeltekin (2006) consider lack of commitment by the principal in a dynamic private information economy. They show that the optimal
allocations when the principal and agent have the same discount factor are equivalent to those in an economy with fully committed principals who
discount the future less heavily than the agents. In contrast, allowing discount factors to differ or not, we demonstrate the importance of the two parties’
rates of return on assets for the resulting outcomes with full vs. one-period commitment by the principal.

Please cite this article in press as: Karaivanov, A.K., Martin, FM. Dynamic optimal insurance and lack of commitment. Review of Economic Dynamics
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2. The model
2.1. Environment

Consider a long-lived risk-averse agent who maximizes expected discounted utility from consumption. His period utility
is u(c), with uc(c) > 0, ucc(c) <0, and u satisfying Inada conditions.” The agent discounts future utility by factor g € (0, 1).
He produces output y, which he can consume or save. Output is stochastic and equals y' with probability 7;, where
mi€(0,1) foralli=1,...,n, with n> 2, and Z?zlmzl. Let Ofy] <...<y"

Since the agent is risk-averse and output is risky, the agent would like to smooth consumption over output states and
time. Assets a can be carried over time via a savings/storage technology with fixed gross return r > 0. Let the set of feasible
asset holdings be A = [0, a], where a € (0,00) and is chosen to be sufficiently large so that it is not restrictive (this is
clarified below).

By standard arguments, the deterministic savings technology does not allow the agent to perfectly insure against the
(n-dimensional) output state randomness, thus there is scope for additional insurance. Suppose there exists a risk-neutral,
profit-maximizing insurer (principal) who can provide such insurance. Throughout the paper, we assume that the insurer
can costlessly observe output realizations y' and the agent’s assets a (see footnote 2).

The insurer discounts future profits at gross rate R > 1. The parameter R has either technological or preference inter-
pretation. The special case r = R, for which several important results are derived, is interpreted as the insurer being able to
carry resources intertemporally using the same technology as the agent. If instead R = 8™, one can think of the contract
sides as having the same discount factor—a standard assumption in the literature. In general, we allow R to take any value
in between these bounds. In addition, we assume r < 8~! so that the agent’s assets remain bounded, consistent with the
definition of A.

Assumption1. 0 <r<R<p ', r<pg~!,and R>1.
2.2. The agent’s outside option

Let the agent’s outside option when contracting with the insurer be given by the function B(a). Our results do not rely
on the exact specifics of the agent’s outside option beyond certain assumptions on B. By considering a general function B(a)
we can vary the split of the gains from trade between the insurer and the agent from the extreme case of a monopolistic
insurer (in which all the surplus goes to the insurer), up to (but not including) the case of perfect competition in which
all gains from trade go to the agent. The case of perfectly competitive (or “benevolent”) insurer(s) is analyzed separately in
Section 4.1 since it requires a different mathematical formulation.

We make the following assumptions on the agent’s outside option.

Assumption 2. The agent’s outside option function B(a) has the following properties: (i) continuously differentiable, strictly

increasing and strictly concave for all a > 0; (ii) B(0) > %(2; (iii) B(a) — BB(0) belongs to the range of u; and (iv) B is such

that the insurer can obtain positive surplus from providing insurance to the agent.

Part (i) of Assumption 2 lists technically desirable properties of the agent’s outside option. Part (ii) ensures that the
agent’s inability to commit to a long-term contract (as analyzed in Sections 3 and 4) is relevant—that is, his outside option
is such that the agent would eventually walk away from a contract that immiserates him. Parts (ii) and (iii) together guar-
antee that for any a € A there exist positive consumption and admissible asset choices that satisfy the agent’s participation
constraint. Part (iv) implies that the insurer’s participation constraint—zero profits—will not bind. Here, we are thinking of
environments where very rich agents can still insure against fluctuations in income only imperfectly and where principals
have sufficient market power to extract positive profits from an insurance agreement.

An example: autarky
One natural candidate for B(a) is the agent’s value function in autarky, i.e., £2(a) determined by

() = max n;[u(ra+yi—ai)+ﬂ9(ai)]~ (M

Suppose u(0) > —oco or y! > 0. Then the autarky value function §2(a) satisfies Assumption 2, parts (i), (ii) and (iv). By stan-
dard arguments (see Stokey et al., 1989), our assumptions on u ensure that £2(a) satisfies (i). Part (ii) is satisfied since y' > 0
for all i > 1 (i.e., expected consumption in autarky is positive at a = 0). Part (iv) holds by construction, as the agent cannot
perfectly self-insure. For B(a) = §2(a), Assumption 2(iii) is not necessary to guarantee existence of admissible consumption
and asset choices that satisfy the participation constraint for all asset levels—existence follows directly from (1).

7 Throughout the paper we use subscripts to denote partial derivatives and prime signs for next-period values.

Please cite this article in press as: Karaivanov, A.K., Martin, FM. Dynamic optimal insurance and lack of commitment. Review of Economic Dynamics
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The autarky (self-insurance) problem (1) is a standard “income fluctuation” problem studied, for instance, in Schechtman
and Escudero (1977) or Aiyagari (1994), among many others. Its solution features:

(i) imperfect consumption smoothing (c! differs across states with different y');

(ii) consumption, ¢! and asset choice, a' in each income state increasing in current assets, a;

(iii) asset contraction (negative savings) in the lowest income state(s) and asset accumulation (positive savings) for some
range of asset holdings in the highest income state(s).

Since r < 81, the agent saves only to insure against consumption volatility. Clearly, then, an agent with more assets can
do everything a poorer agent can, but the former is in a better position to self-insure against a long sequence of low outputs.
The agent’s inability to perfectly insure against income shocks implies that there is a demand for additional insurance.

In Section 4.2 we consider an alternative way to endogenize B(a) by allowing the agent and principal to bargain over
the surplus of the insurance contract.

2.3. The first best

We start by briefly characterizing the first-best contract in our setting, that is, the optimal insurance contract when both
parties can fully commit to an agreement signed at time zero. This is the natural benchmark against which we analyze the
role of limited commitment in dynamic insurance. The first-best contract specifies state-contingent transfers/consumption
and savings decisions. The only restrictions on it are the ex-ante participation constraints of the contracting parties. By our
assumptions on B(a) we impose only the agent’s participation constraint.

In the first best, a long-term binding agreement is signed at the initial date specifying the complete path of history-
contingent outcomes for all future periods and states. Thereafter, the timeline within each time period is as follows. Output
is realized in the beginning of the period. Then transfers from/to the agent take place. Finally, the agent consumes and saves
the contracted amounts.

Note that due to the timing of events, if allowed to, the agent may, in principle, wish to deviate from the specified
contract by varying his asset holdings and thus, his consumption. Below, we show that this is not the case with full com-
mitment. That is, the first-best contract remains incentive-feasible even when the agent’s savings are non-contractible—who
controls asset accumulation does not matter with full commitment.

Proposition 1. The first-best insurance contract has the following properties:

(i) no asset accumulation by the agent, a; = 0 for all t > 0, is optimal;

(ii) equal consumption across output states in all periods, c}' =cforalli=1,...,nandallt > 0;
(iii) decreasing consumption profile (strictly, if BR < 1), ¢t > ct41 satisfying uc(c¢) = BRuc(ce+1) for t > 0 at an interior solution;
(iv) remains incentive-compatible when the agent’s savings are non-contractible.

The results in parts (ii) and (iii) are standard. Since there is no private information or other incentive problems, the
first-best contract gives the risk-averse agent equal consumption across output states in all periods. If the parties discount
at the same rate (the special case R = 8~ 1), the first-best consumption profile is constant over time, while if R < 8~1, the
agent’s consumption is strictly decreasing over time toward zero.

Regarding asset accumulation by the agent in the first best, Proposition 1(i) shows that the agent’s assets can be (must be,
if r < R) optimally extracted upfront, at t = 0 by the insurer and set to zero thereafter. In contrast, as we show in the
next section, with lack of commitment, private asset accumulation by the agent is an integral part of dynamic insurance
contracts. In part (iv) we show that asset contractibility does not affect the optimal contract: with full commitment, the
first best can still be implemented when the principal has no control over the agent’s observable assets since it remains
incentive-compatible. The intuition is that the agent has no incentive to self-insure or protect himself against changes in
the contract terms by saving privately since he faces full insurance in an infinitely-long contract.

Let y = Z?:l iy’ > 0 be expected output and ¢; = ra; + 7; — a1 be period-t consumption implied by a contract offering
{Tt. arp1}52,- By Proposition 1 (see the proof in Appendix A for full details) we can write the first-best contracting problem
as a two-stage problem. In the first stage, the insurer solves a static problem in which he extracts the agent’s initial assets
ap and promises lifetime discounted utility wi from the next period on, subject to the agent’s time-zero participation
constraint:

I'IFB(ao) =maxrag+y —co+ R’lﬁFB(wQ
€0, W1
subjectto u(cg) + Swq — B(ag) >0, (2)

where the function I778 (w) solves the following, second-stage dynamic program of maximizing the insurer’s profits subject
to a promise-keeping constraint:

Please cite this article in press as: Karaivanov, A.K., Martin, FM. Dynamic optimal insurance and lack of commitment. Review of Economic Dynamics
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I8 (w) =maxy —c+R'TFE (W)
c,w

subject to u(c) + fw’ —w =0. (3)

In the first best, both the principal and the agent fully commit to follow the agreement signed at time zero. While it is
the most efficient ex-ante, the first-best contract in our setting generically has the property that, ex-post, both parties would
wish they could renege on it. For the agent, the reason is that his participation constraint is imposed only ex-ante. In the
general case R < 71, the strictly decreasing consumption time path in the first-best contract implies that at some point
in time the agent would be better off by switching to his outside option with zero assets, B(0). For the insurer, recall that
when the agent’s initial assets ag are extracted at the start of the first-best contract, in compensation the agent is issued
“credit” in the form of promised utility. Thus, even if the agent were committed to remain in the contract forever, as long
as ap > 0, the insurer would like to renege on his past promises (worth B(ag) in total, which is strictly larger than B(0))
and extract the most surplus from the current period onward.?

3. Lack of commitment
3.1. Markov-perfect insurance contracts

Motivated by the examples in the introduction, assume that neither the principal nor the agent can bind themselves to
a contract extending beyond the current period. That is, only one-period contracts can be enforced. Note that we assume
no penalties for failing to reach an agreement.

In our environment, individual punishment strategies such as, for example, the threat to never again sign a contract,
are not credible—given our assumptions, at the beginning of each period there are always gains from insurance on the
table. We adopt the solution concept of Markov-perfect equilibrium (MPE) (Maskin and Tirole, 2001) and characterize the
best possible dynamic insurance contracts with (double-sided) lack of commitment that are solely functions of fundamen-
tals: beginning-of-period assets and current output realizations. Then, in Section 3.3 we show conditions under which the
resulting equilibrium is equivalent to an infinitely long contract in which only the insurer can fully commit.

In an MPE, the insurer offers the agent a contract for the current period, {‘Ci,ai}?:P consisting of output-contingent
transfers and end-of-period asset holdings, taking as given anticipated future interactions between himself and the agent.
Specifically, given the agent’s current assets a, the problem of the insurer today is to choose {t, af}?zl, taking as given future
decision rules {77 (a), Al (a)}?:1 for transfers and assets, which induce profits /7(a) and agent’s continuation value v(a).

Each period, the agent needs to decide whether to accept the currently offered contract. Given future interactions be-
tween the agent and the insurer that induce profits I7(a) (to be defined below), a continuation value v(a) (to be determined
below), and an outside option given by B(a), the problem of the insurer facing an agent with current assets a is:

n
{,i,ﬂ?ﬁg‘}?ﬂ;”’[y T (a)] (4)

subject to the agent’s participation constraint
n . . .
Zm[u(ra-i—rl—a’)+,3v(a')]—B(a)zO. (5)
i=1

Note the difference between the time-zero participation constraint in the first-best problem (2) and the period-by-period
participation constraint (5).

The assumed strict concavity of u implies that full insurance is optimal; that is, ¢! =ra + t! — a' are equalized across
the output states i =1,...,n (formally, this can be easily shown by taking the first-order conditions of problem (4)-(5)
with respect to t!). Intuitively, in the absence of incentive provision concerns, it is inefficient to have the risk-averse agent
bear any risk across states. What is key for this result is that in our setting the parties cannot renege after output is
realized. Note again the contrast with other papers on optimal insurance with limited commitment (e.g., Kocherlakota, 1996;
Ligon et al., 2002; Krueger and Uhlig, 2006), where agents can renege on the insurance scheme after observing the output
and so only partial insurance may be sustained. In addition, the first-order conditions with respect to a' of problem (4)-(5)
are symmetric across output states. Assuming a symmetric solution (we show existence below), we thus have ¢/ = ¢/ =,
d=a=d,and ti=ti=tforalli,j=1,...,n.

Lemma 1. The agent’s participation constraint, (5) is satisfied with equality and v(a) = B(a) for all a € A.

8 In the special case R = 8=, the agent receives future discounted utility of B(ag) each period. After assets are extracted, the insurer would still like to
renege on the promised utility B(ap) and drive the agent to his new outside option B(0). Only in the knife-edge case, when both R = 8~! and ap = 0 hold,
does the first-best contract become a repeated static contract and as such, renegotiation-proof.
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Intuitively, today’s principal leaves no surplus to the agent regardless of how surplus is distributed in the future. In par-
ticular, if for some reason the insurer tomorrow left the agent better off than with his outside option, the insurer today
would still find it optimal to extract all surplus. As a result, the agent is always exactly as well off as with his outside
option.

Using these results, we formally define a Markov-perfect equilibrium and a Markov-perfect contract in our setting as follows.

Definition 1. (i) Given B(a) satisfying Assumption 2, a Markov-perfect equilibrium (MPE) is a set of functions {7, A, IT}:
A — R x A x Ry defined such that, for all a € A:

{T(@, A(@} =argmaxy — v + R~ '11(a’)

T,0' €A
subject to
u(ra+t—d)+BB(d)— Ba=0
and
M@=y—T(@+R'T(A®@).
(ii) For any a € A, the Markov-perfect contract implied by an MPE, as defined in (i), is the transfer and savings pair:

{t=T(),d = Aa)}.

To simplify the exposition, let C(a) =ra+ 7 (a) — A(a) denote the consumption function in an MPE and let c=ra+1 —d’
denote the consumption in a Markov-perfect contract {7, a’} given any a € A. Using Definition 1, rewrite the Markov-perfect
contracting problem in a mathematically equivalent way as

() = m/a)‘&j/+ra—c—a’+R_1H(a’) (6)
subject to
u(c) + BB(a’) — B(a) =0. (7

The insurer takes the outside option function B(a) as given—he cannot control its value except via the agent’s assets;
for example, as in the case of autarky when B(a) = £2(a) for all a € A.° To solve problem (6)-(7), we need to find a
fixed-point in the function /7. Assumption 2 ensures that the constraint set is non-empty; that is, Va € A there exist
¢ >0 and a € A satisfying (7) (see footnote 16 in Appendix A). Since the set A is compact, standard contraction mapping
arguments ensure the existence and continuity of the value function IT (Stokey et al., 1989; see also Krueger and Uhlig,
2006). More specifically, as in Krueger and Uhlig (2006), using the fact that u and B are strictly increasing and changing
variables to z = B(a), we can rewrite problem (6)-(7) as

M*(z) =maxy + F(z,Z) + R™'T*(Z), (8)
Z/

where F(z,Z)=rB 1 (2) —u~1(z— Bz) — B~1(¢) for z,Z € [B(0), B(@)], and z — 87 in the range of u. It is easy to verify
that Stokey et al. (1989) Assumptions 4.3, 4.4 and 4.8 are satisfied. By Stokey et al. (1989) Theorem 4.6, this implies
uniqueness of the fixed point 7. A sufficient condition for continuous and single-valued policy z' in problem (8) and
hence continuous functions 7, C and A in the original MPE problem, is F(z,Z’) to be strictly concave (see Stokey et al.,
1989, Assumption 4.7 and Theorem 4.8). Assume u and B are such that this condition holds.'® Strict concavity of F thus
implies the existence and uniqueness of the MPE as described in Definition 1. Next, by the differentiability of u and B,
F is continuously differentiable on the interior of its domain. This implies that [T* is differentiable on the interior of its
domain and hence I7 is differentiable on the interior of A (see Stokey et al., 1989, Assumption 4.9 and Theorem 4.11). Fig. 1
illustrates a numerical example of value and policy functions satisfying these properties.
The first-order conditions of problem (6)-(7) with respect to ¢ and a’ are

—14+Auc(c)=0
—1+R',(d') + 1BBa(a’) + ¢ =0,

9 We study examples of endogenously generated outside options in Section 4.2.

10" For example, take some strictly increasing, strictly concave, and unbounded above u and suppose B(a) = bg + a" /b, where by > u(0)/(1 — 8), by > 0,
and v <1.As v — 1, we have F(z,Z) — k +b1(rz—2') —u~'(z— Bz'), where « is a constant. Since u is strictly concave, —u~"! is strictly concave as well.
For any 1 € (0, 1) and any admissible (z1,z;) and (22, Z}), let z, = Az1 +(1—2)zz and z; = 1z} + (1 —A)Z,. Then we have that F(z;,z}) =k +b1(rz; —2;) —
u Nz, = BZ)) =k +b1(rz5. — 25) —uT T (h(z1 — BZ)) + (1 = W) (22 — BZ})) > Kk + b1 (rzy — 24) + (1 = b1 (rz2 — 25) —Au~ (21 — BZ) — (1 —Mu~ Nz, — Bzy) =
AF(z1,2}) + (1 — M)F(z2, z). Therefore, F is strictly concave.
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and w' =0.5.

Fig. 1. Markov-perfect equilibrium.

where A and ¢ are the Lagrange multipliers associated with the participation constraint and the non-negativity constraint
on future assets, respectively.'!

Note that A =1/u, > 0. The envelope condition implies
_ Ba(a)

uc(o)’

Substituting (9) and A = 1/u, into the first-order condition for a’, the equations characterizing a Markov-perfect insurance
contract for any a € A are the participation constraint (7) and

BR 1 B
@ ——uc(c,)]JrgR_o. (10)

I,(a)=r

(9)

r—R+Ba(a’)[

Proposition 2. A Markov-perfect equilibrium has the following properties:

(i) assets profile: 3a € (0, a] such that A(a) = 0 for all a € [0, a] and 0 < A(a) < a, with A(a) strictly increasing for all a € A\[0, a];
(ii) consumption profile: C(A(a)) < C(a) for all a € (0, a], with C(a) strictly increasing for alla € A;
(iii) zero assets in finite time and positive long-run consumption: 3T < oo such that ar = A(A(... A(ap) ...)) (T — times) = 0, for
allag € A; and C(0) > 0.

Typically, the savings function in an MPE, A(a), is equal to zero between zero assets and a critical value a > 0, and
is strictly increasing but stays below the 45-degree line for higher asset levels. It is possible, however, that the u and B
functions and the set A are such that A(a) =0 for all a € A—that is, it may be that there is no interior solution for savings
for any asset level in the admissible set. We can use the results from Proposition 2 to derive a condition ensuring that
an interior solution exists for sufficiently high asset levels. At the critical point a, by definition, the optimal choice is zero
assets and ¢ = 0. Consumption at a and in the following period can be derived from the agent’s participation constraint:

11 As we show in Proposition 2, in an MPE, a’ > 0 binds for some asset levels, while @’ <a never binds.
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u(C(a)) = B(a) — BB(0) and u(C(0)) = (1 — B)B(0). Note that Assumption 2 implies C(0) > 0 and C(a) > 0. Thus, we can
use (10) to solve for a:

(11)

r—R—i—Ba(O)[ FR ! ]:

uc(u=1(B@ — BB(0) ucu1((1—p)B(0))

Hence, to ensure that d € (0, a@) we need to pick u and B such that there exists @ > 0 which solves (11) and next pick some
a > a and define A =0, aJ.

Fig. 1 displays a computed example of an MPE, which illustrates the results in Proposition 2. The MPE is compared with
the autarky solution, problem (1). Displayed are transfers, savings, consumption, and net present value profits in the MPE,
each as a function of assets.

3.2. Comparison with the first best

Compare the results of Proposition 2 characterizing Markov-perfect insurance contracts with the properties of the first-
best contract in Proposition 1. First, the role of asset accumulation is very different. Intuitively, while in the first best it is
(weakly) optimal to extract all agent assets at time zero, in an MPE, without commitment by the insurer, any positive initial
wealth can be only gradually reduced over time as dictated by the per-period participation constraints.

Second, the insurer’s lack of commitment distorts the slope of the consumption profile. In the first best (see Proposi-
tion 1), the consumption profile satisfies the standard Euler equation, u.(c) = BRu.(c’). In contrast, in our MPE we can
rewrite (10) at an interior solution as the following modified Euler equation:

R—1) uc(c
e (c) = BRuc(c) 1o R=D u© | (12)
R BBq(a@)
The non-positive wedge, — (RE” ﬂlil;a <(Ca),), reflects the inefficiency introduced by the principal’s lack of commitment. In the

first-best contract, the insurer extracts all agent assets at t =0 and invests them in the more productive asset accumulation
technology with return R (this is without loss of generality when r = R). In an MPE, since the principal lacks commitment,
he cannot compensate the agent for such immediate asset extraction with promised utility (or anything else); thus, he can
only run down the agent’s savings gradually, respecting the participation constraint. This distorts efficiency whenever R > r
since assets are carried over time at the low return r. In the resulting Euler equation wedge in (12), the term ﬂ'gﬂ(g,) states
the trade-off faced by the principal: each additional unit of assets he would like to extract lowers the agent’s future outside
option by BB, and hence, needs to be compensated now with additional consumption worth u.. Naturally, the size of the
distortion arising from not being able to extract assets optimally is proportional to the difference between the insurer’s and
agent’s intertemporal rates of return, R —r.

In terms of the consumption time profile, in the first best, consumption follows uc(c) = BRuc(c’). Thus, if RB < 1,
first-best consumption decreases over time and converges to zero, whereas if R = 1, first-best consumption is constant over
time and equals u~1((1 — 8)B(ag)) > 0. In contrast, consumption in an MPE follows (12), which implies uc(c) < BRuc(c’) if
r<R<pB1oruc(c)=pRuc(c’) ifr=R < B~1. Therefore, in both cases uc(c) < uc(c’), i.e., MPE consumption decreases over
time until the agent’s assets are depleted. When assets reach zero, MPE consumption C(0) is equal to u='((1 — 8)B(0)) > 0
from that point on.'> These results imply that the Markov-perfect and first-best contracts coincide only when RS =1 and
ap = 0 (see also footnote 8).

3.3. Markov-perfect insurance vs. one-sided commitment

To clarify further the role of commitment by each side in the dynamic insurance problem, we compare and contrast
Markov-perfect contracts, as defined and characterized above, with contracts in which only the insurer has long-term com-
mitment. More precisely, consider a one-sided commitment setting in which, as in the first best (Section 2.3) the insurer
commits to an infinite sequence of state-contingent transfers at time zero while, as in Section 3.1 the agent can walk away
at the beginning of each period before output is realized but cannot renege on the contract within the period. This implies
that, as in an MPE, the agent’s participation constraint must be satisfied in every period.

By the same arguments as in Section 2.3, full insurance obtains. Also, as in Proposition 1, it is optimal to extract the
agent’s assets in the initial period. Thus, as we did for the first best in (2)-(3), we can set up the insurance problem with
one-sided commitment as a two-stage problem. In the first stage, the insurer extracts the agent’s initial assets, agp and
promises in exchange lifetime utility, w1 from next period onward subject to the agent’s limited-commitment constraint,
w1 > B(0). In the second stage, optimal consumption and promised utility are chosen respecting promise keeping.

12 Note that positive long-run consumption follows from Assumption 2(ii), but this result does not rely on the assumed borrowing constraint. Even if the
agent were allowed to borrow up to the natural borrowing limit (a case we subsume if y! = 0), his outside option B(0) dominates the present value of
zero consumption forever.
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Suppose promised utility in a one-sided commitment contract, w takes values in the set W = [B(0), B(a)]. For the
moment we treat the set W as exogenously given. However, in the proof of Proposition 3 below we show that if r = R then
starting from any initial promised utility wo = B(ap) € W, the upper bound of W is not restrictive, that is, all optimally
chosen promised utilities in all time periods are smaller than B(a). Note also that no level of promised utility below W's
lower bound B(0) is a relevant choice for the insurer, since the agent would always walk away to his outside option.

The one-sided commitment problem we consider is thus,

Hos(ao): maij/+rao—c0+R’1ﬁos(w1) (13)

Co,W1€

subject to

u(co) + w1 — B(ao) =0.

The function /7% is the solution to the following second-stage problem defined for any w € W:

I%w)= max y—c+RIT%W) (14)

c,weWw

subject to

u(c)+pw —w=0.

The key difference with the first-best contract solving (2)-(3) are the additional inequality constraints on promised utility at
each stage: w1 — B(0) > 0 and w’ — B(0) > 0 implied by w; € W and w’ € W, respectively. These constraints embody the
agent’s inability to commit to not renege on the contract at the beginning of a period and obtain his outside option B(0).
In contrast, in the first best, promised utility can fall below B(0) (e.g., in the case SR <1 when the agent’s consumption
converges to zero; see Assumption 2).

Below we show that, if r =R or ag € [0, d], the one-sided commitment contract defined in (13)-(14) and the MPE
characterized in Section 3.1 imply identical consumption sequences over time when starting from the same initial asset
level. That is, there is a one-to-one mapping between the path of optimally chosen promised utilities in the one-sided
commitment contract and the path of optimally chosen asset levels in the MPE.

Proposition 3 (Markov-perfect vs. one-sided commitment contracts).

(i) Ifr =R or ag € [0, a] where a is defined in Proposition 2(i), then, from the same initial asset level ag € A, Markov-perfect insur-
ance contracts solving (6)-(7) imply identical consumption sequence {c¢};°, and time-zero discounted profits as the one-sided
commitment contract defined by (13)-(14).

(ii) Ifr < R and ag > a, where a is defined in Proposition 2(i), then, from the same initial asset level ag € A, Markov-perfect insurance
contracts solving (6)-(7) differ from one-sided commitment contracts solving (13)-(14) in the implied consumption sequence
{ce}22,, and profits. Specifically,

(a) time-zero discounted profits are strictly higher with one-sided commitment;
(b) the agent’s consumption time profile with one-sided commitment satisfies uc(c) = BRuc(c’) and thus differs from the MPE
consumption profile which satisfies (12) but, as long as RS < 1, long-run consumption is the same in both cases.

The results in Proposition 3 add to our previous discussion in Section 3.2 to further clarify the role of commitment by
the insurer. Part (i) establishes that, when the insurer and agent face the same rate of return on carrying assets over time,
the Markov-perfect insurance contracts characterized in Section 3.1 achieve the same consumption and profit time paths
as dynamic insurance contracts in which the insurer can commit to a long-term ex-ante contract but the agent cannot.
Intuitively, when both parties can carry assets at the same rate of return, promised utility and assets are fully interchange-
able from the point of view of the insurer—everything that can be implemented with one of these two instruments can be
exactly replicated with the other.

Proposition 3, part (ii) shows that one-sided commitment and Markov-perfect contracts differ when r < R and ag > a (the
interior solution case). One-sided commitment contracts generate more surplus than Markov-perfect contracts starting from
the same initial asset level. Intuitively, the insurer’s long-term commitment ability in the one-sided commitment setting
enables him to extract the agent’s assets in the initial period in exchange for promised utility and then use his superior rate
of return to generate higher total surplus. Obviously, for any gains to be realized from the asset extraction, the agent’s assets
must be positive in an MPE at some t > 0. The agent agrees to hand over his assets at t = 0 in the one-sided commitment
setting because he knows that the insurer cannot renege on the promise to compensate him with future transfers. The rate
of return differential causes the consumption time profiles to differ but, as long as R8 < 1, both the MPE and one-sided
settings yield the same positive long-run consumption level determined by the agent’s participation constraint evaluated
at current and future assets equal to zero. This is in contrast with the first best (see Proposition 1), where consumption
converges to zero in the long run. The reason is that in the MPE and one-sided commitment contracts the agent can always
go to his outside option if offered consumption that is too low.
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4. Extensions
4.1. Perfectly competitive insurers

In this section, we characterize the case of a perfectly competitive insurance market with free entry by insurers, previ-
ously ruled out by Assumption 2(iv). Free entry implies that optimal contracts maximize the agent’s expected present value
utility subject to a zero-profits constraint for the insurer. More specifically, perfect competition in the insurance market
results in zero per period profits for any submarket indexed by the agent’s assets, a. Cross-subsidization across different
asset levels or time periods is ruled out by the possibility of free entry each period.

Define a Markov-perfect equilibrium and Markov-perfect contracts analogously to Definition 1, basically replacing the
agents part1c1patlon constraint with a zero-profit constraint for the insurer (details omitted to save space). Denoting
cd=ra+1i—d, the contractmg problem of a perfectly competitive insurer under double-sided lack of commitment can be
written recursively as'?

v(@)= max ZTL’, )+ Bv(a )]

iqi
{t aeA, 15z

subject to

n . .
Zm[y' —1']=0.
i=1

There is no need for a participation constraint for the agent as he obtains all the surplus. It is easy to show, using the
first-order conditions, that full insurance obtains once again, that is, ¢’ =c, t' =1, and a' =d’ for all i =1, ..., n. Hence,
from the zero-profits condition, T = y and ¢ = y + ra — a’, which simplifies the above contracting problem to

v(a):Ipa&(u(jf+ra—a’)+/3v(a’). (15)

Under our assumptions on u and Br < 1, problem (15) is equivalent to Example 5.17 in Stokey et al. (1989) (pp. 126-128).
Thus, the value function v is continuous, strictly increasing, strictly concave, and continuously differentiable for any a € A.
The policy function, a’ = A(a) is unique, continuous, and weakly increasing. Zero profits implies 7 (a) =y for all a € A.

Proposition 4. In an MPE with free entry by insurers,

(i) at an interior solution for a’, the standard Euler equation applies:

uc(c) = pruc(c’); (16)

(ii) properties (i)-(iii) listed in Proposition 2 hold;
(iii) it does not matter whether the agent’s assets are contractible or not; that is, Markov-perfect contracts with contractible and
non-contractible assets coincide for all a € A.

Contrast the Euler equation with free entry, (16), with its counterpart, (12), from the non-competitive case analyzed
earlier. First, free entry and lack of commitment imply that no assets can be carried over time by the insurer—thus, only the
agent’s return r matters. Second, the free-entry assumption implies that there is no conflict between the insurer and agent
about the optimal time profile of consumption—it follows (16), which is precisely what the agent would do if he controlled
his own savings. However, unless r = R, the parties’ inability to commit still matters for the consumption path—the Euler
equation in (16) does differ from that in the first best; see Proposition 1(iii).

The function v(a) can be viewed as a limiting case of the outside option B(a) used in previous sections, an upper bound
for the agent’s discounted utility for which the insurer will break even.

4.2. Bargaining

So far, we have considered two extreme ways of dividing the surplus in insurance contracts. In Section 3, we solved the
problem of how much profit the principal can extract for a given agent outside option B(a). Then, in Section 4.1, we solved
the case of free entry by insurers in which all the surplus of an insurance contract goes to the agent. In this extension,
we characterize Markov-perfect dynamic insurance when the insurer and the agent bargain over the contract terms every
period. We adopt the proportional solution of Kalai (1977) and assume that the outside option for the agent is autarky
£2(a), as defined in Section 2, and the outside option for the principal is zero profits.

13 See also Karaivanov and Martin (2012) for detailed discussion of the free-entry case in a more general insurance setting with moral hazard.
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Let 6 be the agent’s bargaining weight, which in Kalai’s proportional solution equals the agent’s share of the total surplus.
Focus on the case 6 € (0, 1) so that the participation constraints of the contracting parties,

u(©) +pvi(d)-2@=0
y+ra—c—d +R'T%(d) >0,

do not bind, where ITX denotes the insurer’s profits and vK the agent’s value function in this setting. As before, use
c=ra-+t —da to replace transfers with consumption and assets in all expressions.
The insurance contract with bargaining can be written as

max y +ra—c—a +R1T%(d) (17)
c,a’eA

subject to
1 —0)[u) +pv¥(d) - 2@]-0[y+ra—c—d +R'T%(d)] =0. (18)

A Markov-perfect equilibrium with bargaining over the terms of the insurance contract is defined, in a manner similar
to Definition 1, by a set of functions {CX, AKX, vK 7K} that solve problem (17)-(18) for all a € A and where
vE@ =u(c® @)+ v (4" @) (19)
m%@ =y +ra—cX@ - A%@ + R T (A" (@). (20)
The resulting equilibrium value function v¥(a) for the agent is an example of how to endogenize the agent’s outside option
function B(a) from previous sections.
At an interior solution, the first-order conditions of problem (17)-(18) are
—1+A[(1=0)uc(c)+6]=0
—1+ RO (@) + 1[0 - 0)BvE(d) —6(-1+ R TS (d))] =0,
where A is the Lagrange multiplier associated with the surplus-splitting constraint, (18). From the first equation above,
A=[(1—0)uc(c) + 617! and, substituting in for A and simplifying, the second equation becomes
—uc(c) + v (@) + R Muc(© 1k (@) = 0. (21)
Problem (17)-(18) determines the insurer’s equilibrium profits as a function of the agent’s assets, I7X (a). By the Envelope
Theorem, Hf (a) =r —A[(1 — )24 (a) + 6r], which, substituting in for A from above, implies
ruc(c) — §24(a)

ke =
« @ uc(©) + 125

(22)

Using (19)-(20), the proportional surplus-splitting rule (18) in an MPE can be written as (1 — 0)[vK(a) — 2(a)] —
AIT¥ (a) =0 for all a € A. Totally differentiating this expression with respect to a and rearranging implies
vK@) = %nj @) + 24(a).
Using (22), we obtain
uc(O[£% + 24(a)]

K _
@ = o+ L

(23)

Substituting in for (22) and (23) evaluated one period ahead into (21) and rearranging, we obtain the following Euler
equation:

(24)

_ AN _ 1
uc(C)=ﬂRuc(c’)[9r+(l 0)[24(@') — uc()(R — )(BR) ]].

OR + (1 —0)824(a’)
Note that as the bargaining power of the agent & — 0, Eq. (24) converges to
(R—1) uc(c)

R BQq(a) ’

If we set B(a) = £2(a) in Section 3, then the Euler equation (12), which characterizes an interior solution of the Markov-
perfect contracting problem with lack of commitment and a monopolistic insurer, coincides with the expression above.

uc(c) = BRuc(c’) [1 -
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In other words, if the parties lack commitment and autarky is the agent’s outside option, then as we decrease the agent’s
bargaining power toward zero in the bargaining problem (17)-(18), we converge to the Markov-perfect insurance contract
with a monopolistic insurer.'#

Alternatively, as the bargaining power of the agent & — 1, expression (24) converges to u.(c) = Bruc(c’), which is the
same as (16)—the Euler equation under free entry by insurers. In this case, as shown in Section 4.1, the insurance contract
does not depend on the agent’s outside option.

5. Concluding remarks

We study dynamic insurance problems in which the contracting parties cannot commit to long-term agreements and
are able to carry resources over time at potentially different rates of return. We find that the gains from the insurer’s
commitment to an infinitely long contract, as opposed to one-period contracts, are derived from exploiting a superior rate
of return on carrying assets over time. Perhaps surprisingly, there are no other efficiency gains from long-term commitment
by the insurer in our setting. If the agent holds sufficiently low initial assets or if the insurer and agent share the same
rate of return, one-period Markov-perfect insurance contracts generate equivalent consumption paths and welfare as those
arising when the insurer can commit to an infinitely long contract subject to per period participation constraints by the
agent.

In contrast, an agent’s ability to commit long term could be exploited by an insurer to generate higher ex-ante surplus
by driving the agent’s consumption toward its lower bound. This is impossible if the agent is free to leave the contract each
period for an outside option with present value exceeding the value of zero consumption forever. Thus, lack of long-term
commitment by the agent always introduces inefficiency relative to the first best if the optimal consumption profile is
decreasing in time (the case SR < 1 in our setting). The insurer’s inability to commit and hence, the need to carry assets
over time at the agent’s inferior rate of return r, implies that asset accumulation plays a key role in Markov-perfect insurance
contracts, yielding non-trivial asset dynamics. This is in contrast to the trivial role of observable assets in contracts with
commitment.

The time profiles of the agent’s consumption and the insurer’s profits depend critically on the parties’ ability to commit
and the degree of the insurer’s market power. If the insurer can commit to a long-term contract, production efficiency
and total surplus are maximized since the agent’s assets can be immediately invested in the superior return technology in
exchange for promises of future consumption. In contrast, if insurers lack commitment and there is free entry, no assets
can be carried at the superior rate of return in a Markov-perfect equilibrium—instead, the agent’s initial assets are carried
via the low-return savings technology until they are depleted. When the insurer has market power, the lack of commitment
limits his ability to efficiently extract the agent’s assets (they can be driven to zero only gradually), leading to distorted
consumption and profit profiles and lower total surplus.

Our approach and findings can be related more generally to the literature on incomplete contracts and political econ-
omy.”> For example, Battaglini and Palfrey (2011) study a dynamic problem of surplus splitting in a voting game. Each
period, one of three agents proposes a sharing rule which is accepted if there is a majority in favor or, if rejected, the
last-period’s sharing rule is applied. Therefore, as in our analysis, a policy chosen today affects the next period’s status quo
and determines tomorrow’s outside option. Battaglini and Palfrey also focus on Markov strategies and equilibria dependent
only on payoff-relevant events. Experimentally, they find evidence for concave utility and show that agents’ discount factors
significantly affect the resulting equilibria.

In a companion paper (Karaivanov and Martin, 2012), we extend some of the results presented here to a setting in
which income is endogenous and there is a moral hazard problem. We find that such an environment can account for a
significant fraction of observed wealth inequality. We further show that at low asset levels, the welfare costs due to lack of
commitment are larger than those due to moral hazard, while the opposite holds for high asset levels.

Appendix A. Proofs
A.1. Proposition 1

(i) Let y; € {y', ..., y"} be the realization of output in period t > 0 and let s' = {yg, y1,..., y:} denote the history of
output states up to t. Denote by 7(s’) the probability of output history s’ defined recursively as n(s) = n({st~!, y'}) =
ain(st=h), with n(s~H=1fori=1,...,n.

The first-best insurance contract {T*(st), a*(st)}fio solves the problem,

max } Z R™n(s")[ye — t(s")] (A1)

{T(sh.a(s")=0 (=05t

14 More generally, if we solve the bargaining problem for an exogenously given agent's outside option B(a) satisfying Assumption 2, then we would also
obtain (12) as 6 — 0.
15 We thank an anonymous referee for pointing out this connection.
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subject to the agent’s ex-ante participation constraint
> Bn(shu(c(s")) — Blao) = 0, (A2)
t>0,st

where c(s") = ra(st=1) + 7(st) — a(s!) is the agent’s consumption and a(s~!) = ag € A are the agent’s initial assets. We can

rewrite the above problem in a mathematically equivalent way in terms of {c(s!), a(st)}toi0 as:

max | Z R™n(s")[ye —c(s)] - Z R n(s")a(s") (R — r1+rag (A.3)

c(st),a(st)>0
lesh.atsH= t>0,st t>0,st

subject to (A.2). Since r < R and given a(s®) > 0, it is clearly optimal to set a*(s‘) = 0 for any s, t > 0. Intuitively, “extracting”
agent’s assets at time zero is optimal in the first best (strictly if r < R) since allowing the agent to carry assets over time at
the inferior return r destroys surplus.

(ii)-(iii) To simplify the notation, call aiH =a(s’) and ci =c(s") when y, = y!, for i=1,...,n. The first-order condition
of problem (A.3) with respect to cz implies
—R™" + Bauc(c) =0, (A4)

where A is the multiplier on the participation constraint. Eq. (A.4) implies full insurance: c(st~', y') = c; for all t, st
i=1,...,n—part (ii). Given this, we have (taking ratios in (A.4)),

uc(ce) = BRuc(Ce+1), (A.5)

which yields part (iii).

(iv) Suppose, at the first-best contract, the agent wanted to privately save an extra unit of assets. His first-order optimality
condition for choosing a;1+1 > 0 is uc(ct) > Bruc(cr+1) with equality when a1 > 0. The agent’s cost of saving an extra unit
in today’s utility is thus uc(cf) which equals BRuc(cf ;) by (A.5), while his gain is Bruc(cf ;). Since R >r, the cost is
weakly larger than the gain. Thus, the agent would not wish to save privately if given the first-best consumption sequence
{cf1,- O

A2. Lemma 1

Consider problem (4) subject to (5). For all a € A, let 7 (a) and A(a) be the optimal transfer and asset choices, which
imply optimal consumption C(a) =ra + 7 (a) — A(a). The agent’s net present value utility is v(a) = u(C(a)) + Bv(A(a)).
Participation by the agent implies v(a) > B(a) for all a € A. We have to show that the participation constraint (5) is satisfied
with equality for all g, i.e., that u(C(a)) + Bv(A(a)) = B(a), which would imply v(a) = B(a) for all a.

Note that v(a) must be (weakly) increasing in a. Suppose not, i.e., there exist some a', a® € A with a' <a?, v(a') > v(@?),
v(a') > B(a') and v(a?) > B(a?). Then, the insurer could offer an agent with assets a! the contract delivering net present
value equal to v(a?); this contract would satisfy the participation constraint since v(a®) > B(a®) > B(a') and yield higher
profits since it delivers a strictly lower net present value utility—a contradiction.

By Assumption 2, there exist ¢ > 0 and @’ € A such that u(c) + #B(a’) = B(a) for all a € A.'® Take any d € A and suppose
optimal consumption C(a) is positive. Then, the agent's participation constraint must be satisfied with equality and so
v(a) = B(a); otherwise, the insurer can reduce the agent’s current consumption (reduce 7 (d)) and earn higher profits.

Next, suppose that optimal consumption for a is zero, the optimal asset choice is positive and the participation constraint
holds with strict inequality, i.e., u(0) + Sv(A(@)) > B(a).!” Consider the continuation of this contract. By Assumption 2,
consumption cannot remain zero forever; otherwise we will have v(a) = % < B(0) < B(a)—a contradiction. Thus, there
exists a future period with associated assets a for which consumption in the following period switches to positive for the
first time and thus, by the earlier argument, we have V(A(C:l)) = B(.A(C:l)). Suppose u(0) + ﬁv(.A(czz)) > B(C:l) and .A(C:l) >0
is optimal (see below for the case when both consumption and future assets are zero). Given that v(A(@)) equals the
discounted sum of future utility of consumption by the agent, the insurer at a can reduce .A(a) slightly which, since v is
increasing, decreases the continuation value for the agent while still satisfying participation. Thus, the discounted sum of
future utility of consumption decreases, which implies a lower discounted sum of future transfers and hence, higher profits
for the insurer—a contradiction. Suppose instead u(0) + 8B(.A(@)) = B(a). This implies v(a) = B(a). Go back in time towards
the period with assets @ where we started. Since we assumed u(0) + Bv(A(a)) > B(a), at some point in this “going back”

16 By Assumption 2(ii), there exists ¢ > 0 such that u(¢) + 8B(0) = B(0); thus, at a = 0, there is a combination of consumption and future assets that
satisfies the participation constraint. Assumption 2(iii), plus the fact that u and B are strictly increasing also ensures that there exists a ¢ > 0 such that
u(c) + BB(0) = B(a). Hence, by continuity, there always exists positive consumption and admissible asset choice that satisfy the participation constraint
with equality for all a € A.

17 Note that if we assume u(0) = —oo this case is impossible.
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process we must have u(0) + Bv(A(a)) > B(a). Again, if A(a) > 0 then there is a weakly profitable deviation as shown
above.

To conclude the proof, we also need to rule out the case of zero consumption and zero future assets at optimum.
If C(a@) = .A(a) =0, then

u(0)

v(@ =u(0) + pv(0) = B(@) > -5

: (A.6)

where the last inequality follows from Assumption 2. If @ =0 then (A.6) implies v(0) = ;’%Og > B(0) > ;’(Toﬁ), a contradiction.
Thus, C(0) > 0 and/or .A(0) > 0. As shown above, in any of these cases the participation constraint binds; thus, we obtain
v(0) = B(0). Now suppose C(a) = .A(a) =0 for some a > 0. Then v(a) = u(0) + Bv(0) > B(a). Given v(0) = B(0), we have
u(0) + BB(0) > B(a) and therefore, u(0) > B(a) — BB(0) > (1 — B)B(0), which contradicts Assumption 2(ii). Thus, this case

is impossible as well and, overall, we obtain v(a) =B(a) forallae A. O
A.3. Proposition 2

(i) and (ii) To show the properties of assets and consumption in an MPE we first characterize the properties of a solution
when the non-negativity constraint on asset choice binds. Next, we characterize the properties of an interior solution. Then,
we show the properties of the consumption and savings functions. Finally, we characterize the critical asset level a. Note
that we will show below that the constraint a’ < a never binds, as implied by the result A(a) < a for all asset levels with
an interior solution.

A.3.1. Corner solution in assets

Suppose a’ > 0 binds at some a € A. From (7) we have u(C(a)) + BB(0) = B(a). In the following period, we have
u(C(0)) + BB(A(0)) = B(0). If a > 0, then u(C(a)) + BB(0) = B(a) > B(0) = u(C(0)) + BB(A(0)) and so, u(C(a)) >
u(C(0))+ B(B(A(0)) — B(0)). Given that .4(0) € A is non-negative and B is strictly increasing, this implies u(C(a)) > u(C(0))
and hence, ¢ =C(a) > C(0) = ¢/, which implies a decreasing consumption time-profile for any such a (strictly if a > 0).

A.3.2. Interior solution in assets
Now suppose a’ > 0 does not bind at a € A. At an interior solution, (10) implies

R—r=Ba(a’)[ PR L] (A7)

uc(©)  ue(c’)

Given Assumption 1 (R >r and SR <1 but both do not hold at equality simultaneously) and Assumption 2(i) (B(a) strictly
increasing), the above equation implies uc(c) < uc(c’). Thus, we obtain ¢ > ¢/, i.e., once again, a decreasing consumption
time-profile.

Next we show that A(a) < a. Suppose not. Then A(a) = a’ > a for some a € A and so, using (7), u(c) + BB(a’) = B(a) <
B(a") =u(c’) + BB(a”). Since ¢’ < ¢, as shown above, this implies a” > a’. Given that, from Section A.3.1 and the previous
paragraph, the consumption time-profile is strictly decreasing for all a € (0, a], we can apply the same argument repeatedly
and thus, assets strictly increase over time. There are two possibilities: either assets hit the upper bound a or they converge
to some a* € (0, a]. With multiplier > 0 associated with the constraint a’ < a, the first-order condition (A.7) becomes

R—r—i—Ru:Ba(a’)[ PR ! ]

uc(e)  ue(c)

which again implies ¢ > ¢’. Thus, for any a with a’ =a, we have u(c) + 8B(a) = B(a) < B(a) = u(c’) + BB(a”). Given ¢ > ¢’
it must be that a” > @, a contradiction with a” € A. Now consider the case of assets converging to a* € (0,a]. In the limit,
u(c*) = (1—B)B(a*) > (1 — B)B(a), since as argued above, assets strictly increase over time. But then, given our assumption
that a’ > a, the participation constraint u(c) + 8B(a’) = B(a) implies u(c) = B(a) — BB(a’) < (1 — B)B(a). Thus, u(c) < u(c*),
which contradicts a strictly decreasing consumption time-profile. It follows that a’ < a at an interior solution.

A.3.3. C(a) and A(a) are strictly increasing

We first show that consumption C(a) is strictly increasing in assets a. As we did when writing problem (8) in Section 3.1,
call z= B(a). The participation constraint (7) implies z’ = [z — u(c)]/B. We can thus rewrite the insurer’s problem (6)-(7)
as follows:

max W (c,2) =y +rB ' (2) —c— B Y ([z—u(©]/B) + R~ T*([z — u(0)]/B).
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It is easy to show that W(c,z) satisfies increasing differences.'® Let zH > z' and call c" = argmax. W(c,z") and
cl = argmax. W (c, z). The optimality and uniqueness of ¢ implies

w(ch, ") —w(ct ") >0>w(c 2H) - w(ct, ). (A.8)

Suppose ¢! < cl. But then, given z!! > z!, since W(c,z) satisfies increasing differences we must have W (ct,zH) —
W(cH, 2"y > w(ct, zt) — W(cH, zL) which contradicts (A.8). Thus, for any a’ = B=1(z") > al = B~1(z%) we have ¢/ > cf,
which implies that C(a) is strictly increasing in a.

We next show that @’ = A(a) is strictly increasing in a at an interior solution. Suppose not. Then, since C(a) is strictly
increasing and since u and B are strictly concave, we obtain a contradiction since the right-hand side of (A.7) is strictly
increasing in a, while the left-hand side is constant in a. To see this, note that given C(a) is strictly increasing, if we assume
that A(a) is non-increasing, the terms Bg(a’) and —ﬁ are increasing in a and the term % is strictly increasing in a.
A.3.4. The critical point a

We first show that a’ > 0 binds at a = 0. Suppose not, i.e., the solution is interior. Then, as shown above, we must have
a’ <a =0, a contradiction. Assumptions 1 and 2 imply R —r > B@BR-D) gince the left-hand side is non-negative, the

uc(C(0))
right-hand side is non-positive, and R =r and SR =1 cannot hold simultaneously. Note that BoBR-D g the right hand
uc(C(0))

side of (A.7) evaluated at a =a’ = 0. Take a = ¢, with ¢ sufficiently close to zero. This implies that the following inequality
must hold:

PR ! ] (A9)

uc(C(e))  uc(C(A(e)))

For A(e) > 0, (A.9) holds by the continuity of u. and C(a), the strict concavity of B and our previous result that C(a) is
strictly increasing. Thus, (10) implies that a’ > 0 binds, i.e., A(g) =0.

Consider the right-hand side of (A.9) when a’ = A(g) = 0, namely Ba(O)[% — M]. It is strictly increasing in a
by our assumptions on u and B and the result that C(a) is strictly increasing. There are two possibilities. Either R —r >
Ba(O)[ﬁ%)) — m], in which case by (10) we have a’ =0 for all a € A, or 3 € (0,a] such that R—r = Ba(O)[% —

R—r> Ba(A(s))[

#(0))] in which case @’ =0 for all a € [0, «] (a corner solution) and a’ > 0 for all a € («, a] (an interior solution). Let a =a

in the former case and @ = « in the latter.

(iii) We will show that for any ap € A the sequence {ay};2, with elements gy = A(ax—1) for all k > 1 defining the
time-profile of the agent’s assets converges to zero in finite time. Suppose first ag € [0, a]. Then, by part (i) we have a; =
a; =...=0 and hence, the agent’s assets converge to zero in one step.

Let now ap > a (naturally, this is possible only if a € (0, a)). The sequence {ax}pe,, defined above is monotonically de-
creasing since a = A(ay_1) < ax_1 by part (i) and bounded (all its elements are non-negative). Thus, it is convergent. Call
its limit 4, i.e., A(@) =a. If @ > a@ we obtain a contradiction since it must be that A(@) < a by part (i). So it must be that
a € [0, a]. But then A(ad) =0 by part (i), so it must be that a@ = 0. Thus far, we have shown that the agent’s assets converge
to zero.

We next show that the convergence to zero assets is in finite time. The definition of convergent sequence applied to {a}
and its limit a = 0 implies that, Ve > 0, there exists a natural number N such that for all n > N we have |a, —a| =a, < .
Take some ¢ € (0, a). Then, there exists a finite N such that a, < & < a for any n > N.—that is, A(a,) = 0 for any such n.
Therefore, assets converge to zero in at most N + 1 steps since an,+1 = A(ang) =0.

Finally, we show that consumption is positive in the long-run. Using (7), long-run consumption C(0) solves u(C(0)) =
(1 — B)B(0) and thus, by Assumption 2(ii), C(0) > 0. O

A.4. Proposition 3

(i) Let r = R. Define [1(a) = [ (a) — Ra and rewrite the Markov-perfect problem (6)-(7) as:

. ; 1)
1@ =may—e+

(A10)

subject to

u(c) + BB(a’) — B(a) =0.

18 We say that F(x,y): X x Y — R satisfies increasing differences if for any x",x" € X such that x > x! and for any y",y' e Y such that y" > yt
we have F(x", yf) — F(xt, yH) > F(x", yby — F(xL, yb). Let T(c,2) = ©([z — u(c)l/B) = —B~'([z — u(c)]/B) + R~ IT*([z — u(c)]/B). To show that W (c, z)
satisfies increasing differences it is sufficient to show that T(c, z) satisfies increasing differences, i.e., that for any ¢ > c! and z" > z! we have, T(c", z") —
T(ct, z") > T(cH, zb) — T(ct, %) or, equivalently, ©([zt — u(ch)1/B) — Ozt —u(ct)1/B) = O (2" —u(ch)1/8) — O (2" — u(cM)]1/B). The latter follows from
the continuity and strict concavity of @ and the fact that u is strictly increasing. The function @ is strictly concave since —B~! and IT* are strictly concave
under our assumptions—see the discussion below problem (8) and note that the strict concavity of IT* follows from Stokey et al. (1989) Theorem 4.8.
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Take the second-stage problem with one-sided commitment, (14) and change variables from w to a by calling a = B~ (w)
for any w € W—by our assumptions B is strictly monotonically increasing, hence invertible, and by the definition of
W =[B(0), B(@)], any w € W is in the range of B(a) for a € A, that is, a = B~ (w) € A. Call [1(a) = IT%(B(a)) = [T (w).
With this change of variables, problem (14) for state w (= B(a)) is mathematically equivalent to the MPE problem (A.10) for
state a.'? That is, any solution to the former problem is solution to the latter and vice versa. Consequently, /7(a) = .
From Proposition 2, since a’ <a for all a € A in an MPE (strictly if a > @), this equivalence implies that w’ < w = B(a) for
all w e W in (14) and thus we verify that the upper bound of the set W is not restrictive in the second-stage problem.

Look next at the first-stage of the one-sided commitment problem, (13) with some initial assets ag € A. Changing vari-
ables from wy to a’ by calling @’ = B~1(wy) (again, this is possible for any w; € W since B is strictly increasing) and
plugging in for [7%(w) = I[1(a’) = I1(a’), problem (13) is mathematically equivalent to:

(@)

max y —co+
co,a’eA

+ragp (A11)
subject to

u(co) + BB(a’) — B(ag) =0.

Since B is strictly increasing, the constraint a’ € A is equivalent to B(a’) € [B(0), B(a)] which, with the change of variables,
stands for wq € W in the first-stage problem. Clearly, problem (A.11) has the same solution cg, a’ as the Markov-perfect
problem (A.10) starting from the same ap.

In sum, we have shown that the one-sided commitment problem, (13)-(14) and the Markov-perfect problem, (6)-(7) ini-
tialized at the same asset level ap € A are mathematically equivalent to each other. Hence, the consumption and present-
value profits paths (after adding back the Rag term to 11(ag)) generated by them coincide. The equivalence also implies
a one-to-one mapping on the equilibrium path between promised utility in the one-sided commitment contract and asset
levels in a Markov-perfect contract. By Proposition 2, since assets in an MPE decrease over time to zero (i.e, w = B(a)
decreases to B(0)), the upper bound on W is not restrictive for any ag € A when r =R.

In (ii) below, we complete the proof of part (i) of the proposition statement by showing equivalence of the one-sided
commitment and Markov-perfect problems for the case ag € [0, a] with r < R.

(ii) Suppose now r < R. Define IT*(a) = I1(a) — Ra and re-write the MPE problem (6)-(7) as:

IT*(a)
R

a)= max y — —ra—c-+ .
IT*(a) y—(R—1) (A12)
c,a’eA

subject to

u(c) + BB(a’) — B(a) =0.

Using analogous arguments as in part (i), the second-stage one-sided commitment problem (14) does not depend on r
and so remains the same as in part (i), i.e,, mathematically equivalent to problem (A.10). Hence, when r < R and a > 0,
problem (A.12) is no longer equivalent to problem (A.10), which is mathematically equivalent to the second-stage one-sided
commitment problem, because of the extra term (R — r)a in the objective.

In the special case ag € [0, d] we know from Proposition 2 that @’ =0 and hence, the agent’s assets stay at zero forever
after the initial period. Thus, in the second-stage problem (14) with assets a = 0, the extra term (R —r)a in (A.12) drops out
restoring the consumption and profits paths equivalence between the one-sided commitment and Markov-perfect cases for
any wg € W, as shown in part (i).

To obtain a more precise characterization, let {C{V’ ,a{‘fﬂ }i2o be the consumption and assets sequences solving prob-
lem (A.12) starting from assets ap following the MPE policies C and .A. By repeatedly plugging in, we can write the
associated present discounted value of profits at t =0 as:

M*(a)=» R7'[y —c}' = (R—r)a}]
t=0

where aM = qy.
0
Using our results from part (i) regarding problems (A.10) and (A.11), the time-zero value of the one-sided commitment
problem’s objective function evaluated at our MPE solution {c{"’,aﬂl}go from ag is rag + ZfioR‘f[j/ - cf‘/’]. Since the
Markov-perfect (A.10) and one-sided commitment problems share the same set of constraints, the sequence {c{"’, a{"il}fio is

19 Note that the constraint w’ € W in problem (14) can be rewritten as B(a’) € [B(0), B(@)] and, since B is strictly increasing, this is equivalent to
a =B '(w)eA.
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feasible in the one-sided problem from ag but not necessarily optimal. Thus, letting I7(ag) be the maximized value in the
one-sided commitment contract, we have:

o0 o0
(@) >rag+ Y R[y— '] = Rao+ Y R™'[y — ! = (R —na}"] = Rag + IT*(ao) = 1 (ap).
t=0 t=0

The second inequality follows since a}! =ao and so Rag — Y ;0o R™*(R —ra} =rag — Y72, R*(R —r)a} < rao. Thus, since

R > r, the second inequality is strict if at least one a?” with t > 1 is strictly positive. By Proposition 2, this implies that, for
any ag > a, present-value profits in MPE, I1(ag) are strictly lower than present-value profits with one-sided commitment,
M (ag) since for any a)! =ap > a we know that at least a}’ > 0 (and possibly other a¥ with t > 1 are also positive).

For part ii(b) use the first-order conditions of the one-sided commitment problem, (13) and (14) to obtain uc(c) =
BRuc(c’) at an interior solution. This coincides with the Euler equation in the first best, (A.5). Therefore, the discussion
from Section 3.2 below Eq. (12) applies. When BR < 1, the Euler equations, (12) and u.(c) = BRuc(c’), respectively for the
Markov-perfect and one-sided commitment settings, imply that consumption is decreasing over time in both cases. From
the agent’s participation constraint, since a =0 in the long-run, long-run consumption is the same in both settings—the
value c¢* > 0 solving u(c*) = (1 - 8)B(0). O

A.5. Proposition 4

(i) The first-order condition of problem (15) with respect to assets is —uc(c) + Bvq(@’) + & = 0, where & > 0 is the
Lagrange multiplier associated with the non-negativity constraint on assets. The envelope condition is vq(a) =ruc(c). At an
interior solution & =0, and thus, uc(c) = Bruc(c’).

(ii) To show that 3a € (0, a] such that a’ = A(a) =0 for all a € [0,a] and a’ = A(a) > 0 otherwise, let a =0 and guess
a’ = 0. By Assumption 1, —uc(y)+ Bruc(y) < 0, which, using the first-order and envelope conditions implies & > 0, i.e.,a =0
is verified since the policy function is unique. Proceed as in Proposition 2 using a continuity argument for a sufficiently close
to zero. Naturally, the threshold G can be different here.

We now show that the consumption time profile is decreasing for all a € (0, a]. Suppose first there is a corner solu-
tion, @ =0. Then, c=y+ra>y >y — A0) =, ie, ¢’ <c. For the interior solution case the result ¢’ < c follows from
Assumption 1 (Br < 1), the strict concavity of u and the Euler equation (16).

Next we show that C(a) is strictly increasing in a for all a € A. Rewrite the insurer’s problem at assets a as:

max u(c) + pv(d
c,a’eA () 'B ( )
st. c+d=ra+y (A13)

We will use the following auxiliary lemma.

Lemma A1. Consider the “utility maximization” problem: maxc, ¢, i(c1, c2) = d1(c1) + ¢2(c2) subject to picq + pacy = m, with
¢ () and ¢2(.) strictly increasing and strictly concave and pq, p> > 0. Then, ¢y and ¢, are normal goods for a consumer with these
preferences and “income” m.

Proof of Lemma A1l. The fact that additively separable utility with strictly concave sub-components implies normality is
well-known (e.g., see Liebhafsky, 1969). O

The functions u and v are strictly increasing and strictly concave, thus by Lemma A1 applied to problem (A.13), c =C(a)
and a’ = A(a), when not at a corner, are strictly increasing in a. This, combined with our previous result that ¢’ =C(d') <
¢ =C(a) implies @’ = A(a) < a for all a € (0,a]. Given these results, property (iii) from Proposition 2 can be shown in an
analogous way as before. The positive long-run consumption level is ¢* = y.

(iii) Suppose the agent is offered 7 (a) = y as in the MPE with free entry by insurers and contractible assets but we
allow the agent to choose his own savings, a’. The first-order condition of the agent’s problem given 7 (a) = y implies
—uc(y+ra—a’)+Bvq(@) =0 at an interior solution. Since transfers do not depend on assets, the agent’s envelope condition
is vq(a) =ruc(y +ra—a’) which, plugging in for v4(a’) back into his first-order condition, implies u¢(c) = Bruc(c’)—the same
Euler equation governing asset choice as derived in part (i) where assets are contractible. 0O
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