Ab-initio Molecular Dynamics Simulation
Outline

- Introduction
 - Ab-initio concepts
 - Total energy concepts
 - Adsorption energy calculation

- Project objective

- Ab-initio total energy calculation

- Density Functional Theory

- Implementation to total energy calculation

- Ionic relaxation (Geometry optimization)
Ab-initio concepts

Computational

Ab-initio simulation

Classical simulations

Classical simulations and some theories use experimental values, while in ab-initio calculations no experimental value is needed.

Ab-initio -> No experimental data in needed as an input for the calculation
Total energy concepts

Assumption: T=0K (no kinetics energy for nucleus)

• Total energy of an atom in gas phase

 Classical view

 \[E_{\text{tot}}^{\text{atom}} = E_{e-\text{ion}} + E_{e-e} \]

 \[E_{\text{tot}}^{\text{atom}} = -e_0V_{e-\text{ion}} - e_0V_{e-e} \]

 \[E_{\text{tot}}^{\text{atom}} = \sum_{i=1}^{3} \frac{-z}{|r_i|} + \sum_{i>j=1} \frac{1}{|r_i - r_j|} \]

 We use atomic unit: \(e_0 = 1, \frac{1}{4\pi\varepsilon_0} = 1 \)

Total energy \(E_{\text{tot}}^{\text{atom}} < 0 \): The require energy to take apart all electrons from the nucleus
• Total energy of a molecule in gas phase

\[E_{\text{tot}}^{\text{mol}} = E_{e-\text{ion}} + E_{e-e} + E_{\text{ion-ion}} \]

\[E_{\text{tot}}^{\text{mol}} = -e_0 V_{e-\text{ion}} - e_0 V_{e-e} + ze_0 V_{\text{ion-ion}} \]

\[
E_{\text{tot}}^{\text{mol}} = \sum_{i=2, j=6}^{i=1, j=1} \frac{-z}{|R_i - r_j|} + \sum_{i,j=1}^{6} \frac{1}{|r_i - r_j|} + \sum_{i > j=1}^{i=2, j=2} \frac{-z^2}{|R_i - R_j|}
\]

Total energy \(E_{\text{tot}}^{\text{mol}} < 0 \) : The require energy to take apart all electrons AND nucleus
What is \[\Delta E = E_{\text{mol}}^{\text{tot}} - E_{\text{atom}}^{\text{tot}} \]

It is the binding energy of a molecule: the require energy to take apart two atoms of a molecule
Adsorption energy

Definition: The require energy to take apart the adsorbate from the surface.

Example: CO adsorption on Pt
Project Objective

Hydrogen and CO adsorption energies on Pt(111), Pt(110) and Pt(100)
Ab-initio total energy calculation of a system of nucleons and electrons

• The electrons and ions are very small therefore quantum consider is needed

Approximation 1: ions are much bigger compare to electrons -> ions as classical particles

. Electrons -> Quantum particles -> Wavefunction -> Charge density $n(r)$ -> Schrödinger eq.
Nucleons -> Classical particles -> Point charge -> Newton (coulomb) law
Schrödinger equation for system of electrons

\[H \Psi = E \Psi \]

where \(\Psi \) is the total wavefunction of the system.

\[\Psi = \varphi_1 \varphi_2 \cdots \varphi_N \]

Kohn-Sham orbitals

The charge density is given by

\[n(r) = \sum_{i=1}^{N} |\varphi_i|^2 \]

H is the Hamiltonian.

\[\tilde{H} = T + V_{e-e} + V_{ext} \]

\(V_{ext} \) is the interaction with an external potential. In our case the external potential is just electron-proton interaction:

\[V_{ext}[n] = \sum_{i=1}^{N} \frac{z}{|r - R_i|} \]

\(R_i \) is the position of ions.
V_{e-e} is electron-electron coulomb interaction:

$$V_{e-e}[n] = \int \frac{n(r')dr'}{|r - r'|}$$

Charge density of electrons $n(r)$

V_{ext}
\[\mathbf{H} = T + V_{e-e} + V_{\text{ext}} \]

\(T \) is the kinetic energy of electrons of the **interacting system**.

The bad news is that there is no solution for \(T \) and \(\Psi \) therefore there is no solution for Schrödinger equation.
Density Functional Theory (DFT)

Theory 1: External potential is a unique functional of the density $n(r)$. That means if we have a system of electrons, the ground state density $n_0(r)$ corresponding to an external potential (like the potential from the protons) V_{ext} cannot be reproduced using any other potential V'_{ext}.

Theory 2: The correct ground state density $n_0(r)$ minimizes the total energy functional.

$$H = T + V_{\text{e-e}} + V_{\text{ext}}$$

Interacting particles (electrons)

V_{ext} electrons at ground state $n_0(r)$

DFT

$$H_s = T_s + V_{\text{eff}}$$

Non interacting particles

V_{eff} non-interacting particles $n(r)$

if $E_{\text{tot}} = E_{\text{min}}$ \rightarrow $n = n_0(r)$
Based on the DFT many body problem of fully interacting particles in an external potential V_{ext} is simply replaced by a system of non-interacting particles in an effective potential V_{eff} giving the same ground state charge density $n_0(r)$.

T_s is now the kinetic operator of a non-interacting system with N particles which can be easily given by:

$$T_s = \sum_{i=1}^{N} \frac{-\hbar^2}{2m} \frac{d^2}{dr^2}$$

The effective potential V_{eff} is:

$$V_{\text{eff}} = V_{\text{e-e}} + V_{\text{ext}} + V_{\text{xc}}$$

V_{xc}: The extra term which contains all the energy contribution which were not taken into account in the transition from the interacting system to the non-interacting system. V_{xc} is called exchange-correlation potential.
The exchange-correlation potential can be expressed as:

\[V_{xc}[n] = \frac{dE_{xc}[n]}{dn} \]

where \(E_{xc}[n] \) is the exchange-correlation energy.

The above DFT is formally exact, but it is impossible to find an exact form for \(V_{xc} \).

The most common approach is the Local Density Approximation (LDA)

\[E_{xc}[n] = \int \varepsilon_{xc}(n)n(r)dr \]

where \(\varepsilon_{xc}(n) \) is the energy of a homogeneous electron gas and it is known. Therefore the \(E_{xc}[n] \) and hence \(V_{xc}[n] \) are all known.

Various approximations have been introduced in the course of the years to improve LDA. The Generalized Gradient Approximation (GGA) is one of those approximations which is more or less commonly accepted to be an improvement over LDA.

In GGA approximation the \(V_{xc} \) depends not only on charge density \(n(r) \) but also on the magnitude of the gradient of the charge density \(|\nabla n| \)

\[V_{xc}[n] \rightarrow \text{in GGA approximation} \rightarrow V_{xc}[n,|\nabla n|] \]
Implementation to total energy calculation

\[E_{\text{tot}} = E_{\text{el}} + E_{\text{ion-ion}} \]

In order to calculate \(E_{\text{el}} \) we need to solve the following Schrödinger equation.

\[
H_s \Psi = E_{el} \Psi
\]

\[
(T_s + V_{e-e}[n] + V_{\text{ext}}[n] + V_{XC}[n]) \varphi_i = E \varphi_i \quad i = 1, 2, ..., N
\]

\[
n(r) = \sum_{i=1}^{N} |\varphi_i|^2
\]

The effective potential depends on the density, the density depends on Kohn-Sham orbitals \(\varphi_i \) and Kohn-Sham orbitals depends on the effective potential!!
Ion-ion interaction term

\[E_{tot} = E_{el} + E_{\text{ion-ion}} \]

where \(E_{\text{ion-ion}} \) is just the coulomb interaction between ions

\[E_{\text{ion}} = \sum_{i,j,i\neq j} \frac{Z^2}{|R_i - R_j|^2} \]
Trial charge density $n(r)$

Set up Hamiltonian
$$H = T_s + V_{e-e} + V_{\text{ext}} + V_{xc}$$

calculate the orbitals ϕ_i^{new} and the total energy E_{tot} from one-particle Shrodinger Equation

Output $\phi_i^{\text{new}}, E_{\text{el}}, n(r)$

$$n(r) = \sum_{i=1}^{N} |\phi_i^{\text{new}}|^2$$
Basis set-Plane wave

In this section we are going to briefly explain how we can solve the Kohn-Sham equation and obtain the wavefunctions and energies. If we multiply both sides of the Kohn-Sham Eq. by $\varphi_i^*(r)$ and take an integral from both sides we gets:

$$\frac{-\hbar^2}{2m} \int \varphi_i^*(r) \frac{d^2}{dr^2} \varphi_i(r) \, dr + \int \varphi_i^*(r)(V_{am}[n] + V_{ac}[n] + V_{xc}[n]) \varphi_i(r) \, dr = \varepsilon_i \int \varphi_i^*(r) \varphi_i(r) \, dr$$

One way to solve the Kohn-Sham equation is to expand the wavefunction φ_i in a plane wave basis set. Using plane wave as a basis set has some advantages and some disadvantage. The advantage of using the plane wave is that it which help us to simplify the above Kohn-Sham equation.

$$\varphi_i(r) = \sum_{\mathbf{k}} C_{i\mathbf{k}} \exp(i\mathbf{k} \cdot \mathbf{r})$$

where mathematically the sum is over a infinite number of plane wave but of course in practice we see that it already converges for a large number of plane wave. By substituting this equation into the above Shrodinger equation and using the following mathematical principal:

$$\int \exp(i\mathbf{k} \cdot \mathbf{r}) \exp(i\mathbf{k'} \cdot \mathbf{r}) \, d\mathbf{r} = \delta_{\mathbf{k}\mathbf{k'}}.$$

We end up with a matrix with $N_{\text{max}} \times N_{\text{max}}$ elements where N_{max} is the number of the plane waves.

N_{max} depends very much to the size of your system. i.e. number of atoms in your system and also the elements you use. it can be as big as 1×10^5 number of plane waves. In order to get φ_i and ε_i from the matrix we need to diagonal it which of course needs a powerful computer or even several computers working as parallel.

Reminding: When φ_i and ε_i are calculated in the next iteration a new charge density should be constructed and again a new matrix should be diagonalized. Usually 10-30 iterations in needed to get the total energy of the system self consistently.
• The calculated total energy in this way depends very strongly on the position of the ions.
• The position of the atoms is given by you, and it is not precise enough.
• Therefore the total energy calculation will be absolutely wrong

Solution

Geometry optimization

- It is possible to calculate the force on each ion from the total energy calculation:

\[F_i = \frac{dE_{tot}}{dR_i} \]

- We can move the ions a little bit along the forces and redo the total energy calculation.
- We repeat the above calculation until the total force on ions becomes almost zero.

Initial configuration

Next ionic iteration

Next ionic iteration
Trial charge density \(n(r) \)

Set up Hamiltonian

\[
H = T_s + V_{e-e} + V_{\text{ext}} + V_{\text{xc}}
\]

calculate the orbitals \(\varphi_i^{\text{new}} \) and the total energy \(E_{\text{tot}} \) from one-particle Shrodinger Equation

\[
| \varphi_i^{\text{new}} - \varphi_i | < 10^{-5}
\]

\[
n(r) = \sum_{i=1}^{N} | \varphi_i^{\text{new}} |^2
\]

Calculate the force on ions \(F_{\text{ion}} \)

\[
F_{\text{ion}} < 10^{-3}
\]

Move the ions along the forces
References: