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Summary This paper is in the line of the recent literature on weak instruments, which,
following the seminal approach of Stock and Wright captures weak identification by drifting
population moment conditions. In contrast with most of the existing literature, we do not
specify a priori which parameters are strongly or weakly identified. We rather consider that
weakness should be related specifically to instruments, or more generally to the moment
conditions. In addition, we focus here on the case dubbed nearly-weak identification where
the drifting DGP introduces a limit rank deficiency reached at a rate slower than root-T . This
framework ensures the consistency of Generalized Method of Moments (GMM) estimators
of all parameters, but at a rate possibly slower than usual. It also validates the GMM-LM
test with standard formulas. We then propose a comparative study of the power of the LM
test and its modified version, or K-test proposed by Kleibergen. Finally, after a well-suited
rotation in the parameter space, we identify and estimate directions where root-T convergence
is maintained. These results are all directly relevant for practical applications without requiring
the knowledge or the estimation of the slower rate of convergence.

Keywords: GMM, Instrumental variables, Weak identification.

1. INTRODUCTION

In this paper, we revisit the Generalized Method of Moments (GMM) of Hansen (1982)
when classical identification assumptions are only barely satisfied. Following Hansen (1982),
we imagine an economic model with structural parameter of interest θ ∈ � ⊆ R

p. The
econometrician’s information about the true unknown value θ0 of θ comes through moment
conditions. For some stationary ergodic process (Y t ), φ(Y t , θ ) is a K-dimensional function,
integrable for all θ ∈ �, and the underlying economic model states that these moment conditions
are satisfied at the true unknown value of the parameter:

E[φ(Yt , θ
0)] = 0. (1.1)

Moment conditions (1.1) strongly globally identify θ0 if they do not admit any other solution:

E [φ(Yt , θ )] = 0, θ ∈ � ⇔ θ = θ0. (1.2)
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Hansen (1982) maintains (1.2) to prove consistency of a GMM estimator, defined as:

θ̂T = arg min
θ∈�

[φ̄′
T (θ )�T φ̄T (θ )]. (1.3)

φ̄T (θ ) is the sample mean of φ(Y t , θ ); �T is a sequence of random non-negative matrices with
positive definite probability limit. To address the asymptotic distribution of a GMM estimator,
Hansen (1982) extends the above definition and considers any sequence θ̂T such that:

Plim[T 1/2AT φ̄T (θ̂T )] = 0. (1.4)

(AT ) is a sequence of (p, K) random matrices converging in probability to a constant full-row
rank matrix A0. The strong global identification condition (1.2) may be replaced by a local one:
moment conditions (1.1) strongly locally identify θ0 if θ0 belongs to the interior of � where
φ(Y t , θ ) is continuously differentiable, and E[∂φ(Y t , θ0)/∂θ ′] has full-column rank. Under this
strong local identification condition, the GMM estimator θ̂T defined by (1.4) is consistent and
asymptotically normal. Moreover, the GMM estimator defined by (1.3) is a special case of (1.4)
(through the first-order conditions), when strong local identification holds.

Both global and local strong identification conditions have been questioned in the literature
during the last ten years. Stock and Wright (2000) relax the strong global identification when
considering a drifting Data Generating Process (DGP) with:

E[φ(Yt , θ )] = m1T (θ )

T 1/2
+ m2(θ1) for some given subvector θ1 of θ. (1.5)

Then, only possibly θ 1 is identified, since, for the other components of θ , the relevant moment
information vanishes at rate square-root T , the speed at which information is accumulated with
a larger sample size. This case has been referred to as (global) weak identification.

Kleibergen (2005) focuses on the GMM score-type test of a null hypothesis: H 0 : θ = θ0. For
such a problem, only local identification is relevant, and Kleibergen (2005) refers to as (local)
weak identification the case where:

E

[
∂φ(Yt , θ

0)

∂θ ′

]
= C

T 1/2
with full-column rank matrix C. (1.6)

We revisit the issue of GMM estimators and score-type tests in the nearly-weak identification
case, first introduced by Hahn and Kuersteiner (2002): through a drifting DGP approach,
information now vanishes when sample size T increases, but at a rate δT slower than T 1/2. In
the context of Stock and Wright (2000), global nearly-weak identification would mean:

E [φ(Yt , θ )] = m1T (θ )

δT

+ m2(θ1), (1.7)

while in the context of Kleibergen (2005), local nearly-weak identification would mean:

E

[
∂φ(Yt , θ

0)

∂θ ′

]
= C

δT

. (1.8)

The possible case of nearly-weak identification has been quite overlooked in the literature while,
after all, it makes sense to study a variety of asymptotic behaviours when δT may be associated to
any rate between O(1) and O(T 1/2). Weak identification is only a limit case where identification
is completely lost. So far, only Hahn and Kuersteiner (2002) in a linear context, and Caner
(2007) in a non-linear one, have considered nearly-weak identification. Our contribution as
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Efficient GMM with nearly-weak instruments S137

concerns nearly-weak identification is to imagine that, in realistic circumstances, nearly-weak
identification may occur for some moments while strong identification is still guaranteed for
others. This new point of view paves the way for new results as follows.

In terms of GMM score-type testing, the partition between locally strongly- and locally
nearly-weakly identifying moment conditions determines the different rates of convergence
associated with specific directions in the parameter space against which the test has power.1

As a result, the GMM score test has power even in quite weak directions, where the weakness
degree δT may be arbitrarily close to T 1/2. We show that, by contrast, Kleibergen’s modified
score test is more likely to waste some power in such directions. It is the price to pay to be robust
to weak identification (δT = T 1/2) when, as shown by Kleibergen (2005), the standard GMM
score test does not work. We show that the GMM score test and Kleibergen’s modified score
test are actually asymptotically equivalent under relevant sequences of local alternatives, but
only in cases of moderate weakness of identification: we refer to nearly-strong identification,
when δT goes to infinity slower than T 1/4. This equivalence is tightly related to a stronger
equivalence result between the standard two-step (efficient) GMM and the continuously updated
GMM of Hansen et al. (1996) for efficient estimation of all directions. Such a result can only be
embraced after extending the pioneered setting introduced by Stock and Wright (2000): we now
consider that some moment conditions are globally-identifying, while some others are weakly-
identifying. In other words, the vector φ(Y t , θ ) is partitioned into two subvectors φ(Y t , θ ) =
[φ1(Y t , θ )′

... φ2(Y t , θ )′]′ such that:

E [φ1(Yt , θ )] = ρ1(θ ) and E [φ2(Yt , θ )] = ρ2(θ )/δT (1.9)

with the global nearly-weak identification condition:

ρ(θ ) = 0 ⇔ θ = θ0 where ρ(θ ) = [ρ ′
1(θ )

... ρ ′
2(θ )]′.

Identification is nearly-weak because δT goes to infinity, but we rather call it nearly-strong when
associated to a rate slower than T 1/4. By contrast with Stock and Wright (2000), we have no
prior knowledge on the subset of parameters that are weakly identified. Intuitively, the first
set of moment conditions (respectively the second one) identifies strong (respectively weak)
directions in the parameter space. Through a convenient rotation in the parameter space in the
spirit of Phillips (1989), we define a reparametrization such that the first components of this new
parameter are estimated at standard rate square-root T , while the others are estimated only at
slower rate λT = T 1/2/δT . Asymptotic covariances come with standard GMM-like formulas,
but only with nearly-strong identification, i.e. rate λT faster than T 1/4. Interpreting this latter
condition is germane to Andrews’ (1994) study of MINPIN estimators.2 In our case, the nuisance
parameter is not infinite dimensional. However, due to nearly-weak identification, it is associated
to a rate of convergence slower than the standard parametric square-root T . As in Andrews
(1994), the slow rate of convergence needs to be faster than T 1/4 to avoid contamination of the
well-identified estimated directions by the nearly-weak ones. We also show that the nearly-strong
identification condition is exactly needed to ensure that all directions are equivalently estimated

1 As far as the size properties are concerned, we know from results in Andrews and Guggenberger (2007) that nearly-
weak identification does not offer additional insights. Only genuine weak identification is important in investigating size
properties of testing procedures.

2 These estimators are defined as MINimizing a criterion function that might depend on a Preliminary Infinite
dimensional Nuisance parameter estimator.
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by efficient two-step GMM and continuously updated GMM. This explains the aforementioned
partial equivalence between GMM score and Kleibergen’s modified score tests. More generally,
our unified setting for mixed strong/nearly-strong identification incorporates coherently both
global and local points of view.

Ultimately, evidence of weak identification should not always lead to renounce meaningful
estimation and testing, as the alleged weak identification may only be nearly-weak, or even
nearly-strong. Overlooking these cases could lead to wasting some relevant information.
Moreover, possible weakness should be assigned to some specific instruments (or to some
moment conditions) as in (1.9) rather than to specific parameters as in (1.7). It is the
econometrician’s duty to determine the different directions in the parameter space where she
has more or less accurate information. We illustrate this new point of view with a Monte Carlo
study on the well-known example of consumption-based CAPM, already extensively studied in
the literature: see Stock and Wright (2000) among others.

The paper is organized as follows. In Section 2, we discuss GMM-based tests of a simple
null hypothesis H 0 : θ = θ0. We compare the asymptotic behaviour of the standard GMM
score test (Newey and West, 1987), and the Kleibergen modified score test. When complete
weak identification is precluded, both tests work. Our framework allows us to display relevant
sequences of local alternatives with heterogeneous rates of convergence depending on the
direction of departure in the parameter space. By contrast with Kleibergen (2005), different
degrees of nearly-weak identification are simultaneously considered: this opens the door for
non-equivalence, even asymptotically, between standard and modified score tests. In Section 3,
consistency and rate of convergence of any GMM estimator are analysed in a nearly-weak
identification setting. The special case of nearly-strong identification allows us in Section 4
to discuss efficient estimation with various rates of convergence in various directions, and to
check equivalence between two-step efficient GMM and continuously updated GMM in all
directions. These last results bridge the gap between estimation and score tests as discussed
in Section 2. The practical relevance of our new asymptotic theory is checked in Section 5
in a consumption-based intertemporal asset pricing model. It validates our point of view of
nearly-strong identification with different rates of convergence in different directions for realistic
simulated parameter configurations. Section 6 concludes. Proofs are gathered in the Appendix;
Table 1 summarizes the different concepts of identification.

2. GMM SCORE-TYPE TESTING

We want to test the null hypothesis: H 0 : θ = θ0. Our information about parameter θ comes from
the following moment conditions,

E[φ(Yt , θ
0)] = 0, (2.1)

always assumed to be fulfilled at least by the true unknown value of the parameter θ0. Observed
time series (Y t )1≤t≤T of a stationary ergodic process are available, and such that sample
counterparts of the moment conditions satisfy a Central Limit Theorem (CLT) at the true value:

ASSUMPTION 2.1. (CLT at the true value θ0). With φ̄T (θ0) = 1
T

∑T
t=1 φ(Yt , θ

0) :

(i)
√

T φ̄T (θ0) is asymptotically normally distributed with zero mean and covariance matrix
S0.
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(ii) HAC estimator ST (θ ) of the long-term covariance matrix S0 is available and such that:
S0 = Plim[ST (θ0)].

We focus here on a case where local nearly-weak identification of some directions in the
parameter space may occur simultaneously as strong identification of other directions. More
precisely, we assume:

ASSUMPTION 2.2. (Nearly-weak local identification).

(i) θ0 belongs to the interior of �, and φ(Y t , θ ) is continuously differentiable on �.
(ii) There exists a (K , p) matrix C, with full-column rank such that:

Plim

[
∂φ̄1T (θ0)

∂θ ′

]
= C1 and Plim

[√
T

λT

∂φ̄2T (θ0)

∂θ ′

]
= C2,

where φ̄T (θ ) = [φ̄′
1T (θ )

... φ̄′
2T (θ )]′, C = [C ′

1

... C ′
2]′, λT

T→ ∞, and λT√
T

T→ 0.

The following toy example illustrates our focus of interest.

EXAMPLE 2.1. (Toy example). Consider the moment conditions: E[Y1t ] = g(θ0) and E[Zt ⊗
(Y2t − X2t θ

0)] = 0, where the general functions φ1(.) and φ2(.) are defined as follows:

φ1(Yt , θ ) = Y1t − g(θ ) and φ2(Yt , θ ) = −Zt ⊗ (Y2t − X2t θ ).

The instruments Zt introduced in φ2 are only nearly-weak instruments since

E [Zt ⊗ X2t ] = C2

δT

with δT =
√

T

λT

T→ ∞ and
δT√
T

= 1

λT

T→ 0.

Then the associated Jacobian matrix is:

Plim

[
∂φ̄1T (θ0)

∂θ ′

]
= ∂g(θ0)

∂θ ′ = C1

Plim

[√
T

λT

∂φ̄2T (θ0)

∂θ ′

]
= Plim

[√
T

λT

1

T

T∑
t=1

(Zt ⊗ X2t )

]
= lim

T

[√
T

λT

E (Zt ⊗ X2t )

]
= C2

and we assume that the following matrix has full-column rank:[
∂g′(θ0)

∂θ

... E
(
Z′

t ⊗ X′
2t

)]′
.

GMM score-type testing asks whether the test value θ 0 is closed to fulfil the first-order
conditions of the (efficient) two-step GMM minimization, minθ∈�[φ̄′

T (θ )S−1
T (θ0)φ̄T (θ )], that is,

whether the score vector is close to zero. It is defined at the test value θ 0 as:

VT (θ0) = ∂φ̄′
T (θ0)

∂θ
S−1

T (θ0)φ̄T (θ0).

The GMM score test statistic (Newey and West, 1987) is then a suitable norm of V T (θ 0):

ξNW
T = T V ′

T (θ0)

[
∂φ̄′

T (θ0)

∂θ
S−1

T (θ0)
∂φ̄T (θ0)

∂θ ′

]−1

VT (θ0).
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Kleibergen (2005) considers instead the first-order conditions of the continuously updated GMM
minimization: minθ∈�[φ̄′

T (θ )S−1
T (θ )φ̄T (θ )]. The corresponding score vector can be computed

either by direct differentiation (see equations (15) and (16) and appendix in Kleibergen, 2005), or
with even simpler computations within a Euclidean Empirical Likelihood approach (see Antoine
et al., 2007). The score vector computed at the test value θ 0 is:

ṼT (θ0) = ∂φ̃′
T (θ0)

∂θ
S−1

T (θ0)φ̄T (θ0),

where each column
[ ∂φ̃

(j )
T (θ0)
∂θ

]
of
[ ∂φ̃′

T (θ0)
∂θ

]
is the residual of the long-term affine regression of[ ∂φ̄

(j )
T (θ0)
∂θ

]
on φ̄T (θ0):3

∂φ̃
(j )
T (θ0)

∂θ
= ∂φ̄

(j )
T (θ0)

∂θ
− Covas

(√
T

∂φ̄
(j )
T (θ0)

∂θ
,
√

T φ̄T (θ0)

)
Varas

(√
T φ̄T (θ0)

)−1
φ̄T (θ0),

where Varas(
√

T φ̄T (θ0)) = S0 is the long-term covariance matrix of the moment conditions

φ(Y t , θ 0), and Covas(
√

T
∂φ̄

(j )
T (θ0)
∂θ

,
√

T φ̄T (θ0)) is the long-term covariance between
[

∂φ(j )(Yt ,θ0)
∂θ

]
and φ(Y t , θ 0). This long-term covariance is assumed to be well defined.4

ASSUMPTION 2.3. (Long-term covariance).

Covas

(√
T

∂φ̄
(j )
T (θ0)

∂θ
,
√

T φ̄T (θ0)

)
≡ lim

T

{
T Cov

(
∂φ̄

(j )
T (θ0)

∂θ
, φ̄T (θ0)

)}

is a well-defined ( p, K) matrix.

Kleibergen (2005) maintains Assumption 2.3, and in addition assumes that it corresponds
to the asymptotic covariance matrix of the (assumed) joint asymptotic normal distribution of[√

T
∂φ̄

(j )
T (θ0)
∂θ

]
and

[√
T φ̄T (θ0)

]
. In our nearly-weak identification setting, what we really need,

albeit almost equivalent for all practical purposes, is only the following regularity condition:

ASSUMPTION 2.4. (Well-behaved Jacobian matrix for the strong subset of moment conditions)

√
T

[
∂φ̄1T (θ0)

∂θ ′ − C1

]
= OP (1).

From the above discussion, replacing [∂φ̄
(j )
T (θ0)/∂θ ] by [∂φ̃

(j )
T (θ0)/∂θ ] amounts to removing

the finite sample correlation between [∂φ̄
(j )
T (θ0)/∂θ ] and φ̄T (θ0). As extensively discussed

in Antoine et al. (2007), while this correlation may be responsible for the finite sample
bias of standard two-stage GMM, the well-documented improved bias performance of
continuously updated GMM is precisely due to this correction. When considering genuine
weak instruments (λT = 1 in Assumption 2.2), this correlation remains asymptotic, and

3 For any vector ψ ∈ R
K , we distinguish between the following notations. (i) ψ = [ψ ′

1 ψ ′
2]′ refers to the partition

introduced in Assumption 2.2: ψ 1 (respectively ψ 2) is a subvector of ψ with the same dimension as the strong
(respectively nearly-weak) group of moment conditions. (ii) ψ = [ψ (j )]1≤j≤K refers to the (single) components of
the vector ψ : each ψ (j ) is a real number. The latter (cumbersome) notation is not used often.

4 These notations are precisely defined in Assumption 2.3.
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Kleibergen (2005) introduces a modified version of the Newey and West (1987) score test
statistic:

ξK
T = T Ṽ ′

T (θ0)

[
∂φ̃′

T (θ0)

∂θ
S−1

T (θ0)
∂φ̃T (θ0)

∂θ ′

]−1

ṼT (θ0).

By contrast, we show that with nearly-weak instruments, the correlation is immaterial, and the
standard GMM score test statistic ξNW

T works. It is actually asymptotically equivalent to the
modified Kleibergen’s score test statistic under the null:

PROPOSITION 2.1. (Equivalence under the null). Under Assumptions 2.1–2.4, under the null
H 0 : θ = θ0, we have: Plim[ξNW

T − ξK
T ] = 0 and both ξNW

T and ξK
T converge in distribution

towards a chi-square with p degrees of freedom.

The main contribution of this paper is to characterize the heterogeneity of the informational
content of moment conditions, along different directions in the parameter space. While a proper
assessment of this heterogeneity is crucial for efficient estimation (see Section 4), it also matters
when considering power of tests under sequences of local alternatives.

EXAMPLE 2.2. (Toy example, continued). Consider a sequence of local alternatives defined by
a given deterministic sequence (γ T )T ≥0 in R

p, going to zero when T goes to infinity, and such
that the true unknown value θ 0 is drifting as: θ T = θ 0 + γ T . For large T: g(θ T ) ∼ g(θ 0) +
[∂g(θ 0)/∂θ ′]γ T .

Therefore, the strongly-identified moment restrictions E[Y 1t − g(θ T )] = 0 are informative
with respect to the violation of the null (θ T �= θ 0) if and only if: [∂g(θ 0)/∂θ ′]γ T �= 0.

As a consequence, we expect GMM-based tests of H 0 : θ = θ0 to have power against
sequences of local alternatives converging at standard rate square-root T , θT = θ0 + γ /

√
T ,

if and only if [∂g(θ 0)/∂θ ′]γ �= 0, or, when γ does not belong to the null space of C1 =
[∂g(θ 0)/∂θ ′]. By contrast, if C1γ = 0, violations of the null can only be built from the nearly-
weakly identifying conditions:

E [Zt ⊗ Yt ] = C2

δT

θT .

We will show that relevant sequences of local alternatives to characterize non-trivial power are
necessarily such that: θT = θ0 + δT

γ√
T

= θ0 + γ

λT
.

In other words, the degree of weakness of the moment conditions δT downplays the standard
rate [γ /

√
T ] of sequences of local alternatives against which the tests have non-trivial local

power. The intuition is quite clear. Under such a sequence of local alternatives,

E [Zt ⊗ Yt ] = C2θ0

δT

+ C2γ√
T

differs from its value under the null by the standard scale 1/
√

T .

We need to reinforce Assumptions 2.1(ii) and 2.2(ii) for the study of sequences of local
alternatives:

ASSUMPTION 2.5. (Reinforced assumptions for study of local power). For any sequence θ T in
the interior of � such that Plim[θT − θ0] = 0,
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(i) HAC estimator ST (θ ) of the long-term covariance matrix S0 is available and such that:
S0 = Plim[ST (θT )].

(ii)

Plim

[
∂φ̄1T (θT )

∂θ ′

]
= C1 and Plim

[√
T

λT

∂φ̄2T (θT )

∂θ ′

]
= C2.

(iii) φ1(Y t , θ ) is twice continuously differentiable, and for all components φ
(j )
1T (see also

footnote 3), Plim[∂2φ
(j )
1T (θT )/∂θ∂θ ′] is a well-defined matrix.

PROPOSITION 2.2. (Local power of GMM score tests). Under Assumptions 2.1–2.5:

(i) With a drifting true unknown value, θT = θ0 + γ /
√

T , for some γ ∈ R
p, we have

Plim[ξNW
T − ξK

T ] = 0, and both ξNW
T and ξK

T converge in distribution towards a
non-central chi-square with p degrees of freedom and non-centrality parameter μ =
(γ ′C ′

1

... 0)[S0]−1
(
C1γ

0

)
.

(ii) When λ2
T /

√
T

T→ ∞, with a drifting true unknown value θ T = θ 0 + γ /λT , for some
γ ∈ R

p such that C1γ = 0, we have Plim[ξNW
T − ξK

T ] = 0, and both ξNW
T and ξK

T

converge in distribution towards a non-central chi-square with p degrees of freedom

and non-centrality parameter μ = (0
... γ ′C ′

2)[S0]−1
( 0
C2γ

)
.

Two additional conclusions implicitly follow from Proposition 2.2.
First, if C1γ �= 0, the two GMM score tests behave more or less as usual against sequences

of local alternatives in the direction γ . They are asymptotically equivalent, and both consistent
against sequences converging slower than square-root T . They both follow asymptotically a
non-central chi-square against sequences with exactly the rate square-root T . However, the non-
centrality parameter (and hence the power of the test) does not really depend on the size of the
departure γ from the null, but only on the size of its orthogonal projection of the space spanned
by the columns of C ′

1 (orthogonal space of the null space of C1); that is, by the columns of the
Jacobian matrix corresponding to the strong moment conditions.

Second, if C1γ = 0, the two GMM score tests have no power against sequences of local
alternatives θT = θ0 + γ /

√
T . They may have power against sequences θ T = θ 0 + γ /λT (or

slower); their behaviour is pretty much the standard one, but only in the nearly-strong case where
λT goes to infinity faster than T 1/4. The case C1γ = 0 corresponds to the study of Guggenberger
and Smith (2005) (see theorem 3, p. 680). In the setting of Stock and Wright (2000) that they
adopt, with θ = (α′ β ′)′, α weakly identified and β strongly identified, C1γ = 0 means that β is
fixed at its value β 0 under the null. However, since this approach does not disentangle partition of
moments and partition of parameters, it amounts for us to consider that φ = φ2. This simplifies
the study of local power (see our Proposition 2.3 below) and makes immaterial the condition of
nearly-strong identification.

We now explain why non-standard asymptotic behaviour of both score tests may arise when
we consider sequences of local alternatives in the weak directions (θ T = θ 0 + γ /λT with
C1γ = 0) while the nearly-weak identification problem is so severe that even λ2

T /
√

T goes to
zero. Recall that the genuine weak identification usually considered in the literature (λT = 1) is

a limit case, since we always maintain the nearly-weak identification condition λT
T→ ∞. Under

such a sequence of local alternatives, while by Assumption 2.1,
√

T φ̄T (θT ) is asymptotically
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normal with zero mean, the key to get a common non-central chi-square for the asymptotic
distribution of a score test statistic is to ensure that

√
T φ̄T (θ0) is asymptotically normal with non-

zero mean if and only if γ is not zero. This result should follow from the Taylor approximation:

√
T φ̄T (θT ) ≈ √

T φ̄T (θ0) + √
T

∂φ̄T (θ∗
T )

∂θ ′ (θT − θ0)

= √
T φ̄T (θ0) +

√
T

λT

∂φ̄T (θ∗
T )

∂θ ′ γ

≈
√

T φ̄T (θ0) +
(

0

C2γ

)
.

Assumption 2.5 justifies this approximation insofar as we can show that C1γ = 0 implies:

Plim

[√
T

λT

∂φ̄1T (θ∗
T )

∂θ ′ γ

]
= 0. (2.2)

This question is irrelevant if, as in Kleibergen (2005), two different degrees of identification are
never simultaneously considered.5 In other words, we can easily state:

PROPOSITION 2.3. (Special case with only one degree of weakness). Consider the special
case where the same degree of weakness is assumed for all moment conditions at hand (φ(.) =
φ2(.)). Under Assumptions 2.1–2.5, with a drifting true unknown value θ T = θ 0 + γ /λT , for
some γ ∈ R

p, we have Plim[ξNW
T − ξK

T ] = 0, and both ξNW
T and ξK

T converge in distribution
towards a non-central chi-square with p degrees of freedom and non-centrality parameter μ =
γ ′C ′[S0]−1Cγ .

Needless to say that a result similar to Proposition 2.3 holds when φ(.) = φ1(.) (standard
strong identification). Hence, the interesting case is precisely the mixture of strong and nearly-
weak identification, or non-empty subsets of components φ1 and φ2. In this case (2.2) should
follow from:

C1γ = 0 ⇒ Plim

[√
T

λT

∂φ̄1T (θT )

∂θ ′ γ

]
= 0. (2.3)

Note that (2.3) is a direct consequence of Assumption 2.4 applied to the drifting true value
θ0 = θ T . Of course, conditions (2.2) and (2.3) are identical in the special case where the moment
conditions φ1(.) are linear. In other words, we can also easily state:
PROPOSITION 2.4. (Special case with linear strong moment conditions). Consider the special
case where φ1(Y t , θ ) is linear with respect to θ . Then conclusions of Proposition 2.3 hold.

By contrast, in the general case of non-linear moment restrictions, we would like to be able
to deduce (2.2) from (2.3) through a Taylor argument for each component φ

(j )
1 :

√
T

λT

∂φ̄
(j )
1T (θ∗

T )

∂θ ′ ≈
√

T

λT

∂φ̄
(j )
1T (θT )

∂θ ′ +
√

T

λT

∂2φ̄
(j )
1T (θ∗∗

T )

∂θ∂θ ′ (θ∗
T − θT ). (2.4)

5 The fact that with only one rate of convergence, nearly-weak identification does not modify the standard equivalence
between tests (that all have trivial asymptotic power) has already been noticed by Smith (2007): see footnote 3,
p. 244.

C© The Author(s). Journal compilation C© Royal Economic Society 2009.



Efficient GMM with nearly-weak instruments S145

The problem is then that, since we only know that (θ∗
T − θT ) = OP (1/λT ), we can neglect the

second term in the RHS of (2.4) only when (
√

T /λ2
T ) goes to zero, or nearly-strong identification.

Otherwise, there is no guarantee that
√

T φ̄T (θ0) is asymptotically normal under a sequence of
‘weak’ local alternatives θ T = θ 0 + γ /λT , even when C1γ = 0. This explains why we no longer
get a characterization of local power through standard non-central chi-square. Fortunately, this
problem may not invalidate the consistency of the standard GMM-score test against sufficiently
slow sequences of weak alternatives. Ideally, one would like to prove that:

(A hypothetical claim of consistency) The GMM-score test is consistent against any sequence of

local alternatives θ T = θ 0 + γ /δT , for all γ ∈ R
p, when δT /λT

T→ 0 : Plim[ξNW
T ] = +∞.

This claim is trivially deduced from former results if either the direction γ is strong (C1γ �=
0) or with nearly-strong identification ((

√
T /λ2

T ) goes to zero). The novelty would be to maintain
consistency even in case of nearly-weak identification arbitrarily close to weak identification
(λT goes to infinity arbitrarily slowly) insofar as the sequence of alternatives converges even
more slowly than the sequence λT . We develop in the Appendix an argument to show that
the consistency is likely, but not granted. In other words, the information may be quite weak
but efficiently used for testing. This result is consistent with our estimation result in Section 3
below: we show that in any case, with nearly-weak global identification, a GMM estimator will
converge at least at rate λT . This consistency property is no longer likely for the Kleibergen’s
modified score test, because its modification may waste this fragile part of information. This
is the price to pay for a correct asymptotic size even in the limit case of no-identification.
Kleibergen (2005) overlooked this problem since, as pointed out by Proposition 2.3, it may occur
only when considering simultaneously two different rates of identification. Fragile identification
may be wasted by Kleibergen’s modification precisely because it comes with another piece
of information which is stronger. To see this, the key is the aforementioned lack of logical
implication from (2.3) to (2.2). As a result, the modified score statistic and the original one
may have quite different asymptotic behaviours since, as reminded above:

√
T

∂φ̃
(j )
T (θ0)

∂θ ′ = √
T

∂φ̄
(j )
T (θ0)

∂θ ′

− Covas

(√
T

∂φ̄
(j )
T (θ0)

∂θ
,
√

T φ̄T (θ0)

)
Varas(

√
T φ̄T (θ0))−1

√
T φ̄T (θ0). (2.5)

It is quite evident from (2.5) that, when
√

T φ̄T (θ0) is not OP (1), the modified score statistic
may have an arbitrarily nasty asymptotic behaviour.

3. CONSISTENT ESTIMATION WITH NEARLY-WEAK INSTRUMENTS

3.1. General framework

In this section, we provide consistent estimation of the true (unknown) parameter θ0. Standard
GMM estimation defines its estimator θ̂T as follows:

DEFINITION 3.1. Let �T be a sequence of symmetric positive definite random matrices of size
K which converges in probability towards a positive definite matrix �. A GMM estimator θ̂T of

C© The Author(s). Journal compilation C© Royal Economic Society 2009.



S146 B. Antoine and E. Renault

θ0 is then defined as:

θ̂T = arg min
θ∈�

QT (θ ) where QT (θ ) ≡ φ̄′
T (θ )�T φ̄T (θ ), (3.1)

with φ̄T (θ ) = 1
T

∑T
t=1 φ(Yt , θ ), the empirical mean of the moment restrictions.

We consider here k1 standard moment restrictions such that6

√
T [φ̄1T (θ ) − ρ1(θ )] = OP (1) (3.2)

and k2 (=K − k1) weaker moment restrictions such that

√
T

[
φ̄2T (θ ) − λT√

T
ρ2(θ )

]
= OP (1) where λT = o(

√
T ) and λT

T→ ∞. (3.3)

λT measures the degree of weakness of the second group of moment restrictions: its
corresponding component ρ2(.) is squeezed to zero and Plim[ φ̄2T (θ )] = 0 for all θ ∈ �.
Therefore, the probability limit of φ̄T (θ ) does not allow to discriminate between θ0 and any
θ ∈ �. In such a context, identification is a combined property of the functions φ(Y t , .), and ρ(.)
and the asymptotic behaviour of λT . Assumption 3.1 below reinforces the standard CLT stated
in Assumption 2.1 for moment conditions evaluated under the null by maintaining a functional
CLT on the whole parameter set �. In this respect, we follow Stock and Wright (2000).7

ASSUMPTION 3.1. (Identification)

(i) ρ(.) is a continuous function from a compact parameter space � ⊂ R
p into R

K:

ρ(θ ) =
[

ρ1(θ )

ρ2(θ )

]
= 0 ⇐⇒ θ = θ0.

(ii) The empirical process (�T (θ ))θ∈� obeys a functional CLT:

�T (θ ) ≡ √
T

⎡
⎣ φ1T (θ ) − ρ1(θ )

φ2T (θ ) − λT√
T

ρ2(θ )

⎤
⎦⇒ �(θ ),

where �(θ ) is a Gaussian stochastic process on � with mean zero.
(iii) λT is a deterministic sequence of positive real numbers with

lim
T →∞

λT = ∞ and lim
T →∞

λT√
T

= 0.

Our framework is different from the seminal paper by Stock and Wright (2000) in two ways.
First, we rather consider nearly-weak identification, as introduced in a linear setting by Hahn
and Kuersteiner (2002), than weak identification. In this sense, we are closer to Caner (2007).
Second, we do not assume the a priori knowledge of a partition θ = (α′ ... β ′)′, where α is strongly
identified and β (near)-weakly identified. Our framework conveys the idea that identification

6 Functions ρ1 and ρ2 are introduced in equation (1.9). See also Assumption 3.1 below for a formal definition.
7 As stressed by Stock and Wright (2000), the uniformity in θ provided by the functional CLT is crucial in case of non-

linear non-separable moment conditions, that is when the occurrences of θ and the observations in the moment conditions
are not additively separable. By contrast, Hahn and Kuersteiner (2002) (linear case) and Lee (2004) (separable case) do
not need to resort to a functional CLT.
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is a matter of the moment conditions: nearly-weak identification is produced by the rates of
convergence of the moment conditions. More precisely, Assumption 3.1 implies that, for the first
set of moment conditions, we have (as for standard GMM),

ρ1(θ ) = Plim[φ̄1T (θ )],

whereas we only have for the second set of moment conditions

ρ2(θ ) = Plim

[√
T

λT

φ̄2T (θ )

]
.

The above identification assumption allows for consistent GMM estimator, even in the case
of nearly-weak identification.

THEOREM 3.1. (Consistency of θ̂T ). Under Assumption 3.1, any GMM estimator θ̂T like (3.1)
is weakly consistent.

Under additional (local) identification assumption, we get consistency at the slowest available
rate λT .

THEOREM 3.2. (Rate of convergence). Under Assumptions 2.2, and 2.4–3.1, we have: ‖θ̂T −
θ0‖ = OP (1/λT ).

In Section 4, we introduce a convenient rotation in the parameter space that allows us to
identify some strongly identified directions at rate

√
T .

3.2. Single-equation linear IV model

We already pointed out a major difference between our framework and the existing literature:
possible weakness is assigned to some specific instruments (or moment conditions), and not to
the structural parameters of the model. The following single-equation linear IV model with two
structural parameters, two orthogonal instruments (and no exogenous variables for convenience)
sheds some light on the consequences of such distinction:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
y = Y θ + u

(T , 1) (T , 2) (2, 1) (T , 1)

Y = [X1 X2] � + [V1 V2]

(T , 2) (T , 2) (2, 2) (T , 2).

(3.4)

As commonly done in the literature the matrix of coefficients � is artificially linked to the
sample size T in order to introduce some (nearly)-weak identification issues. Depending on the
focus of interest, several matrices � = �T may be considered.

(i) Staiger and Stock (1997) consider a framework with the same genuine weak iden-
tification pattern for all the parameters: �SS

T = C/
√

T .
(ii) Stock and Wright (2000) reinterpret this framework to consider simultaneously strong

and weak identification patterns. This distinction is done at the parameter level and the
structural parameter θ is (a priori) partitioned: θ = [θ ′

1

... θ ′
2]′, with θ 1 strongly-identified
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and θ 2 weakly-identified. Consequently, they introduce

�SW
T =

[
c11 c12/δT

c21 c22/δT

]
with δT =

√
T .

(iii) We consider simultaneously strong and near-weak identification patterns. This
distinction is done at the moment condition level (or the instrument level), and we
suppose the available moment conditions E[φ(.)] to be (a priori) partitioned: φ =
[φ′

1

... φ′
2]′, with φ1 strongly-identified and φ2 nearly-weakly-identified. Consequently,

we introduce

�AR
T =

[
c11 c12

c21/δT c22/δT

]
with δT

T→ ∞, δT = o(
√

T ).

Besides considering different degrees of weakness, modelling with �SW
T or �AR

T has an
important implication.8 �AR

T modifies the explanatory power of the second instrument X2

only. As a result, one strong moment condition (associated with X1) and one less informative
(associated with X2) naturally emerge. Intuitively, the standard restriction should identify one
standard direction in the parameter space: however, this direction is still unknown and does
not necessarily correspond to one of the structural parameters. On the other hand, modelling
with �SW

T amounts to treat θ 2 as weakly identified, and to alter the explanatory powers of both
instruments. In the linear model (3.4) the two moment conditions write as, E[(yt − Y ′

t θ
0)Xt ] =

0. When � is replaced respectively by �SW
T and �AR

T , these moments can be rewritten as:9

ρSW
1s (θ1) + ρSW

1w (θ2)/δT = 0 and ρSW
2s (θ1) + ρSW

2w (θ2)/δT = 0 (3.5)

ρAR
1 (θ1, θ2) = 0 and ρAR

2 (θ1, θ2)/δT = 0. (3.6)

Finally, modelling weak identification with �SW
T or �AR

T does not change the concentration
parameter μ (or matrix), which is the well-accepted measure of the strength of the instruments
in the literature. In the linear model (3.4) it is well-defined as:

μ = �
−1/2′
V �′X′X��

−1/2
V with Var(V ) ≡ �V

The determinant of this concentration matrix, when � is replaced by �SW
T or by �AR

T , writes:

det[μSW ] = det[μAR] = 1

δ2
T

det[X′X] det[�−1
V ] det[C]2. (3.7)

Therefore, the same features of partial identification can be captured with both approaches. While
with standard weak asymptotics, δ2

T = T and the concentration matrix has a finite limit (see also
Andrews and Stock, 2007), nearly-weak asymptotics allow an infinite limit for the determinant
of the concentration matrix but at a rate smaller than det[X′X] = O(T ). In this respect, there is
no difference between �SW

T and �AR
T : only the rate of convergence to zero of respectively a row

or a column of the matrix � matters.

8 This difference is relatively obvious, and not extensively discussed here. This also justifies why the same parameter
δT may refer to different rates of convergence depending on the context.

9 See the Appendix for exact definitions of ρSW
1s (.), ρSW

1w (.), ρSW
2s (.), ρSW

2w (.), ρAR
1 (.) and ρAR

2 (.).
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Partial identification (Phillips, 1989) refers to � matrices that may not be of full rank.10

Generalization to asymptotic rank condition failures (at rate δT ) comes at the price of having
to specify which row or column asymptotically goes to zero. At least, our approach with ρAR

remains true to the partial identification approach by working with “estimable functions” of
the structural parameters, or functions that can be identified and square-root T consistently
estimated. In the former example, it is clearly the case for g(θ ) = π 11θ 1 + π 12θ 2.11 By contrast,
the approach ρSW implies directly a partition of the structural parameters between θ 1 which is
strongly identified and θ 2 which is not.

In the literature, T /δ2
T plays the role of the effective number of observations available for

(nearly)-weak identification and implies a slow rate of convergence T 1/2/δT for functions of the
parameters that are not strongly identified, unlike g(θ ), which is endowed with a square-root T
consistent estimator. By contrast with Choi and Phillips (1992), we even get a normal asymptotic
distribution for this estimator, while they only got a mixture of normals: by assuming that δT

goes to infinity slower than square-root T , we keep the possibility of consistent estimation for
all structural parameters. However, when considering (in the next section) more general non-
linear settings of nearly-weak identification, we will realize that the price to pay for standard
square-root T asymptotic normality of strongly-identified functions of the parameters may be
even higher: for instance, we will need to refer to nearly-strong identification, or assuming that
the analogue of δT goes to infinity slower than T 1/4 (see also Section 2).

4. ASYMPTOTIC DISTRIBUTION THEORY

4.1. Asymptotic distribution theory of 2S-GMM

First, we introduce a convenient rotation in the parameter space to disentangle the rates of
convergence. Special linear combinations of θ can actually be estimated at the standard rate√

T , while others are still estimated at the slower rate λT . This is formalized by a CLT which
allows the practitioner to apply usual GMM formulas without knowing a priori the identification
pattern. We consider the following situation:

(i) Only k1 equations (defined by ρ1) have sample counterparts converging at rate
√

T .
Unfortunately, we have (in general) a reduced rank problem, since [∂ρ1(θ0)/∂θ ′] is not
full column rank: its rank s1 is strictly smaller than p. Intuitively, the first set of equations
can only identify s1 directions in the p-dimensional parameter space.

(ii) The other k2 equations (defined by ρ2) should be used to identify the remaining
s2 (s1 + s2 = p) directions.12 However, this identification comes at the slower rate
λT .

The parameter space will be separated into two subspaces, each of them characterized as the
range of a full column rank matrix: respectively (p, s1)-matrix R1 and (p, s2)-matrix R2. Since R2

characterizes the set of slow directions, it is naturally defined via the null space of [∂ρ ′
1(θ0)/∂θ ],

10 The case considered and studied by Phillips (1989) and Choi and Phillips (1992) is even more general since they also
address identification issues for coefficients of exogenous variables in the structural equation.

11 It is shown in the Appendix that ρAR
1 (θ ) = (EX2

1t )[g(θ0) − g(θ )].
12 By assumption, our set of moment conditions identifies the entire vector of parameters θ .
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i.e. the directions not identified in a standard way:

∂ρ1(θ0)

∂θ ′ R2 = 0. (4.1)

Then, the remaining s1 directions are defined as follows: R = [R1 R2], where R is a non-singular
(p, p)-matrix with rank p that can be used as a matrix of a change of basis in R

p. The new
parameter is defined as η = R−1θ , that is

θ = [R1 R2]

(
η1

η2

)� s1

� s2
.

In the next subsection, we show that this reparametrization defines two subsets of directions,
each associated with a specific rate of convergence. In general, there is no hope to get standard
(non-degenerate) asymptotic normality of some components of the estimator θ̂T of θ0: after a
standard expansion of the first-order conditions, θ̂T now appears as asymptotically equivalent
to some linear transformations of φ̄T (θ ) which are likely to mix up the two rates. Hence, all
components of θ̂T might be contaminated by the slow rate of convergence. The advantage of the
reparametrization is precisely to separate these two rates. In Section 4.3, we carefully compare
our theory with Stock and Wright (2000) (in the linear case), and provide conditions under which
some components of θ̂T converge (by chance) at the standard rate. These correspond to what is
assumed a priori by Stock and Wright (2000) when they separate the structural parameters into
one standard-converging group and one slower-converging one. The reparametrization may not
be feasible in practice since the matrix R depends on the true unknown value of the parameter
θ0. However, we can still deduce a feasible inference strategy: technical details can be found in
the companion paper by Antoine and Renault (2008).

Albeit with a mixture of different rates, the Jacobian matrix of moment conditions has a
consistent sample counterpart (see Lemma A.1 in the proof of Proposition 2.1):

√
T

∂φ̄T (θ0)

∂θ ′ R�−1
T

P→ J with J ≡ ∂ρ(θ0)

∂θ ′ R and �T =
(√

T Ids1 0

0 λT Ids2

)
. (4.2)

�T is the (p, p) block diagonal scaling matrix, where Id r denotes the identity matrix of size
r; J is the (K , p) block diagonal matrix with its two blocks respectively defined as the (ki , s i)
matrices [∂ρi(θ0)/∂θ ′ Ri] for i = 1, 2. Note that the coexistence of two rates of convergence (λT

and
√

T ) implies zero northeast and southwest blocks for J.
Moreover, to derive the asymptotic distribution of the GMM estimator θ̂T , convergence result

(4.2) needs to be fulfilled even when θ0 is replaced by some preliminary consistent estimator θ∗
T .

Hence, Taylor expansions must be robust to a λT -consistent estimator, the only rate guaranteed by
Theorem 3.2. This situation is rather similar to the one met in Section 2 when introducing nearly-
strong identification. Hence, if moments are non-linear, we need (similarly to Andrews, 1995, for
non-parametric estimates) to assume that our near-weakly identified directions are estimated at a
rate faster than T 1/4. 13,14 In addition, we want as usual uniform convergence of sample Hessian
matrices. This leads us to maintain the following assumption:

ASSUMPTION 4.1. (Taylor expansions).

13 The link between Andrews (1994, 1995) and our setting is further discussed in Antoine and Renault (2008).
14 As already noted, this nearly-strong condition is irrelevant when the same degree of weakness is assumed for all

moment conditions (φ = φ2 or φ1 is linear with respect to θ ).
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(i) φ1(Y t , θ ) is linear with respect to θ , or limT →∞[λ2
T /

√
T ] = ∞.

(ii) φ̄T (θ ) is twice continuously differentiable on the interior of � and is such that:

∀ 1 ≤ k ≤ k1
∂2φ̄1T ,k(θ )

∂θ∂θ ′
P→ H1,k(θ ) and ∀ 1 ≤ k ≤ k2

√
T

λT

∂2φ̄2T ,k(θ )

∂θ∂θ ′
P→ H2,k(θ )

uniformly on θ in some neighbourhood of θ0, for some (p, p) matricial function H i,k(θ )
for i = 1, 2 and 1 ≤ k ≤ ki .

Up to unusual rates of convergence, we get a standard asymptotic normality result for the
new parameter η = R−1 θ :15

THEOREM 4.1. (Asymptotic normality).

(i) Under Assumptions 2.1, 2.2 and 2.4–4.1, the GMM estimator θ̂T defined by (3.1) is such
that:

�T R−1
(
θ̂T − θ0

) d−→ N
(
0, [J ′�J ]−1J ′�S(θ0)�J [J 0�J ]−1

)
.

(ii) Under Assumptions 2.1, 2.2 and 2.4–4.1, the asymptotic variance displayed in (i) is
minimal when the GMM estimator θ̂T is defined with a weighting matrix �T being a
consistent estimator of � = [S(θ0)]−1:

�T R−1
(
θ̂T − θ0

) d−→ N (0, [J ′[S(θ0)]−1J ]−1).

Since θ̂T = (R1η̂1,T + R2η̂2,T ), a linear combination a′θ̂T of the estimated parameters of
interest is endowed with

√
T rate of convergence as η̂1,T if and only if a′R2 = 0, or when a

belongs to the orthogonal space of the range of R2. By equation (4.1), it also means that a is
spanned by the columns of the matrix [∂ρ ′

1(θ0)/∂θ ]. Hence, a′θ is strongly identified if and only
if it is identified by the first set of moment conditions ρ1(θ ) = 0.

As far as inference about θ is concerned, several practical implications of Theorem 4.1 are
worth mentioning. Up to the unknown matrix R and the unknown rate of convergence λT , a
consistent estimator of the asymptotic covariance matrix (J ′[S(θ0)]−1J )−1 is16

T −1�T R−1

[
∂φ̄′

T (θ̂T )

∂θ
S−1

T

∂φ̄T (θ̂T )

∂θ ′

]−1

[R′]−1�T , (4.3)

where ST is a standard consistent estimator of the long-term covariance matrix.17 From
Theorem 4.1, for large T , [�T R−1(θ̂T − θ0)] behaves like a Gaussian random variable with
mean zero and variance (4.3). One may be tempted to deduce that

√
T (θ̂T − θ0) behaves like

a Gaussian random variable with mean 0 and variance[
∂φ̄′

T (θ̂T )

∂θ
S−1

T

∂φ̄T (θ̂T )

∂θ ′

]−1

. (4.4)

And this would give the feeling that we are back to standard GMM formulas of Hansen (1982).
As far as practical purposes are concerned, this intuition is correct: in particular, estimation of R

15 Note that efficiency in Theorem 4.1(ii) is implicitly considered for the given set of moment restrictions φ̄T (.).
16 This directly follows from Lemma A.5 in the Appendix.
17 Recall that a consistent estimator of ST of the long-term covariance matrix S(θ0) can be built in the standard way

from a preliminary inefficient GMM estimator of θ .
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is not necessary to perform inference.18 However, from a theoretical point of view, this is a bit
misleading. First, since in general all components of θ̂T converge at the slow rate,

√
T (θ̂T − θ0)

has no limit distribution. In other words, considering the asymptotic variance (4.4) refers to
the inverse of an asymptotically singular matrix. Second, for the same reason, (4.4) is not an
estimator of the standard population matrix[

∂ρ ′(θ0)

∂θ
[S(θ0)]−1 ∂ρ(θ0)

∂θ ′

]−1

. (4.5)

To conclude, if inference about θ is technically more involved than one may believe at first sight,
it is actually very similar to standard GMM from a pure practical point of view. In other words,
if a practitioner is not aware of the specific framework with moment conditions associated with
several rates of convergence (coming, say, from the use of instruments of different qualities)
then she can still provide reliable inference by using standard GMM formulas. In this respect, we
generalize Kleibergen’s (2005) result that inference can be performed without a priori knowledge
of the identification setting. However, we are more general than Kleibergen (2005) since we allow
moment conditions to display simultaneously different identification patterns.19

Finally, the score test defined in Section 2 is completed by the classical overidentification
test:

THEOREM 4.2. (J-test). Under Assumptions 2.1, 2.2, 2.4–4.1, with �T consistent estimator of

[S(θ0)]−1, T QT (θ̂T )
d→ χ2(K − p).

4.2. About the (non)-equivalence of 2S-GMM and CU-GMM

We now show that the nearly-strong identification condition is exactly needed to ensure that
both strong and weak directions are equivalently estimated by efficient two-step GMM and by
continuously updated GMM. This explains the aforementioned case of equivalence between
the GMM score test and Kleibergen’s modified score test. Hansen et al. (1996) define the
continuously updated GMM estimator θ̂CU

T as:

DEFINITION 4.1. Let ST (θ ) and φ̄T (θ ) be defined as in Assumption 2.1. The continuously
updated GMM estimator θ̂CU

T of θ0 is then defined as:

θ̂CU
T = arg min

θ∈�
QCU

T (θ ) where QCU
T (θ ) ≡ φ̄′

T (θ )S−1
T (θ )φ̄T (θ ). (4.6)

PROPOSITION 4.1. (Equivalence between CU-GMM and efficient GMM). Both strong and
weak directions are equivalently estimated by efficient two-step GMM and continuously updated
GMM, if the nearly-strong identification condition is ensured. That is,

�T R−1
(
θ̂T − θ̂CU

T

) = oP (1) when
λ2

T√
T

T→ ∞.

18 Antoine and Renault (2008) provide feasible asymptotic distribution. It simply involves plugging in a consistent
estimator of R.

19 For notational simplicity, we only consider here one speed of nearly-weak identification λT . The more general
framework with an arbitrary number of speeds is considered by Antoine and Renault (2008).
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In the special case where the same degree of weakness is assumed for all moment conditions (see
Proposition 2.3), CU-GMM and efficient GMM are always equivalent insofar as λT → ∞.

Several comments are in order.
First, since non-degenerate asymptotic normality is obtained for �T R−1(θ̂T − θ0) (and

not for
√

T (θ̂T − θ0)), the relevant (non-trivial) equivalence result between two-step efficient
GMM and continuously updated GMM relates to the suitably rescaled and rotated difference
�T R−1(θ̂T − θ̂CU

T ). As already mentioned, a naive reading of the asymptotic theory may
spuriously lead to believe that standard formulas are maintained for asymptotic distribution of
estimators of θ0.

Second, the case with nearly-weak (and not nearly-strong) identification (λ2
T /

√
T

T→ 0)
breaks down the standard theory of efficient GMM, and the proof shows that there is no reason
to believe that continuously updated GMM may be an answer. Two-step GMM and continuously
updated GMM, albeit no longer equivalent, are both perturbed by higher-order terms with
ambiguous effects on asymptotic distributions. The intuition given by higher-order asymptotics
in standard identification settings cannot be extended to the case of nearly-weak identification.
While the latter approach shows that continuously updated GMM is, in general, higher-order
efficient than the standard two-step one (see Newey and Smith, 2004, and Antoine et al., 2007),
there is no clear ranking of asymptotic performances under weak identification.

Third, it is important to keep in mind that all these difficulties are due to the fact that we
consider realistic circumstances where two different degrees of identification are simultaneously
involved. Standard results (equivalence, or rankings between different approaches) carry on when
only one rate of convergence is considered.

4.3. Single-equation linear IV model (continued)

First, we define the reparametrization in the linear model of Section 3.4. The derivative of the
standard moment restriction is

J1 = ∂ρ1(θ0)

∂θ ′ =
[
−E(Y1tX1t )

... − E
(
Y2tX1t

)] =
[
−E
(
X2

1t

)
π11

... − E
(
X2

1t

)
π12

]
.

Hence, the null space of J1 is spanned by the vector [−π 12
... π 11]′ and its orthogonal by

[π 11
... π 12]′. The legitimate matrix of change of basis R in the parameter space R

2 and associated
new parameter η can be defined as:

R = 1

�

[
π11 −π12

π12 π11

]
with � = π2

11 + π2
12,

η = R−1θ, η1 = π11θ1 + π12θ2 and η2 = −π12θ1 + π11θ2.

Only the strong direction is completely determined, since the direction orthogonal to the null
space of J1 is uniquely determined and defines the first column of R. Any other direction could
define a valid second column of R and a linear combination of θ 1 and θ 2 estimated at the slower
rate.

Strictly speaking, the linear re-interpretation of Staiger and Stock (1997) by Stock and Wright
(2000) is not nested in our setting, because each of their moment condition contains a strong
part (that only depends on a subvector of parameter) and a weak one. This setting (through
the definition of the matrix �SW

T ) is conveniently built so as to know a priori which subset of
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the parameters is strongly identified. Now, if we pretend that we did not realize that the set of
strongly-identified parameter was known and still perform the change of variables, we get: J 1 �
[−π 11

... 0] with orthogonal space spanned by [0
... 1]′. The change of basis is defined as:

R =
[

a 0

b 1

]
with a �= 0 ⇒ η =

[
1 0

−b a

](
θ1

θ2

)
.

As expected, we identify the strongly-identified direction as being parallel to θ 1. In other words,
even the Stock and Wright approach can be accommodated within our general framework.

5. MONTE CARLO STUDY

We now report some Monte Carlo evidence about the intertemporally separable consumption
capital asset pricing model (CCAPM) with constant relative risk-aversion (CRRA) preferences.
Artificial data are generated to mimic the dynamic properties of the historical data.

5.1. Moment conditions

The Euler equations lead to the following moment conditions:

E
[
ht+1(θ )|It

] = 0 with ht (θ ) = δrt c
−γ
t − 1.

Our parameter of interest is then θ = [δ γ ]′, with δ the discount factor and γ the preference
parameter; (r t , ct ) denote respectively a vector of asset returns and the consumption growth at
time t. To estimate this model, our K instruments Zt ∈ It include the constant as well as some
lagged variables. We then rewrite the above moment conditions as20

E0
[
φt,T (θ )

] = E0
[
ht+1(θ ) ⊗ Zt,T

]
.

5.2. Data generation

Our Monte Carlo design follows Tauchen (1986), Kocherlakota (1990), Hansen et al. (1996) and,
more recently, Stock and Wright (2000). More precisely, the artificial data are generated by the
method discussed in Tauchen and Hussey (1991). This method fits a 16-state Markov chain to the
law of motion of the consumption and the dividend growths, so as to approximate a beforehand-
calibrated Gaussian VAR(1) model (see Kocherlakota, 1990). The CCAPM-CRRA model is then
used to price the stocks and the risk-free bond in each time period, yielding a time series of asset
returns.

Since the data are generated from a general equilibrium model, even the econometrician does
not know whether (δ, γ ) are (near)-weakly identified or not. In a similar study, Stock and Wright
(2000) impose a different treatment for the parameters δ and γ : typically, δ is taken as strongly
identified whereas γ is not. We do not make such an assumption. Through our convenient
reparametrization, we identify some directions of the parameter space that are strongly identified
and some others that are not.

20 To stress the potential weakness of the instruments, we add the subscript T to refer to the instruments.
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5.3. Strong and weak moment conditions

We consider here three instruments: the constant, the centred lagged asset return and the centred
lagged consumption growth. To apply our nearly-weak GMM estimation, we first need to
separate the instruments (and the associated moment conditions) according to their strength.
Typically, a moment restriction E[φt (θ )] is (nearly)-weak when E[φt (θ )] is close to zero for all
θ . This means that the restriction does not permit to (partially) identify θ . Hence, we evaluate
each moment restriction for a grid of parameter values. If the moment is uniformly close to 0
then we conclude to its weakness. This study can always be performed and is not specifically
related to the Monte Carlo setting; the Monte Carlo setting is simply convenient to get rid of the
simulation noise by averaging over the many simulated samples.

Figure 1 has been built with a sample size of 100 and 2500 Monte Carlo replications: top
figures for set 1 with (a) constant instrument; (b) lagged asset return and (c) lagged consumption
rate; bottom figures of set 2.21 This study clearly reveals two groups of moment restrictions:
(i) with the constant instrument, the associated restriction varies quite substantially with the
parameter θ ; (ii) with the lagged instruments, both associated restrictions remain fairly small
when θ vary over the grid. The set of instruments, and accordingly of moment conditions, is then
separated as follows:

φt,T (θ ) =

⎛
⎜⎝ (δrt c

−γ
t − 1)

(δrt c
−γ
t − 1) ⊗

[
rt−1 − r̄

ct−1 − c̄

]
⎞
⎟⎠ ,

φ̄T (θ ) = 1

T

T∑
t=1

φt,T (θ ) with
√

T E[φ̄T (θ )] =
(√

T 01,2

02,1 λT Id2

)(
ρ1(θ )

ρ2(θ )

)
.

As emphasized earlier, our Monte Carlo study simulates a general equilibrium model. So, even
the econometrician does not know in advance which moment conditions are weak and the level
of this weakness. Hence,

√
T and λT must be chosen so as to fulfil the following conditions,

λT = o(
√

T ) and
√

T = o(λ2
T ).

In their theoretical considerations (Section 4.3), Stock and Wright (2000) also treat
differently the covariances of the moment conditions. The strength of the constant instrument is
actually used to provide some intuition on their identification assumptions (δ strongly-identified
and γ weakly-identified). However, we think that if γ is weakly-identified, then it affects the
covariance between r t and c

−γ
t , and hence the identification of δ should be altered too. This

actually matches some asymptotic results of Stock and Wright (2000) where the weak parameter
affects the strong one, by preventing it to converge to a standard Gaussian random variable.

5.4. Reparametrization

To identify the standard directions in the parameter space, we first define the matrix of the change
of basis. Recall that it is defined through the null space of the following matrix:

J1 = ∂ρ1(θ0)

∂θ ′ .

21 Note that the conclusions are not affected when larger sample sizes are considered.
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Straightforward calculations lead to:[
∂φ1,t (θ )

∂θ ′

]
=
[
∂φ1,t (θ )

∂δ

∂φ1,t (θ )

∂γ

]
= [rt c

−γ
t

... − δrt ln(ct )c
−γ
t

]
and J1 is then defined as follows:

J1 = ∂ρ1(θ0)

∂θ ′ =
[
E
[
rt c

−γ 0

t

] ... − E
[
δ0rt ln(ct )c

−γ 0

t

]]
.

The null space of J1 is spanned by the vector [−J 12
... J 11]′ and its orthogonal by [J 11

... J 12]′. A
convenient change of basis is then defined by the matrix:

R = 1

�

[
J11 −J12

J12 J11

]
where � = J 2

11 + J 2
12

and the new set of parameter is then obtained as,

η = R−1θ ⇔
(

η1

η2

)
=
(

J11δ + J12γ

−J12δ + J11γ

)
.

The standard direction η1 is completely determined: that is, the relative weights on δ and γ are
known. As a convention, we normalize all vectors to unity and we also ensure that the subspaces
defined respectively by the columns of R2 and of R1 are orthogonal.

5.5. Asymptotic result

The adapted asymptotic convergence result writes:

[√
T
(
η̂1T − η0

1

)
λT

(
η̂2T − η0

2

)
]

d→ N (0, (J ′S(θ0)−1J )−1) with J =

⎡
⎢⎢⎣

∂ρ1(θ0)

∂θ ′ R1 0

0
∂ρ2(θ0)

∂θ ′ R2

⎤
⎥⎥⎦ .

The approximation of J can easily be deduced from what has been done above.

5.6. Results

Monte Carlo results are provided for three instruments, constant, lagged asset return and lagged
consumption growth, and two sets of parameter: set 1 (or model M1a as in Stock and Wright,
2000) where θ0′ = [0.97 1.3]; set 2 (or model M1b) where θ0′ = [1.139 13.7]. Model M1b has
previously been found to produce non-normal estimator distributions.

First, as previously emphasized, the matrix of reparametrization is not known (even in our
Monte Carlo setting) and is actually data dependent. We then investigate the variability of the
true new parameter η0. We found that even with small sample size (T = 100), the (estimated)
true new parameter is really stable and does not depend much on the realization of the sample.
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For our two models, we find the following true new parameter:

Set 1: η0 = [0.9449 1.3183]; R−1 =
[

0.999 −0.019

0.019 0.999

]

Set 2: η0 = [1.0356 13.7082]; R−1 =
[

0.999 −0.007

0.007 0.999

]
.

Note that η1 = 0.999δ − 0.019γ (for set 1) and η1 = 0.999δ − 0.007γ (for set 2): in other words,
we confirm Stock and Wright’s (2000) intuition that the parameter η1 which is estimated at the
standard rate

√
T is almost equal to δ. However, by contrast with Stock and Wright (2000), this

point of view was not a prior belief but only an empirical conclusion.
Our findings are: (i) all the estimators are consistent; (ii) the variances of the estimators

(for both η̂T and θ̂T ) decrease to 0 with the sample size and (iii) according to our asymptotic
results, in case of nearly-weak identification, the asymptotic variance of the new parameter
η̂1T should decrease faster with the sample size than the one of η̂2T . Figure 2 investigates
this feature by plotting the evolution of the ratio of the Monte Carlo variance of η̂2T and the
Monte Carlo variance of η̂1T with the sample size: top panels for set 1, left-hand panels for
Var(η̂2T )/Var(η̂1T ) and right-hand panels for Var(θ̂1T )/Var(θ̂2T ); bottom panels for set 2. This
ratio Var(η̂2T )/Var(η̂1T ) increases with T , especially for the second set of parameter values. This
supports previous findings in the literature that the first set of parameter values leads to a less
severe weak identification problem.

6. CONCLUSION

In a GMM context, this paper proposes a general framework to account for potentially weak
instruments. In contrast with existing literature, the weakness is directly related to the moment
conditions (through the instruments) and not to the parameters. More precisely, we consider two
groups of moment conditions: the standard one associated with the standard rate of convergence√

T and the nearly-weak one associated with the slower rate λT . In this framework, the standard
GMM-score-type test proposed by Newey and West (1987) is valid, and we do not need to
resort to the correction proposed by Kleibergen (2005). Our comparative power study reveals
that the above correction does have asymptotic consequences, especially with heterogeneous
identification patterns. Hence, we recommend carefulness, especially when instruments of
heterogeneous quality are used. Our proposed framework is not much more involved in terms
of specifying the identification issues, and also helps identify the directions against which the
tests have power.

Moreover, this framework ensures that GMM estimators of all parameters are consistent,
but at rates possibly slower than usual. In addition, we identify and estimate efficiently (with
non-degenerate asymptotic normality) the relevant directions, respectively strongly- or nearly-
weakly identified, in the parameter space. This asymptotic distributional theory is practically
relevant, since it allows inference without the knowledge, or estimation of the slow rate of
identification. It allows in particular the application of the general Wald testing theory developed
in a companion paper, Antoine and Renault (2008) (see also Lee, 2004). Moreover, we show
that both for estimation and testing, continuous updated GMM is not always an answer to
identification issues.
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For notational and expositional simplicity, we focus here on two groups of moment conditions
only. The extension to considering several degrees of weakness (think of a practitioner using
several instruments of different informational qualities) is quite natural. Antoine and Renault
(2008) specifically consider multiple groups of moment conditions associated with specific rates
of convergence. However they do not explicitly consider any applications to identification issues,
but rather applications in kernel, unit-root, extreme values or continuous time environments.
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APPENDIX

LEMMA A.1. Under the assumptions of Proposition 2.1, there exists a (K, p)-matrix J of rank p,

J = Plim

[√
T

∂φ̄T (θ0)

∂θ ′ R�−1
T

]
,

where �T is (p, p) diagonal matrix whose first s1 (resp. last s 2) coefficients are
√

T (resp. λT ).
Proof:

√
T

∂φ̄T (θ0)

∂θ ′ R�−1
T =

⎡
⎢⎢⎢⎣

∂φ̄1T (θ0)

∂θ ′ R1

√
T

λT

∂φ̄1T (θ0)

∂θ ′ R2

∂φ̄2T (θ0)

∂θ ′ R1

√
T

λT

∂φ̄2T (θ0)

∂θ ′ R2

⎤
⎥⎥⎥⎦ .

From Assumption 2.2, we have:

Plim

[
∂φ̄1T (θ0)

∂θ ′ R1

]
= C1R1, Plim

[√
T

λT

∂φ̄2T (θ0)

∂θ ′ R2

]
= C2R2

and

Plim

[
∂φ̄2T (θ0)

∂θ ′ R1

]
= Plim

[
λT√
T

C2R1

]
= 0.

From Assumption 2.4, we have:
√

T

λT

∂φ̄1T (θ0)
∂θ ′ R2 =

√
T

λT
C1R2 + UT R2

λT
where UT = OP (1).

Since C1R2 = 0 (by definition of R2), and λT

T→ ∞, we get: Plim
[√

T

λT

∂φ̄1T (θ0)
∂θ ′ R2

]
= 0.

We can then define the matrix J as: J =
[
C1R1 0

0 C2R2

]
.
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Note that J is of rank p since C 1R1 (respectively C 2R2) is of rank s1 (respectively s 2 = p − s 1). The proof
of Lemma A.1 is now completed. �

We need another preliminary result:

LEMMA A.2. Under the assumptions of Proposition 2.1,

T �−1
T R′VT (θ0) = J ′S−1

T (θ0)
√

T φ̄T (θ0) + oP (1) = T �−1
T R′ṼT (θ0) + oP (1).

Proof: From Assumption 2.1, S−1
T (θ0)

√
T φ̄T (θ0) = OP (1); combined with Lemma A.1 we get:

T �−1
T R′VT (θ0) =

√
T �−1

T R′ ∂φ̄′
T (θ0)

∂θ
S−1

T (θ0)
√

T φ̄T (θ0) = J ′S−1
T (θ0)

√
T φ̄T (θ0) + oP (1).

We now show that: T �−1
T R′[VT (θ0) − ṼT (θ0)] = oP (1). We have:

T �−1
T R′ [VT (θ0) − ṼT (θ0)

] =
√

T

[(
∂φ̄T (θ0)

∂θ ′ − ∂φ̃T (θ0)

∂θ ′

)
R�−1

T

]′
× S−1

T (θ0)
√

T φ̄T (θ0).

Since S−1
T (θ0)

√
T φ̄T (θ0) = OP (1), we only need to show that:

√
T

[
∂φ̄T (θ0)

∂θ ′ − ∂φ̃T (θ0)

∂θ ′

]
R�−1

T = oP (1).

The jth row of the above matrix writes:

√
T

[
∂φ̄

(j )
T (θ0)

∂θ ′ − ∂φ̃
(j )
T (θ0)

∂θ ′

]
R�−1

T

= − Covas

[√
T

∂φ̄
(j )
T (θ0)

∂θ
,
√

T φ̄T (θ0)

]
(Varas[

√
T φ̄T (θ0)])−1

√
T φ̄T (θ0)R�−1

T ,

which is oP (1) since
√

T φ̄T (θ0) = OP (1) and R�−1
T = oP (1). This concludes the proof of Lemma A.2. �

Proof of Proposition 2.1 (Equivalence under the null): Consider the notations: rk[C1] = s1 ≤ p; R1 is a
(p, s 1)-matrix such that: rk[R1] = s1, col[R1] = col[C ′

1]; R2 is a (p, s 2)-matrix such that rk[R2] = s2 and
col[R2] is the null space of C1.22 By Assumption 2.2, p = s 1 + s 2, and R = [R1

... R2] is a non-singular
(p, p)-matrix. We do not exclude the special case: s 1 = p, s 2 = 0 and R = R1. From Lemma A.2
and Assumption 2.1, [T �−1

T R′V T (θ 0)] is asymptotically normal with zero mean and covariance matrix
J ′[S0]−1 J .

Hence, [T 2V ′
T (θ 0) R�−1

T [J ′[S0]−1J ]−1�−1
T R′V T (θ 0)] converges in distribution towards a chi-square

with p degrees of freedom. From Lemma A.1 and Assumption 2.1, this is also the case for:

T V ′
T (θ0)R�−1

T

[
�−1

T R′ ∂φ̄T (θ0)

∂θ
S−1

T (θ0)
∂φ̄T (θ0)

∂θ ′ R�−1
T

]−1

�−1
T R′VT (θ0).

After simplifications, we find that:

ξNW
T = T V ′

T (θ0)

[
∂φ̄′

T (θ0)

∂θ
S−1

T (θ0)
∂φ̄T (θ0)

∂θ ′

]−1

VT (θ0)
d→ χ 2(p),

22 For any (m × n)-matrix M, rk[M] denotes its rank and col[M] represents the subspace of R
n generated by the column

vectors of M.
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where χ 2(p) denotes the chi-square distribution with p degrees of freedom. When
[

∂φ̄′
T

(θ0)
∂θ

]
is replaced by[

∂φ̃T (θ0)
∂θ

]
, the same argument leads to: ξK

T

d→ χ 2(p) and ξK
T − ξNW

T

P→ 0. �

LEMMA A.3. Under the assumptions of Proposition 2.2,
√

T φ̄T (θ0)
d→ N (m, S0) with m = [−γ ′C ′

1 0]′ in
case (i), and m = [0 − γ ′C ′

2]′ in case (ii).

Proof:

√
T φ̄T (θT ) =

√
T φ̄T (θ0) +

√
T

∂φ̄T (θ∗
T )

∂θ ′ (θT − θ0) with θ∗
T = θ0 + βT γ, where βT ∈ [0, αT ].

From Assumption 2.1, we have:
√

T φ̄T (θT )
d→ N (0, S0). Therefore, we only need to show:

Plim

[√
T

∂φ̄T (θ∗
T )

∂θ ′ (θT − θ0)

]
= −m.

More precisely, in case (i), we need to show:

Plim

[
∂φ̄T (θ∗

T )

∂θ ′ γ

]
=
(

C1γ

0

)
.

From Assumption 2.5, since Plim[θ∗
T − θT ] = 0, we have:

Plim

[
∂φ̄1T (θ∗

T )

∂θ ′

]
= C1 and Plim

[√
T

λT

∂φ̄2T (θ∗
T )

∂θ ′

]
= C2 ⇒ Plim

[
∂φ̄2T (θ∗

T )

∂θ ′

]
= 0.

And in case (ii), we need to show:

Plim

[√
T

λT

∂φ̄T (θ∗
T )

∂θ ′ γ

]
=
(

0

C2γ

)
.

From Assumption 2.5:

Plim

[√
T

λT

∂φ̄2T (θ∗
T )

∂θ ′ γ

]
= C2γ,

while for all components φ̄
(j )
1T , we have:

√
T

λT

∂φ̄
(j )
1T (θ∗

T )

∂θ ′ γ =
√

T

λT

∂φ̄
(j )
1T (θT )

∂θ ′ γ +
√

T

λT

H
(j )
1 (θ∗

T − θT ) + oP (1) = oP (1),

since
√

T
∂φ̄

(j )
1T (θT )

∂θ ′ =
√

T C1 + OP (1)

with C1γ = 0, θ∗
T − θT = OP

(
1

λT

)
and

λ2
T√
T

T→ ∞. �

Proof of Proposition 2.2 (Local power of GMM score tests): First, we get the asymptotic distribution
result for ξNW

T in cases (i) and (ii). We study first the asymptotic distribution of [
√

T φ̄T (θ0)] when the true
value is: θ T = θ 0 + αT γ , with αT = 1/

√
T in case (i), and αT = 1/λT in case (ii). We need the following

preliminary result: From Assumption 2.5, and Lemma A.1 the rescaled score can be written:

T �−1
T R′VT (θ0) =

√
T �−1

T R′ ∂φ̄′
T (θ0)

∂θ
S−1

T (θ0)
√

T φ̄T (θ0) = J ′S−1
T (θ0)

√
T φ̄T (θ0) + oP (1),
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since S−1
T (θ0)

√
T φ̄T (θ0) = OP (1). Thus, from Lemma A.3, we get:

T �−1
T R′VT (θ0)

d→ N
(
J ′[S0]−1m, J ′[S0]−1J

)
.

Therefore: T 2V ′
T (θ 0)R�−1

T [J ′[S0]−1J ]−1�−1
T R′V T (θ 0) converges in distribution towards a non-central

chi-square with p degrees of freedom and non-centrality parameter:

μ = m′[S0]−1J
[
J ′[S0]−1J

]−1
J ′[S0]−1m.

From Assumption 2.5 and Lemma A.1, this also holds for:

ξNW
T = T V ′

T (θ0)R�−1
T

[
�−1

T R′ ∂φ̄′
T (θ0)

∂θ
S−1

T (θ0)
∂φ̄T (θ0)

∂θ ′ R�−1
T

]−1

�−1
T R′VT (θ0). (A.1)

We now only need to check the formula for the non-centrality parameter μ. It is convenient to introduce the
following notations:

S0 = (S1/2
) (

S1/2
)′

, S−1/2 = (S1/2
)−1

and mS = S−1/2m, X = S−1/2J .

Then: μ = m′
SX[X′X]−1X′mS . We get the announced result if we can check that: μ = m′

SmS , that is,
PXmS = mS , where P X = X[X′X]−1X′ is the orthogonal projection matrix on the column space of X.
Therefore, we want to show that mS belongs to the column space of X, or equivalently that m belongs to the
column space of J. From the proof of Lemma A.1, we see that the column space of J is the set of vectors of

R
K that can be written:

[
C1R1a

C2R2b

]
for some a ∈ R

s1 , and b ∈ R
s2 .

In case (i), m = [C1γ

0

]
when choosing b = 0 and a as follows. First, C 1γ = C 1γ

∗ where γ ∗ is the
orthogonal projection of γ onto the orthogonal of the null space of C1, or col[C ′

1] = col[R1]. Then, there
exists some a such that γ ∗ = R1a.

In case (ii), m =
[

0
C2γ

]
when choosing a = 0. By definition, m belongs to the null space of C1, which

is spanned by the columns of R2.
We now show that Plim[ξNW

T − ξK
T ] = 0 in cases (i) and (ii). We show that: T �−1

T R′[VT (θ0) −
ṼT (θ0)] = oP (1). We have:

T �−1
T R′[VT (θ0) − ṼT (θ0)] =

√
T

[(
∂φ̄T (θ0)

∂θ ′ − ∂φ̃T (θ0)

∂θ ′

)
R�−1

T

]′
× S−1

T (θ0)
√

T φ̄T (θ0).

Since S−1
T (θ0)

√
T φ̄T (θ0) = OP (1) from Lemma A.3, we only need to show that:

√
T

[
∂φ̄T (θ0)

∂θ ′ − ∂φ̃T (θ0)

∂θ ′

]
R�−1

T = oP (1).

The jth row of the above matrix writes:

√
T

[
∂φ̄

(j )
T (θ0)

∂θ ′ − ∂φ̃
(j )
T (θ0)

∂θ ′

]
R�−1

T

= −Covas

[√
T

∂φ̄
(j )
T (θ0)

∂θ
,
√

T φ̄T (θ0)

]
(Varas[

√
T φ̄T (θ0)])−1

√
T φ̄T (θ0)R�−1

T ,

which is oP (1) since
√

T φ̄T (θ0) = OP (1), R�−1
T = oP (1), and from Assumption 2.3:

B (j ) =
[
B

(j )
1 B

(j )
2

]
≡ Covas

(√
T

∂φ̄
(j )
T (θ0)

∂θ
,
√

T φ̄T (θ0)

)[
Varas(

√
T φ̄T (θ0))

]−1
= OP (1).
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And, we conclude: Plim[ξK
T − ξNW

T ] = 0. �

Proof of Proposition 2.3 (Special case with only one degree of weakness): When φ = φ2, the proof of

Lemma A.3 does not require anymore the condition λ2
T /

√
T

T→ ∞, and the result of Lemma A.3 remains
valid in any case. The proof of Proposition 2.2 can then be rewritten based on this lemma to conclude
that Plim[ξNW

T − ξK
T ] = 0, and both score test statistics converge towards a non-central chi-square as

announced. �

About the consistency of GMM score test (see Section 2): As in the proof of Proposition 2.2 (see
equation (A.1)), ξNW

T can be rewritten as:

ξNW
T = T V ′

T (θ0)R�−1
T

√
T

[√
T �−1

T R′ ∂φ̄′
T (θ0)

∂θ
S−1

T (θ0)
∂φ̄T (θ0)

∂θ ′ R�−1
T

√
T

]−1 √
T �−1

T R′VT (θ0)

and we also have:

T �−1
T R′VT (θ0) = √

T �−1
T R′ ∂φ̄′

T (θ0)

∂θ
S−1

T (θ0)
√

T φ̄T (θ0)

= J ′S−1
T (θ0)

√
T φ̄T (θT ) − J ′S−1

T (θ0)
√

T
∂φ̄T (θ0)

∂θ ′ (θT − θ0) + oP (1). (A.2)

The first term on the RHS of (A.2) is asymptotically normal with zero mean and variance J ′[S0]−1J . The
second term on the RHS of (A.2) can be written (−λT /δT )π T with:

πT = J ′S−1
T (θ0)

√
T

λT

∂φ̄T (θ0)

∂θ ′ γ ≡ π1T + π2T ,

where the additive decomposition comes from the decomposition of ∂φ̄T (θ0)/∂θ ′γ according to the two
subsets of moment conditions φ1 and φ2. By Assumption 2.5:

π2T = {J ′[S0]−1}2C2γ + oP (1),

where, for any matrix M with K columns, {M}2 is obtained by keeping only the second subset of columns
of M (which corresponds to the second subset of moment conditions). Hence:

T �−1
T R′VT (θ0) = J ′S−1

T (θ0)
√

T φ̄T (θT ) − λT

δT

π1T − λT

δT

({J ′[S0]−1}2C2γ + oP (1))

= J ′S−1
T (θ0)

√
T φ̄T (θT ) + ZT ,

where ‖ZT ‖ is likely to go to infinity when (λT /δT ) goes to infinity and C 2γ �= 0. When ‖ZT ‖ goes
to infinity, since J ′S−1

T (θ0)
√

T φ̄T (θT ) is OP (1), ξNW
T which is a positive definite quadratic function of

T �−1
T R′V T (θ 0) goes to infinity and the test is consistent. The only case where this consistency is lost

is when: π1T + {J ′[S0]−1}2 C2γ = oP (δT /λT ). �
The consistency of the minimum distance estimator θ̂T is a direct implication of the identification

Assumption 3.1 jointly with the following lemma:

LEMMA A.4. ‖ρ(θ̂T )‖ = OP (1/λT ).

Proof: From (3.1), the objective function is written as follows:

QT (θ ) =
[

�T (θ )√
T

+ �T√
T

ρ(θ )

]′
�T

[
�T (θ )√

T
+ �T√

T
ρ(θ )

]
, where �T =

[
Idk1 0

0 λT√
T
Idk2

]
.
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Since θ̂T is the minimizer of Q(.) we have in particular:

QT (θ̂T ) ≤ Q(θ 0) =⇒
[

�T (θ̂T )√
T

+ �T√
T

ρ(θ̂T )

]′
�T

[
�T (θ̂T )√

T
+ �T√

T
ρ(θ̂T )

]

≤ � ′
T (θ 0)√

T
�T

�T (θ 0)√
T

.

Denoting dT = � ′
T (θ̂T )�T �T (θ̂T ) − � ′

T (θ 0)�T �T (θ 0), we get:

[�T ρ(θ̂T )]′�T [�T ρ(θ̂T )] + 2[�T ρ(θ̂T )]′�T �T (θ̂T ) + dT ≤ 0.

Let μT be the smallest eigenvalue of �T . The former inequality implies:

μT ‖�T ρ(θ̂T )‖2 − 2‖�T ρ(θ̂T )‖ × ‖�T �T (θ̂T )‖ + dT ≤ 0.

In other words, xT = ‖�T ρ(θ̂T )‖ solves the inequality:

x2
T − 2‖�T �T (θ̂T )‖

μT

xT + dT

μT

≤ 0

⇒ ‖�T �T (θ̂T )‖
μT

−
√

�T ≤ xT ≤ ‖�T �T (θ̂T )‖
μT

+
√

�T with �T = ‖�T �T (θ̂T )‖2

μ2
T

− dT

μT

.

Since xT ≥ λT ‖ρT (θ̂T )‖ we want to show that xT = OP (1), that is

‖�T �T (θ̂T )‖
μT

= OP (1) and �T = OP (1) ⇔ ‖�T �T (θ̂T )‖
μT

= OP (1) and
dT

μT

= OP (1).

Note that since det(�T )
P→ det(�) > 0, no subsequence of �T can converge in probability towards zero

and thus we can assume (for T sufficiently large) that μT remains lower bounded away from zero with
asymptotic probability one. Therefore, we just have to show that:

‖�T �T (θ̂T )‖ = OP (1) and dT = OP (1).

Since tr(�T )
P→ tr(�) (where tr[M] denotes the trace of any square matrix M), and the sequence tr(�T )

is upper bounded in probability, so are all the eigenvalues of �T . Therefore, the required boundedness in
probability just results from our Assumption 3.1(ii) ensuring that:

sup
θ∈�

‖�T (θ )‖ = OP (1). �

Proof of Theorem 3.1 (Consistency of θ̂T ): Let us then deduce the weak consistency of θ̂T by a
contradiction argument. If θ̂T is not consistent, there exists some positive ε such that:

P [‖θ̂T − θ 0‖ > ε]

does not converge to zero. Then we can define a subsequence (θ̂Tn
)n∈N such that, for some positive η:

P [‖θ̂Tn
− θ 0‖ > ε] ≥ η for n ∈ N. Let us denote α = inf‖θ−θ0‖>ε ‖ρ(θ )‖ > 0 by Assumption 3.1(i).

Then for all n ∈ N: P [‖ρ(θ̂Tn
)‖ ≥ α] > 0. When considering the identification Assumption 3.1(iii),

this last inequality contradicts Lemma A.4. This completes the proof of consistency. �

Proof of Theorem 3.2 (Rate of convergence): From Lemma A.4 ‖ρ(θ̂T )‖ = ‖ρ(θ̂T ) − ρ(θ 0)‖ = OP (1/λT )
and by application of the Mean-Value Theorem, for some θ̃T between θ̂T and θ 0 component by component,
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we get: ∥∥∥∥∂ρ(θ̃T )

∂θ ′
(
θ̂T − θ 0

)∥∥∥∥ = OP

(
1

λT

)
.

Note that, by a common abuse of notation, we omit to stress that θ̃T actually depends on the component of
ρ(.). The key point is that since ρ(.) is continuously differentiable and θ̃T , as θ̂T , converges in probability
towards θ 0, we have:

∂ρ(θ̃T )

∂θ ′
P→ ∂ρ(θ 0)

∂θ ′ ⇒ ∂ρ(θ 0)

∂θ ′ × (θ̂T − θ 0
) = zT ,

with ‖zT ‖ = OP (1/λT ). Since ∂ρ(θ 0)/∂θ ′ is full column rank, we deduce that:

(
θ̂T − θ 0

) =
[

∂ρ ′(θ 0)

∂θ

∂ρ(θ 0)

∂θ ′

]−1
∂ρ ′(θ 0)

∂θ
zT also fulfils:

∥∥θ̂T − θ 0
∥∥ = OP (1/λT ) .

�

Proof of Equations (3.5) and (3.6) (Moments in the linear IV model): In the linear model (3.4),

yt = X1tπ11θ
0
1 + X2tπ21θ

0
1 + X1tπ21θ

0
2 + X2tπ22θ

0
2 + V1t θ

0
1 + V2t θ

0
2 + ut

and the two moment conditions write as follows (assuming orthogonal instruments):

E[(yt − Y ′
t θ )Xt ] =

(
E
(
X2

1t

)
π11

(
θ 0

1 − θ1

)+ E
(
X2

1t

)
π12

(
θ 0

2 − θ2

)
E
(
X2

2t

)
π21

(
θ 0

1 − θ1

)+ E
(
X2

2t

)
π22

(
θ 0

2 − θ2

)
)

,

When � is replaced by �SW
T , the moment conditions are:( [

E
(
X2

1t

) (
θ 0

1 − θ1

)]
c11 + [E (X2

1t

) (
θ 0

2 − θ2

)]
c12/δT[

E
(
X2

2t

) (
θ 0

1 − θ1

)]
c21 + [E (X2

2t

) (
θ 0

2 − θ2

)]
c22/δT

)
≡
(

ρSW
1s

(
θ 0

1

)+ ρSW
1w

(
θ 0

2

)
/δT

ρSW
2s

(
θ 0

1

)+ ρSW
2w

(
θ 0

2

)
/δT

)

with

ρSW
1s (θ1) = [

E
(
X2

1t

) (
θ 0

1 − θ1

)]
c11 ρSW

1w (θ2) = [E (X2
1t

) (
θ 0

2 − θ2

)]
c12

ρSW
2s (θ1) = [

E
(
X2

2t

) (
θ 0

1 − θ1

)]
c21 ρSW

2w (θ2) = [E (X2
2t

) (
θ 0

2 − θ2

)]
c22.

When � is replaced by �AR
T , the moment conditions are:( [

E
(
X2

1t

) (
θ 0

1 − θ1

)]
c11 + [E (X2

1t

) (
θ 0

2 − θ2

)]
c12[

E
(
X2

2t

) (
θ 0

1 − θ1

)]
c21/δT + [E (X2

2t

) (
θ 0

2 − θ2

)]
c22/δT

)
≡
(

ρAR
1 (θ1, θ2)

ρAR
2 (θ1, θ2)/δT

)

with

ρAR
1 (θ1, θ2) = [

E
(
X2

1t

) (
θ 0

1 − θ1

)]
c11 + [E (X2

1t

) (
θ 0

2 − θ2

)]
c12

ρAR
2 (θ1, θ2) = [

E
(
X2

2t

) (
θ 0

1 − θ1

)]
c21 + [E (X2

2t

) (
θ 0

2 − θ2

)]
c22.

�

Proof of Equation (3.7) (Determinant of the concentration matrix): By definition, μ = �
−1/2′
V

�′X′X��
−1/2
V . Standard calculation rules for determinant yield to:

det [μ] = det
[
�

−1/2′
V �′X′X��

−1/2
V

]
= det

[
�−1

V

]
det
[
X′X

]
(det[�])2
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with det[�] = π11π22 − π12π21. When � is replaced respectively by �SW
T and �AR

T , we have:

det
[
�SW

T

] = det[C]

δT

and det
[
�AR

T

] = det[C]

δT

.

Hence: det[μSW ] = det[μAR] = d/δ2
T with d = det[�−1

V ] det[X′X](det[C])2. �

First, we need a preliminary result which naturally extends Lemma A.1 when the true value is replaced
by some preliminary consistent estimator θ∗

T .

LEMMA A.5. Under Assumptions 3.1–4.1, if θ∗
T is such that ‖θ∗

T − θ 0‖ = OP (1/λT ), then

√
T

∂φ̄T

(
θ∗
T

)
∂θ ′ R�−1

T

P→ J when T → ∞.

Proof: First, note that

√
T

∂φ̄T

(
θ∗
T

)
∂θ ′ R�̃−1

T =

⎡
⎢⎢⎢⎣

∂φ̄1T (θ∗
T )

∂θ ′ R1

√
T

λT

∂φ̄1T (θ∗
T )

∂θ ′ R2

∂φ̄2T (θ∗
T )

∂θ ′ R1

√
T

λT

∂φ̄2T (θ∗
T )

∂θ ′ R2

⎤
⎥⎥⎥⎦ .

To get the results, we have to show the following:

(i)
∂φ̄1T

(
θ∗
T

)
∂θ ′

P→ ∂ρ1(θ 0)

∂θ ′ (ii)

√
T

λT

∂φ̄2T

(
θ∗
T

)
∂θ ′

P→ ∂ρ2(θ 0)

∂θ ′

(iii)
∂φ̄2T (θ∗

T )

∂θ ′ R1
P→ 0 (iv)

√
T

λT

∂φ̄1T (θ∗
T )

∂θ ′ R2
P→ 0.

(i) From Assumption 2.2(ii): ∂φ̄1T (θ0)
∂θ ′ − ∂ρ1(θ0)

∂θ ′ = oP (1). The Mean-Value Theorem applies to the kth
component of [∂φ̄1T /∂θ ′] for 1 ≤ k ≤ k1. For some θ̃ between θ 0 and θ∗

T :

∂φ̄1T ,k

(
θ∗
T

)
∂θ ′ − ∂φ̄1T ,k(θ 0)

∂θ ′ = (θ∗
T − θ 0

)′ ∂2φ̄1T ,k(θ̃T )

∂θ∂θ ′ = oP (1),

where the last equality follows from Assumption 4.1(ii) and the assumption on θ∗
T .

(ii) From Assumption 2.2(ii):

√
T

∂φ̄2T (θ 0)

∂θ ′ − λT

∂ρ2(θ0)

∂θ ′ = OP (1) ⇒
√

T

λT

∂φ̄2T (θ 0)

∂θ ′ − ∂ρ2(θ 0)

∂θ ′ = oP (1)

because λT

T→ ∞. The Mean-Value Theorem applies to the kth component of ∂φ̄2T /∂θ ′ for 1 ≤ k ≤ k2. For
some θ̃T between θ 0 and θ∗

T , we have:

√
T

λT

(
∂φ̄2T ,k

(
θ∗
T

)
∂θ ′ − ∂φ̄2T ,k(θ 0)

∂θ ′

)
= (θ∗

T − θ 0)

√
T

λT

∂2φ̄2T ,k(θ̃T )

∂θ∂θ ′ = oP (1),

where the last equality follows from Assumption 4.1(ii) and the assumption on θ∗
T .

(iii)
∂φ̄2T (θ∗

T
)

∂θ ′ = λT√
T

×
√

T

λT

∂φ̄2T (θ∗
T

)
∂θ ′ = oP (1) because of (ii) and λT = o(

√
T ).

(iv) Recall the Mean-Value Theorem from (i). For 1 ≤ k ≤ k1 and θ̃T between θ 0 and θ∗
T :

√
T

λT

∂φ̄1T ,k

(
θ∗
T

)
∂θ ′ =

√
T

λT

∂φ̄1T ,k(θ 0)

∂θ ′ + λT (θ∗
T − θ 0)′

1

λT

√
T

λT

∂2φ̄1T ,k(θ̃T )

∂θ∂θ ′ .
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The second member of the RHS is oP (1) because of Assumptions 3.1(iii), 4.1(i) and 4.1(ii) and the
assumption on θ∗

T . Now we just need to show that the first member of the RHS is oP (1). Recall from
Assumption 2.4 that

√
T

[
∂φ̄1T (θ 0)

∂θ ′ − ∂ρ1(θ 0)

∂θ ′

]
= OP (1) ⇒

√
T

λT

[
∂φ̄1T (θ 0)

∂θ ′ − ∂ρ1(θ 0)

∂θ ′

]
R2 = OP

(
1

λT

)
.

By definition R2 is such that ∂ρ1(θ0)
∂θ ′ R2 = 0. Hence we get

√
T

λT

∂φ̄1T ,k(θ 0)

∂θ ′ R0
2 = OP

(
1

λT

)
= oP (1). �

Proof of Theorem 4.1 (Asymptotic normality): From the optimization problem (3.1), the first-order
conditions for θ̂T are written as:

∂φ̄′
T (θ̂T )

∂θ
�φ̄T (θ̂T ) = 0.

A mean-value expansion yields to:

∂φ̄′
T (θ̂T )

∂θ
�φ̄T (θ 0) + ∂φ̄′

T (θ̂T )

∂θ
�

∂φ̄T (θ̃T )

∂θ ′ × (θ̂T − θ 0
) = 0,

where θ̃T is between θ̂T and θ 0. Pre-multiplying the above equation by the non-singular matrix T �−1
T R′

yields to an equivalent set of equations:

Ĵ ′
T �
[√

T φ̄T (θ 0)
]

+ Ĵ ′
T �J̃T × �T R−1

(
θ̂T − θ 0

) = 0

after defining:

ĴT =
√

T
∂φ̄T (θ̂T )

∂θ ′ R�−1
T and J̃T =

√
T

∂φ̄T (θ̃T )

∂θ
R�−1

T .

From Theorem 3.2 and Lemma A.5, we can deduce that: Plim J̃T = J and Plim ĴT = J . Hence:

Ĵ ′
T �J̃T

P→ J ′�J non-singular by assumption. Recall now that by Assumption 3.1(ii), �T (θ 0) = √
T φ̄T (θ 0)

converges to a normal distribution with mean 0. We then get the announced result. �

Proof of Theorem 4.2 (J-test): A Taylor expansion of the moment conditions gives:

√
T φ̄T (θ̂T ) = √

T φ̄T (θ 0) + √
T

∂φ̄T (θ̂T )

∂θ ′
(
θ̂T − θ 0

)+ oP (1)

=
√

T φ̄T (θ 0) + ĴT �T R−1
(
θ̂T − θ 0

)+ oP (1)

with ĴT = √
T ∂φ̄T (θ̂T )/∂θ ′R�−1

T . A Taylor expansion of the FOC gives:

�T R−1
(
θ̂T − θ 0

) = −
[(√

T
∂φ̄T (θ̂T )

∂θ ′ R�−1
T

)′
S−1

T

(√
T

∂φ̄T (θ̂T )

∂θ ′ R�−1
T

)]−1

×
(√

T
∂φ̄T (θ̂)

∂θ ′ R�−1
T

)′
S−1

T

√
T φ̄T (θ 0) + oP (1)

with ST a consistent estimator of the asymptotic covariance matrix of the process �(θ ). Combining the two
above results leads to:

√
T φ̄T (θ̂T ) =

√
T φ̄T (θ 0) − ĴT

[
Ĵ ′

T S−1
T ĴT

]−1
Ĵ ′

T S−1
T

√
T φ̄T (θ 0) + oP (1).
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Use the previous result to rewrite the criterion function:

T QT (θ̂T ) = [
√

T φ̄T (θ̂T )]′S−1
T

√
T φ̄T (θ̂T )

=
[√

T φ̄T (θ 0) − ĴT

[
Ĵ ′

T S−1
T ĴT

]−1
Ĵ ′

T S−1
T

√
T φ̄T (θ 0)

]′
S−1

T

×
[√

T φ̄T (θ 0) − ĴT

[
Ĵ ′

T S−1
T ĴT

]−1
Ĵ ′

T S−1
T

√
T φ̄T (θ 0)

]
+ oP (1)

= [
√

T φ̄T (θ 0)]′S−1
T

√
T φ̄T (θ 0) − √

T φ̄T (θ 0)S−1
T ĴT

[
Ĵ ′

T S−1
T ĴT

]−1
Ĵ ′

T S−1
T

√
T φ̄T (θ 0)

+ oP (1) = √
T φ̄T (θ 0)′S ′−1/2

T [I − M]−1 S
1/2
T

√
T φ̄T (θ 0) + oP (1),

where S
1/2
T is such that ST = S

′−1/2
T S

−1/2
T and M = S

−1/2
T ĴT [Ĵ ′

T S−1
T ĴT ]−1Ĵ ′

T S
′−1/2
T which is a projection

matrix, hence idempotent and of rank (K − p). The expected result follows. �

Proof of Proposition 4.1 (Equivalence between CU-GMM and efficient GMM): The first-order conditions
of the CU-GMM optimization problem can be written as follows (see Antoine et al., 2007):

√
T

∂φ̄′
T

(
θ̂CU
T

)
∂θ

S−1
T

(
θ̂CU
T

)√
T φ̄T

(
θ̂CU
T

)− P
√

T
∂φ̄′

T

(
θ̂CU
T

)
∂θ

S−1
T

(
θ̂CU
T

)√
T φ̄T

(
θ̂CU
T

) = 0,

where P is the projection matrix onto the moment conditions. Recall that:

P
√

T
∂φ̄

(j )
T

(
θ̂CU
T

)
∂θ

= Cov

(
∂φ̄

(j )
T

(
θ̂CU
T

)
∂θ

, φ̄T

(
θ̂CU
T

))
S−1

T

(
θ̂CU
T

)√
T φ̄T

(
θ̂CU
T

)
.

With a slight abuse of notation, we define conveniently the matrix of size (p, K2) built by stacking
horizontally the K matrices of size (p,K), Cov(∂φ̄j,T (θ̂CU

T )/∂θ, φ̄T (θ̂CU
T )), as

Cov

(
∂φ̄′

T

(
θ̂CU
T

)
∂θ

, φ̄T

(
θ̂CU
T

)) ≡
[

Cov

(
∂φ̄

(1)
T

(
θ̂CU
T

)
∂θ

, φ̄T

(
θ̂CU
T

))

· · · Cov

(
∂φ̄

(j )
T

(
θ̂CU
T

)
∂θ

, φ̄T

(
θ̂CU
T

)) · · · Cov

(
∂φ̄

(K)
T

(
θ̂CU
T

)
∂θ

, φ̄T

(
θ̂CU
T

))]
.

Then, we can write:

P
√

T
∂φ̄T

(
θ̂CU
T

)
∂θ

= Cov

(
∂φ̄′

T

(
θ̂CU
T

)
∂θ

, φ̄T

(
θ̂CU
T

)) (
IdK ⊗

[
S−1

T

(
θ̂CU
T

)√
T φ̄T

(
θ̂CU
T

)])
.

Pre-multiply the above FOC equations by the invertible ( p, p)-matrix �−1
T R′ to get:

�−1
T R′√T

∂φ̄′
T

(
θ̂CU
T

)
∂θ

S−1
T

(
θ̂CU
T

)√
T φ̄T

(
θ̂CU
T

)− �−1
T R′ Cov

(
∂φ̄′

T

(
θ̂CU
T

)
∂θ

, φ̄T

(
θ̂CU
T

))

×
(
IdK ⊗

[
S−1

T

(
θ̂CU
T

)√
T φ̄T

(
θ̂CU
T

)])
S−1

T

(
θ̂CU
T

)√
T φ̄T

(
θ̂CU
T

) = 0. (A.3)

(i) Special case with the same weakness (λT ) or all moment conditions:
√

T φ̄T (θ̂CU
T ) = λT ρ(θ̂CU

T ) +
�T (θ̂CU

T ), where �T (θ ) ⇒ �(θ ), a Gaussian stochastic process on �. Consider a Gaussian random variable
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U to rewrite the second term of the LHS of equation (A.3) as follows:

R′ Cov

(
∂φ̄′

T

(
θ̂CU
T

)
∂θ

, φ̄T

(
θ̂CU
T

)) (
IdK ⊗

[
S−1

T

(
θ̂CU
T

)√
T φ̄T

(
θ̂CU
T

)])
S−1

T

(
θ̂CU
T

)

×
[
ρ
(
θ̂CU
T

)− 1

λT

U

]
= oP (1),

because we have: (IdK ⊗ [S−1
T (θ̂CU

T )
√

T φ̄T (θ̂CU
T )]) = OP (1) and [ρ(θ̂CU

T ) − 1
λT

U ] = oP (1). And, we
conclude that CU-GMM is equivalent to efficient GMM.

(ii) Consider now two groups of moment conditions with rates
√

T and λT :

√
T φ̄T

(
θ̂CU
T

) =
(√

T Idk1 0

0 λT Idk2

)
ρ
(
θ̂CU
T

)+ �T

(
θ̂CU
T

)
.

The second term of the LHS of equation (A.3) can be separated into two pieces: the first one involves a
Gaussian random variable V and the second one ρ(.). First:

�−1
T R′ Cov

(
∂φ̄′

T

(
θ̂CU
T

)
∂θ

, φ̄T

(
θ̂CU
T

)) (
IdK ⊗

[
S−1

T

(
θ̂CU
T

)√
T φ̄T

(
θ̂CU
T

)])
S−1

T

(
θ̂CU
T

)
V

︸ ︷︷ ︸
OP (1)

= oP (1).

Second, recall that we have:(√
T Idk1 0

0 λT Idk2

)
ρ
(
θ̂CU
T

) =
(√

T Idk1 0

0 λT Idk2

)
ρ
(
θ̂CU
T

) =
[√

T ρ1

(
θ̂CU
T

)
λT ρ2

(
θ̂CU
T

)
]

and define the matrix

R′ Cov

(
∂φ̄′

T

(
θ̂CU
T

)
∂θ

, φ̄T

(
θ̂CU
T

)) (
IdK ⊗

[
S−1

T

(
θ̂CU
T

)√
T φ̄T

(
θ̂CU
T

)])
S−1

T

(
θ̂CU
T

)

≡ A =
(

A11 A12

A21 A22

)
,

where Aij = OP (1) for any 1 ≤ i, j ≤ 2 with respective sizes: (s 1, k1) for A11; (s 1, k2) for A12; (p − s 1,
k1) for A21; and (p − s 1, k2) for A22. Then the second term writes:

�−1
T

(
A11 A12

A21 A22

)[√
T ρ1

(
θ̂CU
T

)
λT ρ2

(
θ̂CU
T

)
]

=

⎡
⎢⎢⎣

A11ρ1

(
θ̂CU
T

)+ λT√
T

A12ρ2

(
θ̂CU
T

)
√

T

λT

A21ρ1

(
θ̂CU
T

)+ A22ρ2

(
θ̂CU
T

)
⎤
⎥⎥⎦ .

And we have:

A11ρ1

(
θ̂CU
T

) = OP (1) × OP

(
1

λT

)
= oP (1)

λT√
T

A12ρ2

(
θ̂CU
T

) = λT√
T

× OP (1) × OP

(
1

λT

)
= oP (1)

A22ρ2

(
θ̂CU
T

) = OP (1) × OP

(
1

λT

)
= oP (1)

√
T

λT

A21ρ1

(
θ̂CU
T

) =
√

T

λT

× OP (1) × OP

(
1

λT

)
= OP

(√
T

λ2
T

)
.

Hence, to get the equivalence between CU-GMM and efficient GMM, we need the nearly-strong

identification condition, that is: λ2
T /

√
T

T→ ∞. �
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