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Abstract

The existing asymptotic theory for estimators obtained by simulated mini-

mum distance does not cover situations in which the number of components of the

auxiliary statistics (or number of matched “moments”) is large - typically larger

than the sample size. We establish the consistency of the simulated minimum

distance estimator in this situation and derive its asymptotic distribution.

Our estimator is easy to implement and allows us to exploit all the infor-

mational content of a large number of auxiliary statistics without having to,

(i) know these functions explicitly, or (ii) choose a priori which functions are

the most informative. As a result, we are able to exploit, among other things,

long-run information. We illustrate the implementation of the proposed method

through Monte-Carlo simulation experiments based on small- and medium-scale

New Keynesian models. These examples highlight how to conveniently exploit

valuable information from matching a large number of impulse responses includ-

ing at long-run horizons.
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1 Introduction

Estimation methods based on simulation with auxiliary statistics (or SAS) have become

very popular to estimate the underlying parameters of complex structural models, and

include such estimators as Indirect Inference (I-I, Gouriéroux et al. (1993)), Simulated

Method of Moments (Duffie and Singleton (1993), Smith (1993)), or Efficient Methods

of Moments (Gallant and Tauchen (1996)); see Forneron and Ng (2018) and associated

references for a recent review. These estimation procedures have the advantage of

bypassing the characterization of a likelihood function - often difficult to obtain for

complex models - by focusing instead on “matching” auxiliary statistics chosen to

summarize key features of the data generating process of interest. More specifically,

these estimators are obtained by minimizing the distance between the auxiliary statistic

computed with observed data and an average of the auxiliary statistics computed with

simulated data for a given parameter value.

The main objective of this paper is to extend the above-mentioned SAS or I-I esti-

mation procedures when a large number of auxiliary statistics is available to estimate

the finite dimensional parameter of interest, so-called simulation with many auxiliary

statistics or SMAS. We consider cases where the number of components of the vector

of auxiliary statistics is large and typically larger than the sample size. Our framework

offers two main advantages. First, the practitioner does not need to select a priori

a small number of auxiliary statistics. In general, it is actually difficult to determine

which statistics are most informative. Second, long-run information can easily be in-

corporated: for example, the long-run dynamic responses of macro variables to unitary

shocks contain information that can be harvested by including their impulse responses

at large horizons in the auxiliary statistics.

With a finite dimensional vector of auxiliary statistics denoted ψ̂, a SAS or I-I

based estimator minimizes the L2 distance between ψ̂ and an average of the auxiliary

statistics computed with simulated data for given parameter value θ, say ψ̂s(θ). When

the number of matched auxiliary statistics becomes large, the norm is rather deter-

mined in a Hilbert space and requires the introduction of an operator. We establish

the consistency of the associated SMAS-based estimator in this situation and derive its

asymptotic distribution. We also derive the optimal (covariance) operator that delivers

asymptotic efficiency and design a bootstrap-based procedure to estimate it. To im-

plement our efficient estimator, it is necessary to invert the optimal operator which is

highly unstable due to the large number of underlying auxiliary statistics. We rely on

Tikhonov regularization to stabilize its inverse, and design a cross-validation procedure
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to choose the associated tuning parameter. Even if, in practice, the number of auxiliary

statistics is finite, our theory, developed for an infinite number of auxiliary statistics,

remains relevant. Indeed, in many applications1, the number of auxiliary statistics

one would like to include is large - sometimes larger than the sample size - leading to

invertibility and computational issues that can be dealt with by the above-mentioned

regularization approach.

Our paper contributes to the literature on minimum distance estimation of a finite-

dimensional vector of parameters when a large number of moments is available. We

build on Carrasco and Florens (2000) who extend the generalized method of moments

procedure to the case of a continuum of moment conditions.2 We consider instead

auxiliary statistics that are not always moments, and that are not necessarily known

analytically but rather simulation-based. In that sense, our work is also related to sec-

tion 5 in Carrasco et al. (2007) where the authors explain how to handle characteristic-

function based estimation when the characteristic function is not available in closed

form (e.g. because the model involves latent variables). In such a case, ML efficiency

is still achievable and the associated optimal operator is obtained through the same

kernel-based estimation as with a tractable characteristic function. We instead need to

design a bootstrap procedure to estimate the optimal operator. Further, it is impor-

tant to mention that our interest in considering a large number of auxiliary statistics

is not directly related to efficiency in the sense that we have no hope of achieving the

Cramer-Rao efficiency bound in the complex structural models we have in mind - even

with such a large number of matched auxiliary statistics. Our motivation to consider

a large number of statistics stems from two main practical reasons: (i) to avoid the ad

hoc pre-selection of a small number of statistics; (ii) to incorporate information from

the DGP that can only be harvested - as far as we know - from allowing a large number

of auxiliary statistics: e.g. by letting the horizon of matched impulse responses grow

to infinity to incorporate long-run dynamic responses of key macro variables.

We illustrate the implementation and performance of our proposed estimator through

Monte-Carlo simulation experiments based on two well-known small- and medium-

scale New Keynesian models. Our large number of auxiliary statistics corresponds

to the dynamic responses of key macro indices (such as inflation and interest rate)

at various horizons (including long ones) after a monetary shock: these impulse re-

1In the context of impulse response matching - as considered in our numerical illustrations -
Fève et al. (2009) highlight that e.g. the number of included impulse responses is much larger than
the number of estimated parameters, leading to collinearity and invertibility issues.

2See also Guay and Pelgrin (2023) for results in the frequency domain.
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sponses are not known in closed form and are rather obtained by simulation. Our

examples show how to incorporate long-run information that can be used to im-

prove the precision of estimates of structural parameters of interest. Our paper then

contributes to the literature on impulse response matching estimation as done in

Christiano et al. (2005), Inoue and Kilian (2013), Guerron-Quintana et al. (2017), or

Sokullu (2020). More specifically, Guerron-Quintana et al. (2017) consider VAR-based

impulse response matching estimation of the parameters of dynamic stochastic equi-

librium (DSGE) models when the number of impulse responses exceeds the number

of VAR model parameters, but remains fixed. We extend Guerron-Quintana et al.

(2017) to allow the number of components of the chosen auxiliary statistic to be in-

finitely large. In our Monte-Carlo experiments, we illustrate how the performance

of their procedure deteriorates when a large number of “moments” is matched. And,

more importantly, how long-run information can easily be incorporated to estimate the

structural parameters with our proposed SMAS. Sokullu (2020) considers the problem

of impulse response (IR) matching with many statistics in DSGE models when these

IRs are available in closed-form, and also relies on Tikhonov regularization to obtain

the operator. Our framework extends hers to the case where underlying macro models

are too complex to obtain closed-form solutions. In addition, we propose a bootstrap

procedure to compute the optimal covariance operator.

Our paper is organized as follows. In section 2, we introduce our framework and esti-

mator. In sections 3 and 4, we derive its asymptotic properties and design a simulation-

based approach to compute the optimal operator in practice. In section 5, we illustrate

its implementation through Monte-Carlo simulation experiments based on New Keyne-

sian models where we match a large number of impulse responses, including long-run

ones. Section 6 concludes. Proofs, tables of results and graphs are collected in the

Appendix, as well as in a Supplementary Appendix.

2 Framework and notations

We first introduce our framework and notations through a brief review of the traditional

SAS or I-I based estimation procedure. It can be understood as an extension of classical

minimum distance estimation (such as GMM) when the underlying “moments” are not

analytically tractable, but can easily be evaluated on simulated data.

Consider the sample of observed data of length T denoted XT = (x1, · · · , xT )′. We

assume throughout that XT are stationary and can be represented by a parametric
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model with probability measure Pθ0 where θ0 ∈ Θ ⊂ R
p. In that sense, our interest

lies in estimating θ0 the “true” unknown value of the parameter θ that has generated

the data. SAS or I-I based estimation traditionally relies on matching a vector of

H ≥ p auxiliary statistics ψ̂T ≡ ψ̂(XT ) evaluated at the observed data XT with its

counterpart evaluated on simulated data ψ̂sT (θ) ≡ ψ̂s(X s
T (θ)) where X s

T (θ) ≡ X s
T (ǫ

s, θ)

represents a sample of T simulated data for given θ with errors ǫs drawn from an

assumed distribution Fǫ. The SAS or I-I estimator is then defined by minimizing the

L2 norm between ψ̂T and ψ̂sT (θ), specifically
3:

argmin
θ∈Θ

[
z′T (θ)WT zT (θ)

]
with zT (θ) = ψ̂T − 1

S

S∑

s=1

ψ̂sT (X s
T (θ)) ,

for some (H,H) weighting matrix WT that converges to a positive-definite matrix W .

We now propose to generalize SAS or I-I based estimation to allow for a large (pos-

sibly infinite) number of auxiliary statistics to be matched to estimate θ. Accordingly,

we introduce the “distance” function, zT (., θ), the real-valued function defined over the

set of integers4 N which corresponds to the difference between the auxiliary statistic

computed on observed and simulated data. Intuitively, we are looking for the value

of θ that will make zT (., θ) as close as possible to 0. Following Carrasco and Florens

(2000) - and forgetting for the time being that zT (.) is not analytically tractable - the

appropriate norm is defined in the Hilbert space of square-integrable real-valued func-

tions through a linear operator denoted B. Our estimator based on simulation with

many auxiliary statistics (or SMAS) is defined as

θ̂SMAS ≡ argmin
θ∈Θ

‖BT zT (., θ)‖ with zT (h, θ) = ψ̂T (h)−
1

S

S∑

s=1

ψ̂sT (h,X s
T (θ)) ∀h ∈ N ,

where BT converges to B. The introduction of the Hilbert space (and associated

operator B) provides a convenient framework that allows the information contained in

the entire function z(., θ) to be harvested - rather than evaluating it at a small number

of chosen points, say [zT (h1, θ), zT (h2, θ), · · · , zT (hJ , θ)]. Compared to the literature

that relies on “many instruments”, when J → ∞, our framework also avoids having to

3It is common practice to consider the average of ψ̂s(θ) obtained with S simulated paths X s
T (θ)

(s = 1, · · · , S); however S can be as small as 1 as discussed in Gouriéroux et al. (1993).
4For ease of exposition, we present our results with a function z(., θ) defined over the set of integers.

However, our results are not restricted to this particular indexation and can be extended to e.g.
h ∈ [0, 1]; see related discussions in Carrasco and Florens (2000).
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specify the growth rate of J in relation to the sample size T .

For example, the impulse response matching estimator of Guerron-Quintana et al.

(2017) relies on a finite vector of auxiliary statistics chosen as the first J impulse re-

sponses of key macro variables: hence, zT (θ) is a vector of size J with components

zT (h, θ) with h = 1, · · · , J . Such an estimator focuses on the short-run dynamic be-

havior of these macro variables. We consider instead infinitely many impulse responses

to incorporate the long-run dynamic behavior of these variables through z(h, θ) for

any h ∈ N. In our simulation study in section 5, we show that long-run information is

valuable and how it can easily be used to estimate the structural parameters of interest.

3 Asymptotic properties of the SMAS estimator

In this section, we present our main theoretical results, namely consistency and asymp-

totic normality of our SMAS estimator.

3.1 Consistency of the SMAS estimator

Let X be a random element defined on a complete probability space (Ω,F , P0) which

can be represented by a parametric model with probability measure P0 ≡ Pθ0 where

θ0 ∈ Θ ⊂ R
p. X takes its values in (S,S).

Assumption 1. (Data Generating Process)

The observed sequence XT = (x1, . . . , xT ) is a stationary realization of the stochastic

process X.

To formally characterize the simulated data X s
T (θ), let (Ω

s,F s, P s) denote the as-

sociated probability space, and let Xs be a random element defined on the product

probability space (Ω,F , P0)× (Ωs,F s, P s) that takes its values in (Ss,Ss). The joint

probability measure is denoted P ≡ P0 × P s.

Definition 1. (Simulator)

For a fixed vector θ of size p, X s
T (θ) ≡ X s

T (ǫs, θ) denotes a sample of size T of data

simulated under θ with errors ǫs drawn from an assumed distribution Fǫ independently

from XT .

Several comments are worth mentioning.

(i) Strictly speaking, our simulator is not assumed to coincide exactly with the true

model, and we rather have in mind a parametric model that is not “too far” from
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the true DGP: for example, our simulator could be obtained as a reduced form

model of the structural model of interest. Our framework does allow for “small”

(local) deviations between the simulator and the true DGP as formalized by our

regularity assumptions: see e.g. Assumption 7 and associated discussions.

(ii) To simplify our exposition, we maintain throughout that X s
T (θ) are drawn inde-

pendently from the observations XT . This assumption is satisfied in the models

considered in our simulation study in section 5. It would, however, be violated

if the simulated data were drawn conditional on some observed variables: for

example, when the observed data contain some endogenous variables yt and

some exogenous variables wt, so that xt = (yt, wt), the simulator usually de-

livers (ys1, · · · , ysT ) for given θ, (w1, · · · , wT ) and some initial conditions y
0
. See

e.g. Gouriéroux and Monfort (1996) for extensive discussions.

(iii) The parameter of interest (say θ1) is typically a subset of the full set of pa-

rameters θ (with θ = (θ1, θ2)) needed to simulate the chosen auxiliary statistics,

while the remaining parameter θ2 can be seen as a nuisance parameter. To

simplify our presentation, we work on the full vector of parameters θ. For alter-

natives, see Dridi et al. (2007) who introduce the Partial Indirect Inference where

θ2 is estimated, Khalaf et al. (2019) who conduct fully parametric inference in a

DSGE framework where θ2 is known under the null, Khalaf and Saunders (2019)

who derive statistics invariant5 to θ2 for inference in autoregressive panels, and

Antoine et al. (2023) who deliver identification-robust SAS or I-I based inference

on θ and allow θ2 to be approximately calibrated in the sense that it may not be

correctly calibrated.

Our estimation strategy consists in matching the chosen auxiliary statistic com-

puted on observed data with that computed on simulated data. To formalize our anal-

ysis, we introduce the real-valued distance function z(., θ) as the difference between the

(population) function of interest denoted ψ(.) and its simulation-based counterpart de-

noted ψs(.). The function ψ(.) implicitly depends on the DGP X , while the function

ψs(.) depends on the simulator Xs and the associated vector of parameters θ.

Definition 2. (Distance function)

The distance function z(.) is defined on (N× S × Ss ×Θ) as

5As models’ complexity increases, invariant statistics are typically hard to come by: for example
in models such as DSGE.
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z(h,X,Xs, θ) ≡ ψ(h,X)− ψs(h,Xs, θ) .

It is important to mention that ψ(.) is not itself random, as it rather corresponds to

the population function of interest. To fix ideas, consider the following two examples:

- when matching moments of X , ψ(h,X) corresponds to the moment of order h of

X computed with respect to P0;

- when matching structural impulse responses - as in our simulation study - ψ(h,X)

corresponds to the dynamic response of interest at horizon h which can be ex-

pressed implicitly as a function of the first and second moments of X ; see e.g.

discussions in Guerron-Quintana et al. (2017) p146.

Our analysis requires the introduction of H , the Hilbert space of square-integrable

real-valued functions defined over the set of integers with the inner product (., .) and

associated norm ‖.‖. Specifically, the inner product is defined6 as

(f, g) =
∑

j∈N
fjgj .

Assumption 2. (Regularity of the auxiliary statistics)

(i) As a function of h ∈ N, the distance function z(.) (see Definition 2) belongs to

the Hilbert space H. It is also a measurable function of (h,X,Xs) for any θ, and

it is continuous in θ, ∀θ ∈ Θ ⊂ R
p with Θ compact. When there is no confusion,

we simply write z(., θ) or z(θ).

(ii) The equation, z(h, θ) = 0, ∀h ∈ N, has a unique solution θ0 in the interior of Θ.

Assumption 2(i) requires z(., θ) to be square-integrable (as an element of the Hilbert

space H). Assumption 2(ii) is an identification assumption7: intuitively, θ0 is the only

value of the (unknown) parameter θ that allows for a “perfect match” between ψ(.)

and ψs(.) for all possible values of h.

Assumption 3. (Operator)

6Our setup implicitly rules out applications where z(.) is not square-integrable. Alternatively, we
could consider square-integrability with respect to a given probability measure, which would alter the
definition of the inner product. In our applications of interest, z(.) is indeed square-integrable (see
e.g. Appendix B.1.1), and we proceed without introducing such a probability measure.

7See Antoine et al. (2023) for identification-robust simulation-based matching inference with a
finite number of auxiliary statistics.
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(i) B is a nonrandom, bounded linear operator defined on D(B) ⊂ H valued in H.

The operator does not depend on θ but may depend on θ0.

(ii) z(., θ) ∈ D(B) ∀θ ∈ Θ.

(iii) Bz(., θ) = 0 ⇔ θ = θ0.

Assumption 3 maintains regularity assumptions on the operator B to ensure that

the population objective function (or the norm of the operator applied to z) is well-

defined and uniquely minimized at θ0. Notice that B is not assumed to be non-singular,

and, indeed, we allow its null space N(B) to contain (other) non-zero elements, as

N(B) = {0} is rarely satisfied; see e.g. Remark 1 in Carrasco and Florens (2000)

for additional discussions and examples. When B is assumed non-singular, its null

space is equal to {0}, and Assumption 3 simplifies as (iii) becomes redundant: B non-

singular, together with Assumption 2(ii), ensures that the equation Bz(, θ) = 0 has a

unique solution. In the finite dimensional case, such a condition reduces to a full rank

assumption on the weighting matrix B′B.

Assumption 4. (Sample counterparts of the operator and objective function)

(i) Let BT be a sequence of random bounded linear operators, BT : D(BT ) ⊂ H → H.

Let zT (., θ) denote the sample counterpart of z(., θ), that is the difference between

the estimated auxiliary statistics obtained with observed and simulated data. We

assume that zT (., θ) ≡ zT (.,XT ,X s
T , θ) ∈ D(BT ), ∀θ and that

QT (θ) ≡
∥∥BT zT (., θ)

∥∥ is a continuous function of θ.

(ii) QT (θ)
P→ Q0(θ) ≡

∥∥Bz(., θ)
∥∥ uniformly in θ ∈ Θ.

Assumption 4(i) guarantees the continuity of the objective function in θ whereas

(ii) implies that the empirical weighted distance converges to its population value.

Theorem 1. (Consistency of the SMAS estimator)

Under Assumptions 1 to 4, the SMAS estimator θ̂SMAS is consistent for θ0, that is,

θ̂SMAS
P−→ θ0 with θ̂SMAS ≡ argmin

θ∈Θ
QT (θ) . (1)

3.2 Asymptotic distribution

In order to derive the asymptotic distribution of our SMAS estimator, additional reg-

ularity conditions are needed.
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Assumption 5. (Differentiability)

(i) The function θ → z(h, θ) is differentiable with respect to θ with

Gj(., θ) ≡ ∂z(., θ)/∂θj ∈ D(B) for j = 1, · · · , p.

(ii) The (p, p)-matrix
(
BG(., θ), BG(., θ)

)
=
∥∥BG(., θ)

∥∥2
with element (i, j) defined

as (BGi(., θ), BGj(., θ)) (for i, j = 1, · · · , p), is positive definite and symmetric.

Assumption 6. (Commutativity)

(i) For any functions u(., θ) and v(., θ) in H, we have:

∂

∂θ′
(u(., θ), v(., θ)) =

( ∂

∂θ′
u(., θ), v(., θ)

)
+
(
u(., θ),

∂

∂θ′
v(., θ)

)
.

(ii) B and BT commute with the differential operator, that is

∂[Bu(., θ)]/∂θ′ = B[∂u(., θ)/∂θ′] for any function u(., θ) ∈ D(B).

Assumption 5 guarantees first-order identification (see e.g. Sargan (1983)), while

Assumption 6 imposes further regularity conditions needed to derive the asymptotic

properties of our estimator.

Assumption 7. (Convergence in norm and Functional convergence)

(i) Define ‖B‖ = sup
‖f‖≤1

‖Bf‖. We have: ‖BT − B‖ → 0 in probability.

(ii)
√
TzT (., θ0)

d→ Z ∼ N (0, K) on H as T goes to infinity. Z is the Gaussian

random element of H that has mean zero and covariance operator K. In addition,

Z ∈ D(B) with probability 1.

Assumption 7 is key to ensure that BT (
√
TzT (., θ0)) is well-behaved asymptotically.

Sufficient conditions to ensure the functional convergence of the H-valued random

element zT (., θ0) maintained in Assumption 7(ii) include e.g. mixing conditions: see

Chen and White (1998). As previously mentioned, our framework allows for “small”

deviations between the simulator and the true DGP which can be understood as a

certain form of local misspecification. For example, the estimated auxiliary statistics

obtained with observed and simulated data do not have to converge to the (same)

limit, say ψ0, as long as their difference zT converges to zero sufficiently fast to ensure

Assumption 7(ii) holds. These local deviations do not affect the computation of our

estimator or the estimation of K as explained in Section 4.
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Theorem 2. (Asymptotic distribution of SMAS)

Under Assumptions 1 to 7,
√
T (θ̂SMAS − θ0)

d−→ N (0, V ), where

V =
∥∥BG(θ0)

∥∥−2 (
BG(θ0), (BKB

′)BG(θ0)
)∥∥BG(θ0)

∥∥−2
with B′ the adjoint of B.

The asymptotic covariance V depends on the number of simulated paths8 through

the covariance operator K. In addition, V displays the typical “sandwich form”, which

should yield the optimal choice of the operator B as the one such that BKB′ equals

the identity operator with associated V =
∥∥BG(θ0)

∥∥−2
. Unfortunately, one cannot

directly choose B as the inverse of K1/2, since it does not satisfy Assumption 3 and

BT (
√
TzT (., θ0)) would not be well-defined asymptotically in the Hilbert space9.

Next, we explain how to obtain valid inference on θ̂SMAS using a block-bootstrap

resampling scheme, before returning to the choice of the (optimal) operator B and the

computation of the associated optimal SMAS estimator.

4 Practical implementation of the SMAS estimator

In this section, we first explain how to obtain valid inference on θ̂SMAS using a block-

bootstrap resampling scheme. Then, we explain how to compute the (optimal) SMAS

estimator which requires: (i) estimating the kernel operator K and (ii) computing

its inverse which is ill-behaved and needs to be regularized. Finally, we derive its

asymptotic properties and propose a data-driven procedure to select the associated

regularization parameter.

4.1 Bootstrap-based inference for θ̂SMAS

In practice, we do not recommend direct estimation of the asymptotic variance of θ̂SMAS

derived in Theorem 2 for two main reasons. First, it depends on the derivative of a

function that is not known in closed-form. This is actually related to our framework

of interest where auxiliary statistics are not known in closed-form. Second, even if

these were available, it is well-documented that the asymptotic distribution of standard

minimum distance estimators such as GMM or Indirect Inference may not accurately

reflect finite-sample performance. To this end, we propose a bootstrap approach.

8The multiplying factor (1+1/S) - well-known for indirect inference estimation - can be extracted
under the maintained assumptions that the S paths X s

T (s = 1, · · · , S) are generated independently
of XT and of each other, and that ψT and ψs

T share the same distribution.
9This issue is not specific to our framework; see e.g. Remark 4 in Carrasco and Florens (2000).
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The block bootstrap methodology is a general resampling scheme applicable to

time series data obeying a weak dependence structure; see e.g. Lahiri (2003) for

an overview. Gonçalves and White (2004) provide a unified framework for analyz-

ing bootstrapped extremum estimators of nonlinear dynamic models for heterogeneous

dependent stochastic processes. They prove the first-order asymptotic validity of the

bootstrap approximation to the true distribution of quasi-maximum likelihood estima-

tors (QMLE) for a broad class of models and data generating processes. Even though

Gonçalves and White (2004) focus on QMLE, they explain that their results can be

applied to prove the validity of bootstrap methods for other extremum estimators -

such as ours10. Indeed, the key lemmas which are used to prove their two main theo-

rems are written for a general objective function. We verify that, under our maintained

assumptions, these lemmas can be applied to our objective function.

To formalize our analysis, we follow Gonçalves and White (2004) (see their Ap-

pendix A). Given our (product) probability space (Ω,F , P0)× (Ωs,F s, P s) introduced

in section 3 and our observed sample XT of size T , X ∗
T is viewed as a realization of

a stochastic process defined on another probability space (Ω∗,F∗, P ∗). X ∗
T actually

depends on two sources of randomness, one related to the observed data and the other

related to the bootstrap mechanism. When the joint randomness is of interest, the

bootstrap statistic can be viewed as being defined on the product probability space[
(Ω,F , P0)× (Ωs,F s, P s)

]
× (Ω∗,F∗, P ∗). Recall also that P ≡ P0 × P s. Given any

bootstrap statistic X∗
T , we follow Gonçalves and White (2004) and define:

• X∗
T

P ∗

−→ 0 in prob-P if for any ǫ, δ > 0, P
(
P ∗(

∣∣X∗
T

∣∣ > ǫ) > δ
)
→ 0 as T → ∞.

• X∗
T = OP ∗(1) in prob-P if for any δ > 0, there exists 0 < M <∞ such that

P
(
P ∗(

∣∣X∗
T

∣∣ ≥M) > δ
)
→ 0 as T → ∞.

• X∗
T

d∗−→ X∗ in prob-P if E∗g(X∗
T ) → EPg(X

∗) in prob-P for every continuous and

bounded function g, where E∗(·) is the expectation operator with respect to the

bootstrap probability measure conditional on the data.

Given the original sample XT , let θ̂
∗
T be a bootstrap version of θ̂SMAS defined in

Theorem 1 solving:

θ̂∗T = argmin
θ∈Θ

Q∗
T (θ) where Q∗

T (θ) = ‖BT z
∗
T (., θ)‖ = ‖BT zT (.,X ∗

T ,X s
T , θ)‖ ,

10We thank Śılvia Gonçalves for helpful discussions.
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with X ∗
T bootstrap data generated by block bootstrap (with blocks of length ℓ) as

explained in Gonçalves and White (2004); see also Appendix A.3 for details on the

block bootstrap methods implemented in Section 5.

Theorem 3. Under Assumptions 1 to 7,

(i) if ℓ→ ∞ and ℓ = o(T ), then θ̂∗T − θ̂SMAS
P ∗

→ 0 in prob-P.

(ii) if ℓ→ ∞ and ℓ = o(
√
T ), then for any ǫ > 0,

P

[
sup
x∈Rp

|P ∗
[√

T (θ̂∗T − θ̂SMAS) ≤ x
]
− P

[√
T (θ̂SMAS − θ0) ≤ x

]
| > ǫ

]
→ 0 .

Theorem 3 justifies using order statistics of the bootstrap distribution to form

percentile confidence intervals for θ0 with asymptotically correct coverage probabilities.

4.2 Optimal SMAS estimator

To obtain the optimal SMAS estimator, the control operator B should be set equal to

the inverse of K1/2 which presents a number of challenges. First, finding the inverse of

the covariance operatorK amounts to solving a Fredholm equation of the first kind in Φ,

KΦ = g, for some known g ∈ L2, which is, in general, an ill-posed problem: that is, the

solution Φ is unstable for small variations of g; see e.g. Wahba (1973), Groetsch (1993),

Carrasco and Florens (2000), Carrasco et al. (2007), and Amengual et al. (2020). To

stabilize the above solution (and the associated inverse of the covariance operator), we

rely on Tikhonov regularization11 and replace the inverse of K by K−1
a ≡ (K2+aI)−1K

for some positive a that converges to 0. Second, the estimation of the covariance

operator K amounts to estimating the covariance between z(h1, θ0) and z(h2, θ0) for

all possible pairs (h1, h2). In practice, we cannot rely on associated sample counterparts

zT (h1, θ0) and zT (h2, θ0) since, in general, they are not known in closed-form (e.g. when

matching impulse responses), and they may actually depend on the entire sample

of observations XT - as well as the entire simulated sample X s
T . As a result, direct

estimation of K is not feasible. We rely instead on a block bootstrap approach to

obtain KT and denote its regularized inverse K−1
T,a. Accordingly, the optimal SMAS

estimator is obtained as:

θ̂optSMAS ≡ argmin
θ

∥∥∥K−1/2
T,a zT (θ)

∥∥∥ . (2)

11Other regularization schemes have been used in practice: see e.g. Carrasco (2012).
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Recall that, by assumption, simulated data X s
T are drawn independently from ob-

servations XT , and that ψ̂T (.) and ψ̂
s
T (.) are close to each other asymptotically. Conse-

quently, K should be well approximated by KT ≡ (1 + 1/S)Kψ
T with Kψ

T the integral

operator with kernel k∗T (h1, h2) that estimates cov(ψ̂T (h1), ψ̂T (h2)). Specifically, K
ψ
T is

obtained using N(T ) bootstrap data of length T (generated independently by block

bootstrap) denoted X n
T (with n = 1, · · · , N(T )) such that

(Kψ
T g)(h1) =

∑

h2

k∗T (h1, h2)g(h2) for any function g ∈ D(KT )

where k∗T (h1, h2) ≡ 1

N(T )

N(T )∑

n=1

[
ψ̂T (h1,X n

T )− ψ
∗
T (h1)

]
×
[
ψ̂T (h2,X n

T )− ψ
∗
T (h2)

]

with ψ
∗
T (h) ≡ 1

N(T )

N(T )∑

n=1

ψ̂T (h,X n
T ) .

Notice that KT (or KT,a) does not directly depend on θ or ψ̂sT . Further, the compu-

tation of the optimal objective function greatly simplifies in practice when the number

of bootstrap samples N(T ) can be chosen larger than the effective number of values of

h, say H̃, selected to compute the SMAS estimator - and that, even when H̃ is larger

than T , the sample size. In Section 5, the number of bootstrap samples is always

larger than the number of matched impulse responses: e.g. in our baseline experiment

with the small scale New Keynesian model N(T ) = 500, H̃ = 320 and T = 232. The

optimal objective function can then be rewritten as follows:

θ̂optSMAS = argmin
θ

[
ZT (θ)

′(KT + aI)−1KTZT (θ)
]
,

with ZT (θ) the H̃ vector with j-th component zT (hj, θ) and KT the square matrix of

size H̃ with (i, j) component k∗T (hi, hj). When it is not possible to choose N(T ) larger

than H̃ , the objective function is computed by spectral decomposition: we discuss this

extension in Supplementary Appendix S.2.

To derive the asymptotic properties of θ̂optSMAS, Assumptions 3 and 5 need to be

updated, because the regularity properties originally maintained on the operator B

(e.g. boundedness) are not satisfied by the optimal operator. As in Nashed and Wahba

(1974), we let H(K) denote the domain of the operator K−1/2, that is, the reproducing

kernel Hilbert space of K.

Assumption 8. (i) The kernel k associated with the covariance operator K is L2.
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(ii) z(., θ) ∈ H(K) +H(K)⊥ ∀θ ∈ Θ.

(iii) The function θ → z(h, θ) is differentiable with respect to θ with

Gj(., θ) ≡ ∂z(., θ)/∂θj ∈ D(K−1/2) for j = 1, · · · , p.

(iv) The (p, p)-matrix
(
K−1/2G(., θ), K−1/2G(., θ)

)
=

∥∥∥K−1/2G(., θ)
∥∥∥
2

with element

(i, j) defined as (K−1/2Gi(., θ), K
−1/2Gj(., θ)) (for i, j = 1, · · · , p), is positive

definite and symmetric.

We maintain that k(.) is an L2-kernel, which requires that,

∑

h1

∑

h2

k(h1, h2)
2 <∞ .

Since k(.) corresponds to the (asymptotic) covariance of zT (., θ0), sufficient conditions

are well-known, including e.g. boundedness and mixing conditions maintained on

zT (., θ0) in Assumption 7. It implies that the underlying covariance operator K is

a Hilbert-Schmidt operator. In our proofs, we rely on the fact that: (i) the associ-

ated (Hilbert-Schmidt) norm is finite; and (ii) K can be approached by a sequence

of bounded operators. Next, we introduce additional (high-level) regularity assump-

tions to ensure that population quantities (such as the covariance operator K) can be

appropriately estimated by bootstrap.

Assumption 9. (i)
√
T
(
zT (., θ0)− z∗T (., θ0)

)
= oP ∗(1) in prob-P.

(ii)
∥∥zT (., θ)− z(., θ)

∥∥ = OP(
1√
T
) uniformly in θ ∈ Θ;

(iii)
∥∥z∗T (., θ)− zT (., θ)

∥∥ = OP ∗( 1√
T
) in prob-P uniformly in θ ∈ Θ;

(iv)
∥∥∥∂zT (.,θ)

∂θ
− ∂z(.,θ)

∂θ

∥∥∥ = OP(
1√
T
) uniformly in θ ∈ Θ;

(v)
∥∥∥∂z

∗

T
(.,θ)

∂θ
− ∂zT (.,θ)

∂θ

∥∥∥ = OP ∗( 1√
T
) in prob-P uniformly in θ ∈ Θ.

Next, we present the asymptotic properties of the optimal SMAS estimator.

Theorem 4. (Asymptotic behavior of the optimal SMAS estimator)

Under Assumptions 1, 2, 4, and 6 to 9, the optimal SMAS estimator defined in (2)

is
√
T -consistent and asymptotically normally distributed with mean zero and variance∥∥∥K−1/2G(θ0)]

∥∥∥
−2

, as T → ∞,
√
Ta3/2 → ∞, a→ 0.
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To select the regularization parameter a, we develop a data-driven selection proce-

dure. In Appendix A.2, we explain how to choose the parameter c by cross-validation

where a ≡ c/T ν with given 0 < ν < 1/3 and the rate of decay of a to 0 is motivated

by our theoretical (asymptotic) results for the optimal SMAS in Theorem 4.

Algorithm 1 in Appendix A explains how to compute our optimal estimator θ̂optSMAS

in practice. To obtain valid inference on θ̂optSMAS, we recommend using the bootstrap

approach highlighted in section 4.1 after replacing BT by K
−1/2
T,a .

5 Simulation study

We illustrate the small sample properties of the SMAS estimator by revisiting two

well-known small- and medium-scale New Keynesian models. As a robustness check,

we also consider a baseline stylized DSGE model where the IRs are known analytically.

5.1 Small-scale New Keynesian model with 2 indices

We first revisit the small-scale New Keynesian model of Guerron-Quintana et al. (2017)

and focus on the estimation of the price stickiness. In the model, π, R, and x denote

respectively, inflation rate, interest rate, and output gap:

πt = κxt + βEt(πt+1) (Phillips Curve)

Rt = ρrRt−1 + (1− ρr)φππt + (1− ρr)φxxt + ξt (Taylor rule)

xt = Et(xt+1)− σ[Et(Rt)− Et(πt+1)− zt] (Investment-Savings)

zt = ρzzt−1 + σzǫzt (real output shock)

ξt = σrǫrt (monetary policy shock)

and κ ≡ (1− α)(1− αβ)

α

ω + σ

σ(ω + τ)
,

with α the probability to fix price, β the discounting factor, ω the disutility to work,

and σ and τ the elasticities of substitution across time and various commodities. φπ and

φx measure how responsive the central bank is to changes in inflation and output gap.

ǫz and ǫr are white noise processes, independently distributed as standard normals.

The vector of unknown parameters and its true value are, respectively,

θ = (α, β, ω, σ, τ, ρr , ρz , φπ, φx, σ
z, σr)′ , θ0 = (0.75, 0.99, 1, 1, 6, 0.75, 0.9, 1.5, 0.125, 0.3, 0.2)′ .
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Here, we estimate α, and calibrate all the other parameters to their true value12.

Expectations are history based, and we generate our sample of observations on inflation

and interest rate using Dynare13. The regularity assumptions maintained in Section 3

are discussed in the context of this model in Appendix B.1.1.

Given the sample of T observations on inflation and interest rate, a VAR(p) model

is estimated (see Appendix C). Based on the estimated VAR(p) model, associated

transition matrix, residuals and impulse responses14 of chosen horizons (e.g. from 1

to H) are obtained. Since in each period two shocks cast influence on two indices,

a total of 4 × H impulse responses, denoted ψ̂T , are obtained and matched with the

corresponding impulse responses obtained from simulated data generated for a given

α value, denoted ψ̂sT (α). As explained in section 4.2, we generate (independently) N

bootstrap data of length T (with N > 4H) to compute the covariance operator KT

(which is a square matrix of size 4H). The (optimal) SMAS estimator of α is then

α̂T = argmin
α

[
zT (α)

′(KT + aT I)
−1KT zT (α)

]
with zT (α) = ψ̂T − 1

S

S∑

s

ψ̂sT (α) ,

with aT chosen by cross-validation15. In practice, the optimization problem is solved

by conducting a grid search over potential values of α. Since the probability of the

price stickiness α is naturally bounded between 0 and 1, the grid of candidate values is

set at [0.005, 0.995] with a step of 0.005. See Appendix A for implementation details.

In our baseline experiment, a VAR(2) model is fitted to our sample of T = 232

observations (which corresponds to 58 years of quarterly observations) and impulse

responses are matched up to horizon H - chosen between 20 and 80 (that is, between

5 and 20 years with quarterly data) - for a total of 4H matched impulse responses:

in other words, we are matching between 80 and 320 impulse responses, therefore

considering cases where it exceeds our sample size. For the estimation of the optimal

operator and its inverse, we generate N = 500 bootstrap samples.

We consider four SMAS estimators, computed with the optimal operator and the

12Recent work by Antoine et al. (2023) allows parameters to be incorrectly calibrated
13Dynare is a software platform for handling a wide class of economic models, in particular dynamic

stochastic general equilibrium (DSGE). It is used to generate our sample of observations according to
the structural model given the true model parameters.

14We focus here on matching (so-called) structural impulse responses (see details in Appendix C).
However, our procedure can easily accommodate other (dynamic) responses such as local projections
(see e.g. Jordà (2005) and more recently Plagborg-Møller and Wolf (2021)), or nonlinear impulse
responses (see Goncalves et al. (2021)).

15As explained in Appendix A.2, our cross-validation is implemented using the following grid of
candidates C = [2, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0001].

17



diagonal one16 - with and without regularization - and the two estimators proposed by

Guerron-Quintana et al. (2017) (hereafter GIK), respectively with the optimal weight-

ing matrix and the diagonal one. Tables 1 to 4 summarize the performance of these

estimators in terms of Monte-Carlo average (mean), standard deviation (SD), Root

Mean Squared Error (RMSE), Mean Absolute Deviation (MAD), and effective cover-

age rates of 95% and 90% confidence intervals obtained over 1,000 Monte-Carlo repli-

cations. Figures 2 and 3 display the Monte-Carlo histograms of these estimators. We

match: (i) a medium number of IR (up to H = 20) in Table 1; (ii) a large number of

IR (up to H = 80) in Table 2 and Figure 2; (iii) a small number of IR (up to H = 2

and 8) in Table 3 and Figure 3. In Table 4, we report results obtained with a sample of

only 100 observations (or 25 years of quarterly data) when matching up to H = 20 and

80. The bootstrap samples are obtained by block-bootstrap resampling as explained

in Appendix A.3.

• Regularized SMAS vs non-regularized SMAS:

Overall, the regularized estimator behaves much better than the non-regularized one

according to all reported measures of performance (including RMSE and MAD) when

matching a medium to large number of IR. The Monte-Carlo distribution of the reg-

ularized SMAS is accordingly much better behaved than that of the non-regularized

one: specifically, the distribution is closer to being symmetric around the true unknown

parameter value, more concentrated around it, and closer to being bell-shaped.

When matching a small number of IR (e.g. 2), the SMAS estimators with and without

regularization are very close to each other, with the non-regularized one only slightly

better in terms of bias, but not in terms of SD or RMSE. This suggests that there is

little to no drawback in applying regularization, even when it is not needed. Since, in

practice, it is not always clear how to determine whether regularization is needed or

not, we recommend to always implement SMAS estimation with regularization.

• Optimal vs Diagonal operator:

Overall - and as predicted by theory - the performance of SMAS computed with the

optimal operator (hereafter optimal SMAS) is better than that of SMAS computed with

the diagonal operator as it delivers smaller SD and RMSE. However, the differences

remain small, particularly when H is small. Still, when matching up to horizon 80 in

the benchmark model, SD of optimal SMAS is approximately 6.5% smaller.

Notice that this is not the case for GIK: e.g. optimal GIK performs worst than diagonal

GIK (with larger SD, MAD, and RMSE), even with H as small as 8.

16The diagonal operator imposes zeros off-diagonal on KT ; similar labels are used to distinguish
the two estimators from Guerron-Quintana et al. (2017).
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• SMAS vs GIK:

Overall, regularized SMAS estimators behave much better than the GIK estimators, for

all the horizons we consider - even the shorter ones: SMAS outperforms GIK according

to all measures of performance, and displays the smallest bias, MAD, SD and RMSE

throughout - even when considering smaller sample sizes, or H = 2. In addition,

effective coverage rates are much closer to their nominal levels for SMAS than for GIK.

For example, when matching up to H = 80, the RMSE of optimal SMAS is nearly

half of that of optimal GIK (0.067 vs 0.121) with a significantly smaller SD (0.066

vs 0.104); yet, optimal GIK displays size distortions, whereas SMAS does not: the

corresponding Monte-Carlo empirical coverage rates of 95% confidence intervals are

respectively 95.1% for SMAS and 90.5% for GIK.

• Robustness checks: horizon H , order p, and distribution of the errors

Overall, the performance of regularized SMAS is remarkably stable as a function of the

order p of the fitted VAR model and of H - including when H is large and/or when the

number of IR exceeds the sample size. This should alleviate potential concerns about

the robustness of SMAS when the number of auxiliary statistics is large.

Finally, we consider deviations from the model assumptions by redoing our simu-

lation study when the error terms in the real DGP are not normally distributed, but

rather t-distributed17 - with either 4 or 20 degrees of freedom. Everything else remains

exactly as before. Table 5 collects our results for the baseline experiment where we fit a

VAR(2) model to a sample of T = 232 observations and match IR up to H = 20 or 80.

Similar to the results obtained previously (see e.g. Tables 1 and 2), our optimal SMAS

estimator performs best throughout, displaying smaller RMSEs with effective coverage

rates closer to their nominal levels. As expected, when deviations from normality are

more severe (e.g. with t(4)), its performance deteriorates slightly with increased MAD

and SD; nonetheless, it still outperforms other estimators. All in all, our results sug-

gest that SMAS can indeed withstand (small) deviations from the model assumptions,

including deviations in the distributions of the error terms.

5.2 Medium-scale New Keynesian model with 7 indices

We consider a medium-scale New Keynesian model in the style of Smets and Wouters

(2007), and focus on the estimation of the price stickiness (Calvo parameter) and the

degree of price indexation. The model corresponds to a 30-equation dynamic linear

17We thank Willi Mutschler (https://mutschler.eu/) for sharing his Dynare code; see also
Mutschler (2018).
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system which involves output, consumption, investment, wage, working hours, infla-

tion, and interest rate; see section 1 in Smets and Wouters (2007) p588. Our sample

of observations on the seven above-mentioned indices is generated using Dynare18 with

parameter values as in Table 6: in particular, the Calvo parameter ξp is set at 0.908

and the degree of price indexation γp at 0.469.

Our estimation procedure closely follows subsection 5.1: first, a VAR(p) model is

applied to our sample of observations, and transition matrix, residuals and chosen im-

pulse responses are obtained accordingly; second, these impulse responses are matched

to corresponding ones obtained from simulated data generated for a given value of

the unknown parameter; third, the (optimal) covariance operator - and corresponding

eigenvalues and eigenfunctions - is obtained from N additional bootstrap samples. The

regularization parameter is chosen once again by cross-validation19. Both parameters

of interest are naturally bounded between 0 and 1, and the grid of candidate values is

set at [0.05, 0.95] for γp with a step of 0.05, and at [0.1,0.995] for ξp with a step of 0.05

up to 0.6 and 0.005 afterwards.

We focus on the impact of a monetary policy shock, and consider dynamic re-

sponses associated with a unit shock in interest rate. In our baseline experiment, a

VAR(4) model is fitted to our sample of T = 236 observations (59 years of quarterly

observations) and impulse responses (in all seven indices) are matched up to horizon

H - chosen between 20 and 80 (that is, between 5 and 20 years after the shock with

quarterly data). For the estimation of the optimal operator and its inverse, we generate

N = 100 samples by block-bootstrap resampling.

We report the performance of four SMAS estimators, respectively with the optimal

operator and the diagonal one, with and without regularization in terms of Monte-Carlo

average (mean), standard deviation (SD), Root Mean Squared Error (RMSE), Mean

Absolute Deviation (MAD), and effective coverage rates of 95% and 90% confidence

intervals obtained over 1,000 Monte-Carlo replications.

(1) Estimation of the Calvo parameter alone.

By design, the estimation of the Calvo parameter is challenging as its true unknown

parameter value is much closer to the upper bound 1. Estimation results are reported

in Table 7. Overall, the performance of the regularized SMAS estimator is very good

and dominates that of the non-regularized one according to all reported measures of

18We thank Nicola Viegi (http://www.nviegi.net/teaching/master/monmas.htm) and Johannes
Pfeifer (https://github.com/JohannesPfeifer/DSGE_mod/tree/master/Smets_Wouters_2007)
for sharing their Dynare code.

19The grid of candidates is C = [0.1, 0.05, 0.01, 0.005, 0.001, 0.0001, 10−5, 10−6].
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performance. We do notice some small size distortions: those tend to disappear for reg-

ularized SMAS when the sample size increases, but not for non-regularized SMAS. As

predicted by theory, the performance of optimal SMAS is better than that of diagonal

SMAS as it delivers smaller SD and RMSE, and improved coverage rates - especially

with T = 236: SD is approximately 10% smaller with T = 236 and H = 80. We focus

on that SMAS estimator in our discussions below. The performance of SMAS does

improve when adding IR at long horizons according to all measures of performance.

We specifically notice the reduction in MAD and SD: by over 5% and 7%, respectively,

when T = 236. Such results clearly indicate that there is useful information in long-run

IR and that our estimation procedure is able to harvest it.

(2) Joint estimation of the degree of price indexation and the Calvo parameter.

Results for the joint estimation of the degree of price indexation and the Calvo pa-

rameter are reported in Table 8. Overall, the performance of the regularized optimal

SMAS estimator is very good and in line with the results obtained when estimating the

Calvo parameter alone. Particularly, we find that there is useful information contained

in long-run IR, and that both parameters are more precisely estimated when matching

impulse responses up to long horizons.

5.3 Baseline stylized DSGE model

We now consider the baseline stylized DSGE model from Fernandez-Villaverde et al.

(2016) as adapted from DelNegro and Schorfheide (2008) where the IRs are known an-

alytically. This allows us to compare the performance of two versions of our regularized

SMAS estimator: the feasible one - as previously described - as well as the infeasible

one which relies on the analytical IRs instead of computing them by simulation20.

The stylized DSGE model consists of several sectors including households, inter-

mediate and final goods producers, and a monetary authority. A Calvo assumption

introduces nominal rigidity in prices, and firms that cannot reoptimize their prices at

a given time adjust these by the steady-state inflation rate21. This baseline model is

designed to have a state-space representation which is used to obtain associated IRs

analytically. Details can be found in Appendix B.3.

We focus on delivering inference on only one parameter of the model, namely the

20The second SMAS is labelled “infeasible” because, in general, impulse responses are not known
analytically. In our previous two experiments, IRs are not known analytically and the infeasible SMAS
is not available.

21Our SMAS estimator is implemented using candidates for the Calvo parameter set at [0.005,0.995]
with step 0.005; for the cross-validation, the grid is C = [0.1, 0.05, 0.01, 0.005, 0.001, 0.0001, 10−5, 10−6].
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Calvo parameter, while the remaining structural parameters are calibrated to values

suggested in the literature. In our experiment, a VAR(4) model is fitted to our sample

of T = 200 (or 400) observations and impulse responses to a monetary policy shock

are matched up to horizon H = 20 or 80. Results are reported in Table 10.

Overall, the infeasible SMAS estimator performs better, both in terms of bias and

standard deviation. However, the differences remain small, and tend to decrease when

the sample size increases.

6 Conclusion

We establish the consistency and derive the asymptotic distribution of the simulated

minimum distance estimator when the number of components of the auxiliary statistics

is large - typically larger than the sample size. Our SMAS estimator is easy to imple-

ment and exploits all the informational content of a large number of auxiliary statistics

without having to, (i) know these functions explicitly, or (ii) choose a priori which func-

tions are the most informative. We design a bootstrap-based procedure to estimate

the optimal (covariance) operator associated with our efficient estimator, and rely on

Tikhonov regularization to stabilize its inverse. We also propose a cross-validation

procedure to select the associated tuning parameter.

We illustrate the performance of our proposed estimator through a Monte-Carlo

study based on small- and medium-scale New Keynesian models when matching a

large number of impulse responses including at long-run horizons. Overall, our simu-

lation experiments reveal that: (i) our estimator works well in practice; (ii) long-run

information is valuable, and we show how it improves the quality of estimates of struc-

tural parameters of interest - including their precision. These results are encouraging,

and our estimator promises to be useful in a wide range of applications in applied

macro and beyond. We leave these investigations for future work.

References

Amengual, D., M. Carrasco, and E. Sentana (2020). Testing distributional assumptions

using a continuum of moments. Journal of Econometrics 218, 655–689.

Antoine, B., L. Khalaf, M. Kichian, and Z. Lin (2023). Identification-robust inference

with simulation-based pseudo-matching. Journal of Business & Economic Statis-

tics 41, 321–338.

22



Carrasco, M. (2012). A regularization approach to the many instruments problem.

Journal of Econometrics 170 (2), 383–398.

Carrasco, M., M. Chernov, J.-P. Florens, and E. Ghysels (2007). Efficient estimation

of general dynamic models with a continuum of moment conditions. Journal of

Econometrics 140 (2), 529 – 573.

Carrasco, M. and J.-P. Florens (2000). Generalization of gmm to a continuum of

moment conditions. Econometric Theory 16 (6), 797–834.

Chen, X. and H. White (1998). Central limit and functional central limit theorems

for hilbert-valued dependent heterogeneous arrays with applications. Econometric

Theory 14 (2), 260–284.

Christiano, L., M. Eichenbaum, and C. Evans (2005). Nominal rigidities and the

dynamic effects of a shock to monetary policy. Journal of Political Economy 113,

1–45.

DelNegro, M. and F. Schorfheide (2008). Forming priors for dsge models (and how it

affects the assessment of nominal rigidities). Journal of Monetary Economics 55,

1191–1208.
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Appendix

In Appendix A, we detail our implementation procedure including the selection of the

regularization parameter by cross-validation and the block-bootstrap resampling. In

Appendix B, we first review the maintained regularity assumptions in the context of

the small-scale model of Section 5.1. Then, we display the tables of results of our

Monte-Carlo study. In Appendix C, we explain how to compute the impulse responses.

In the Supplementary Appendix, we present: (i) the proofs of our theoretical results;

(ii) the computation of the optimal SMAS estimator by spectral decomposition; (iii)

additional Monte-Carlo results in the context of the medium-scale model of Section

5.2; (iv) results on the direct estimation of the asymptotic variance of SMAS in the

context of the small-scale model of Section 5.1.

A Implementation details

A.1 General implementation

The first algorithm describes the key steps of our simulation-based approach with many

auxiliary statistics taken as impulse responses.

Algorithm 1. (Practical implementation)

1. Using the sample of T observations, compute the chosen impulse responses ψ̂T (XT ) as
well as the transition matrix and the residuals ǫ̂T as explained in Appendix C.

2. For given θ ∈ Θ:

(a) Use the simulator to generate S independent samples of T observations; compute

the associated (chosen) impulse responses, ψ̂sT (θ) with s = 1, · · · , S, as well as

zT (θ) = ψ̂T (XT )−
∑

s ψ̂
s
T (θ)/S.

(b) Generate independently N bootstrap data X n
T (θ) of length T ; compute the as-

sociated (chosen) impulse responses ψ̂
∗(n)
T (X n

T ) with n = 1, · · · , N ; compute the

estimator K̂T of the operator K as explained in section 4.

(c) Select the regularization parameter aT by following Algorithm 2.

3. Obtain θ̂SMAS as the minimizer over θ of ‖K̂−1/2
T,aT

zT (θ)‖.

A few comments are warranted.

(i) As detailed in section 4, the optimal operator only depends on the demeaned dis-

tance z
∗(n)
T - and the demeaning is across the bootstrap samples. Since the auxiliary
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statistics computed on simulated data are fixed across n, the computation of the opti-

mal operator only involves ψ̂
∗(n)
T and not z∗nT .

(ii) When the bootstrap data are generated by resampling, they do not actually depend

on θ; they can then be denoted more simply as X n
T . This observation, together with the

previous comment, means that, in this case, the computation of the optimal operator

does not actually depend on θ.

A.2 Selection of the regularization parameter

We now introduce our data-driven procedure to select the regularization aT . In prac-

tice, we explain how to choose the parameter c by cross-validation where aT ≡ c/T ν

with given 0 < ν < 1/3. Notice that the rate of decay of aT to 0 is motivated by our

theoretical (asymptotic) results for the optimal SMAS in Theorem 4.

We first sketch how the cross-validation works in practice. We start by splitting

the sample of T observations into two subamples: the training subsample, which cor-

responds to the first T̃ observations, and the testing subsample, which corresponds

to the remaining observations. For each candidate value for the parameter c, say cj ,

we compute the corresponding optimal SMAS estimator over the training sample, say

θ̂optSMAS(cj): e.g. using the regularized optimal operator with regularization parameter

aj = cj/T̃
ν . This SMAS estimator is then used to simulate a pseudo-testing-sample

and to compute the corresponding (optimal) SMAS objective function over the testing

sample. The regularization parameter cj is then chosen as the one that minimizes the

objective function over the testing sample.

Next, Algorithm 2 details the selection of the regularization parameter by cross-

validation. Let C denote the grid of candidate values for the parameter c.

Algorithm 2. (Cross-validation to select the regularization parameter)

1. Split the sample of T observations into the training subsample “tr” which collects the

first T̃ ≡ ⌊2T/3⌋ observations, and the testing subsample “test” with the remaining

(T − T̃ ) observations.

2. Given c ∈ C:

(a) Using the training sample, follow Algorithm 1 to compute the regularized optimal

SMAS estimator (as in (2)) obtained with the regularized optimal operator K̂
−1/2

T̃ ,a
T̃

with aT̃ = c/T̃ ν , that is:

θ̂optSMAS(c) = argmin
θ∈Θ

‖K−1/2

T̃ ,a
T̃

ztr(θ)‖ .
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(b) Use the simulator with θ̂optSMAS(c) to generate S independent sample of (T − T̃ )

observations; compute the associated auxiliary statistics and match them to the

auxiliary statistics computed over the testing sample to get ztest(θ̂
opt
SMAS(c)). Eval-

uate the associated (non-optimal) SMAS objective function with identity matrix.

3. The regularization parameter (for the whole sample of size T ) is a∗T = c∗/T ν where c∗

is obtained by minimizing the (non-optimal) SMAS objective function over the testing

sample with respect to c.

A.3 Residual-based block bootstrap resampling

The block bootstrap methodology is a general resampling scheme applicable to time

series data obeying a weak dependence structure; see e.g. Lahiri (2003) for an overview

and chapter 12 in Kilian and Lütkepohl (2017) for applications to SVAR models. Here,

we rely on residual-based block bootstrap methods, which can be summarized as fol-

lows. Consider the VAR(p) approximation of the vector of observables:

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut .

For a given (fixed) p, the above VAR model can only approximately capture the co-

variance properties of the data, and the associated ut remain e.g. serially dependent.

In that sense, the VAR model can be intuitively understood as a particular linear pro-

jection technique. Having fitted the VAR(p) model to the data and having recovered

estimates of the model parameters and the model residuals

ût = yt − ν̂ + Â1yt−1 + · · ·+ Âpyt−p ,

for t = 1, · · · , T , we arrange the residuals in the form of a matrix




û1 û2 · · · ûl

û2 û3 · · · ûl+1

...
...

...
...

ûT−l+1 ûT−l+2 · · · ûT



,

where each row denotes a block of l consecutive residuals and the blocks are overlapping.

The number of blocks is s = T − l + 1. The bootstrap innovations are obtained by

drawing at random with replacement from the rows of this matrix, laying these blocks

of residuals end-to-end, and retaining the first T innovations denoted [ũ∗1, · · · , ũ∗T ].
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The corresponding bootstrap innovations denoted [u∗1, · · · , u∗T ] are then obtained after

recentering, that is

u∗jl+i = ũ∗jl+i −
1

T − l + 1

T−l∑

r=0

ûi+r ,

for i = 1, 2, · · · , l and j = 0, 1, · · · , s− 1.

The corresponding bootstrap data, [y∗−p+1, · · · , y∗T ], are generated recursively using the

estimated VAR coefficients and initial historical conditions

y∗t = ν̂ + Â1y
∗
t−1 + · · ·+ Âpy

∗
t−p + u∗t .

Bootstrap realizations of the estimators of interest (e.g. impulse response functions) are

obtained by fitting a VAR(p) model to this sequence of bootstrap data, and proceeding

exactly as done on the sequence of observed data.

To select the block length, we suggest Politis and White (2004) automatic block-

length selection procedure22.

B Monte-Carlo simulation study

B.1 Small-scale model

B.1.1 Regularity assumptions

In our small-scale model, inflation and real output do not react contemporaneously to

the monetary policy shock ξt, but they do respond contemporaneously to the shock to

the investment-savings relationship, zt. These restrictions ensure that the structural

shocks of interest can be identified in the VAR model. For additional discussions,

see e.g. Guerron-Quintana et al. (2017). We now review the maintained regularity

assumptions of Section 3 in the context of the above model.

• Assumption 1 (DGP):

In our simulation study, our DGP is stationary. In practice, it is often assumed that

the two series of inflation and interest rate are stationary - especially over a well-chosen

(small) sample. For additional discussions, see e.g. Christiano et al. (2005).

• Assumption 2 (Auxiliary statistic):

Assumption 2(i) follows from Assumption 1 maintained on the underlying DGP: in

general, it is known that weakly dependent sequences are characterized by abso-

22The matlab code developed by Andrew Patton is available here.
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lutely summable impulse response coefficients of their Wold decomposition; see e.g.

Hassler and Kokoszka (2010). Assumption 2(ii) is an identification assumption which

ensures that θ0 is the only value that ensures a perfect match between the IR function

computed from the DGP and its simulated counterpart.

• Assumption 3 (Operator):

Assumption 3 maintains regularity assumptions on the operator B to ensure that the

population objective function is well-defined and uniquely minimized at θ0. When

matching impulse responses, Sokullu (2020) argues that it is useful to relax the non-

singularity of B to allow for the singularity of the covariance operator23 of impulse-

response functions K. See related discussions in Guerron-Quintana et al. (2017) when

the number of IR parameters exceeds the number of VAR model parameters.

• Assumptions 4, 5, and 6 (Sample counterparts, differentiability, commutativity):

Computation of impulse response functions is detailed in Section C; see also e.g. Chap-

ter 11 in Hamilton (1994). Under our maintained assumptions, sample counterparts

will satisfy the maintained regularity conditions: e.g. continuity, differentiability, and

convergence to corresponding population values.

• Assumption 7 (Functional convergence):

Asymptotic properties of estimated impulse response functions are derived in e.g.

Lütkepohl (1990) when the VAR corresponds to the DGP; for more general results,

see e.g. chapter 15 in Lütkepohl (2005) or chapter 12 in Kilian and Lütkepohl (2017).

Under our maintained assumptions (e.g. weak dependence of underlying processes),

the IR function will satisfy the maintained functional convergence.

23Recall, however, that B cannot be directly chosen optimally as the inverse of K1/2.
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B.1.2 Results
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Figure 1: Impulse responses of the small-scale DSGE model as a function of the horizon.
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Matching IR at horizons 1 to 20, sample size T = 232
VAR(2)

SMAS GIK

diagonal reg.
diagonal
non-reg.

optimal reg.
optimal
non-reg.

diagonal optimal

mean 0.7412 0.6935 0.7396 0.6944 0.7311 0.7177
MAD 0.0088 0.0565 0.0104 0.0556 0.0189 0.0323
SD 0.0673 0.1666 0.0653 0.1630 0.0813 0.0829
RMSE 0.0679 0.1760 0.0661 0.1722 0.0835 0.0890
Coverage
95% 95.8 92.0 95.3 92.3 94.2 93.1
90% 91.4 89.1 91.1 89.4 91.4 88.2

VAR(4)
SMAS GIK

diagonal reg.
diagonal
non-reg.

optimal reg.
optimal
non-reg.

diagonal optimal

mean 0.7412 0.6920 0.7380 0.6940 0.7327 0.7084
MAD 0.0088 0.0580 0.0120 0.0560 0.0173 0.0416
SD 0.0761 0.1808 0.0716 0.1818 0.0858 0.0880
RMSE 0.0766 0.1899 0.0726 0.1902 0.0875 0.0973
Coverage
95% 94.6 91.9 93.9 92.2 94.3 91.7
90% 91.2 89.5 91.0 90.0 92.8 88.0

VAR(6)
SMAS GIK

diagonal reg.
diagonal
non-reg.

optimal reg.
optimal
non-reg.

diagonal optimal

mean 0.7406 0.6897 0.7418 0.6927 0.7393 0.7088
MAD 0.0094 0.0603 0.0082 0.0573 0.0107 0.0412
SD 0.0798 0.1922 0.0749 0.1860 0.0845 0.0817
RMSE 0.0804 0.2014 0.0753 0.1946 0.0852 0.0915
Coverage
95% 94.8 91.6 94.4 91.8 93.9 90.7
90% 92.5 89.7 91.1 89.5 91.1 87.2

Table 1: Estimation of the price stickiness α = 0.75 in the small-scale DSGE model.
Performance of the SMAS estimators (with and without regularization) and the estima-
tors of Guerron-Quintana et al. (2017) for different simulations designs when matching
IR over 20 periods (5 years) with a sample size T = 232 and VAR of orders 2, 4 and
6. We report the Monte-Carlo Mean, Mean Absolute Deviation (MAD), Standard de-
viation (SD), RMSE, and effective coverage probabilities of 95% and 90% confidence
intervals obtained over 1,000 Monte-Carlo replications.
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Matching IR at horizons 1 to 80, sample size T = 232
VAR(2)

SMAS GIK

diagonal reg.
diagonal
non-reg.

optimal reg.
optimal
non-reg.

diagonal optimal

mean 0.7401 0.6532 0.7385 0.6485 0.7163 0.6887
MAD 0.0099 0.0968 0.0115 0.1005 0.0337 0.0613
SD 0.0706 0.1860 0.0663 0.1879 0.1066 0.1041
RMSE 0.0713 0.2096 0.0673 0.2131 0.1118 0.1208
Coverage
95% 94.8 91.1 95.1 90.5 93.4 90.5
90% 92.7 87.2 91.6 86.7 90.3 86.3

VAR(4)
SMAS GIK

diagonal reg.
diagonal
non-reg.

optimal reg.
optimal
non-reg.

diagonal optimal

mean 0.7409 0.6450 0.7399 0.6415 0.7106 0.6565
MAD 0.0091 0.1050 0.0101 0.1085 0.0394 0.0935
SD 0.0802 0.2126 0.0721 0.2107 0.1155 0.1326
RMSE 0.0807 0.2371 0.0728 0.2370 0.1220 0.1623
Coverage
95% 95.7 89.4 94.8 89.5 93.7 89.6
90% 92.4 86.4 91.7 85.0 91.1 83.8

VAR(6)
SMAS GIK

diagonal reg.
diagonal
non-reg.

optimal reg.
optimal
non-reg.

diagonal optimal

mean 0.7437 0.6338 0.7422 0.6394 0.7170 0.6495
MAD 0.0063 0.1162 0.0078 0.1106 0.0330 0.1005
SD 0.0815 0.2268 0.0757 0.2226 0.1095 0.1405
RMSE 0.0817 0.2548 0.0761 0.2486 0.1144 0.1727
Coverage
95% 95.7 88.6 95.7 88.6 93.0 87.7
90% 91.8 84.7 91.7 85.8 90.3 82.8

Table 2: Estimation of the price stickiness α = 0.75 in the small-scale DSGE model.
Performance of the SMAS estimators (with and without regularization) and the estima-
tors of Guerron-Quintana et al. (2017) for different simulations designs when matching
IR over 80 periods with a sample size T = 232 and VAR of orders 2, 4 and 6. We
report the Monte-Carlo Mean, Mean Absolute Deviation (MAD), Standard deviation
(SD), RMSE, and effective coverage probabilities of 95% and 90% confidence intervals
obtained over 1,000 Monte-Carlo replications.
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Matching IR at short-term horizons with sample size T = 232
Panel A: Matching at horizons 1 to 2

SMAS GIK

diagonal reg.
diagonal
non-reg.

optimal reg.
optimal
non-reg.

diagonal optimal

mean 0.7452 0.7501 0.7448 0.7497 0.7417 0.7297
MAD 0.0048 10−4 0.0052 0.0003 0.0083 0.0203
SD 0.0536 0.0578 0.0536 0.0577 0.0666 0.0584
RMSE 0.0538 0.0578 0.0539 0.0577 0.0671 0.0618
Coverage
95% 95.3 96.2 95.1 96.0 94.7 92.8
90% 90.9 91.4 90.7 90.5 91.9 88.2

Panel B: Matching at horizons 1 to 8
SMAS GIK

diagonal reg.
diagonal
non-reg.

optimal reg.
optimal
non-reg.

diagonal optimal

mean 0.7409 0.6450 0.7399 0.6415 0.7106 0.6565
MAD 0.0091 0.1050 0.0101 0.1085 0.0394 0.0935
SD 0.0802 0.2126 0.0721 0.2107 0.1155 0.1326
RMSE 0.0807 0.2371 0.0728 0.2370 0.1220 0.1623
Coverage
95% 94.5 96.1 94.8 96.3 94.1 92.2
90% 91.7 93.3 91.7 93.9 90.9 87.2

Table 3: Estimation of the price stickiness α = 0.75 in the small-scale DSGE model.
Performance of the SMAS estimators (with and without regularization) and two estima-
tors of Guerron-Quintana et al. (2017) for different simulations designs when matching
IR over short term horizons with sample size T = 232. We report the Monte-Carlo
Mean, Mean Absolute Deviation (MAD), Standard deviation (SD), RMSE, and effec-
tive coverage probabilities of 95% and 90% confidence intervals obtained over 1,000
Monte-Carlo replications.
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Matching IR over medium and long horizons with sample size T = 100
Panel A: Matching at horizons 1 to 20

SMAS GIK

diagonal reg.
diagonal
non-reg.

optimal reg.
optimal
non-reg.

diagonal optimal

mean 0.7325 0.6035 0.7293 0.6063 0.7089 0.7041
MAD 0.0175 0.1465 0.0207 0.1437 0.0411 0.0459
SD 0.1060 0.2491 0.1040 0.2485 0.1346 0.1086
RMSE 0.1074 0.2890 0.1060 0.2871 0.1407 0.1179
Coverage
95% 94.6 87.2 94.3 86.8 92.4 90.8
90% 91.4 82.5 91.2 82.9 90.3 87.5

Panel B: Matching at horizons 1 to 80
SMAS GIK

diagonal reg.
diagonal
non-reg.

optimal reg.
optimal
non-reg.

diagonal optimal

mean 0.7323 0.4753 0.7263 0.4692 0.6853 0.6493
MAD 0.0177 0.2747 0.0237 0.2808 0.0647 0.1007
SD 0.1051 0.2522 0.1056 0.2539 0.1628 0.1425
RMSE 0.1065 0.3729 0.1082 0.3785 0.1752 0.1745
Coverage
95% 93.8 75.1 93.7 75.1 92.5 88.5
90% 91.6 67.9 91.8 65.8 88.7 83.7

Table 4: Estimation of the price stickiness α = 0.75 in the small-scale DSGE model.
Performance of the SMAS estimators (with and without regularization) and two estima-
tors of Guerron-Quintana et al. (2017) for different simulations designs when matching
IR over medium to long horizons with a sample size T = 100 and VAR of order 2. We
report the Monte-Carlo Mean, Mean Absolute Deviation (MAD), Standard deviation
(SD), RMSE, and effective coverage probabilities of 95% and 90% confidence intervals
obtained over 1,000 Monte-Carlo replications.
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Figure 2: Estimation of the price stickiness α = 0.75 in the small-scale DSGE model.
Monte-Carlo distribution of the following six estimates obtained when matching IR
up to H = 20 (top three rows) and up to H = 80 (bottom three rows) over 1,000
replications: regularized SMAS with diagonal operator (top left), SMAS with diagonal
operator (top right), regularized SMAS with optimal operator (middle left), SMAS with
optimal operator (middle right), Guerron-Quintana et al. (2017) with optimal weight-
ing matrix (bottom left), and Guerron-Quintana et al. (2017) with diagonal weighting
matrix (bottom right). The red vertical line represents the true value of the parameter.

36



Figure 3: Estimation of the price stickiness α = 0.75 in the small-scale DSGE model.
Monte-Carlo distribution of the following six estimates obtained when matching IR
up to H = 2 (top three rows) and up to H = 8 (bottom three rows) over 1,000
replications: regularized SMAS with diagonal operator (top left), SMAS with diagonal
operator (top right), regularized SMAS with optimal operator (middle left), SMAS with
optimal operator (middle right), Guerron-Quintana et al. (2017) with optimal weight-
ing matrix (bottom left), and Guerron-Quintana et al. (2017) with diagonal weighting
matrix (bottom right). The red vertical line represents the true value of the parameter.
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B.2 Medium-scale model

model variable
W real wage
Y output
I investment
C consumption
L hours worked
π inflation
R nominal interest rate
parameter parameter value
α capital share 0.30
β time discount factor 0.99
τ capital accumulation 0.025
cy consumption-output ratio 0.6
iy investment-output ratio 0.22
λw wage markup 0.5
φi investment adjustment cost 6.771
σc risk aversion 1.353
h external habit formation 0.573
ξw Calvo parameter wage 0.737
σL inverse elasticity of labor supply 2.400
ξp Calvo parameter price 0.908
ξe fraction of firms able to adjust employment 0.599
γw degree of wage indexation 0.763
γp degree of price indexation 0.469
ψ capital utilization cost 0.169
φy one plus share of the fixed cost in production 1.408
rπ Taylor rule inflation feedback 1.684
r∆π Taylor rule inflation change feedback 0.14
ρ degree of interest rate smoothing 0.961
ry Taylor rule output level feedback 0.099
r∆y Taylor rule output growth feedback 0.159
ρa persistence productivity shock 0.823
ρb persistence risk premium shock 0.855
ρg persistence spending shock 0.949
ρl persistence labor shock 0.889
ρi persistence investment shock 0.927
ρπ persistence price markup shock 0.924

Table 6: Parameter values in the medium-scale model.
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Panel A: Matching IR over medium horizons 1-20 on all 7 indices
T = 236 T = 944

Diagonal Optimal Diagonal Optimal
reg. non-reg. reg. non-reg. reg. non-reg. reg. non-reg.

mean 0.6974 0.6467 0.7561 0.7253 0.8307 0.7877 0.8461 0.7908
MAD 0.2106 0.2613 0.1519 0.1827 0.0773 0.1203 0.0619 0.1172
SD 0.2376 0.2474 0.2175 0.2385 0.1627 0.2036 0.1552 0.2048
RMSE 0.3175 0.3598 0.2653 0.3005 0.1801 0.2365 0.1671 0.2360
Coverage
95% 84.3 79.8 88.2 85.2 95.1 91.7 95.5 90.9
90% 82.0 76.8 86.8 84.5 91.2 90.3 91.4 90.2

Panel B: Matching IR over long horizons 1-80 on all 7 indices
T = 236 T = 944

Diagonal Optimal Diagonal Optimal
reg. non-reg. reg. non-reg. reg. non-reg. reg. non-reg.

mean 0.6902 0.6487 0.7639 0.7273 0.8194 0.7723 0.8530 0.7852
MAD 0.2178 0.2593 0.1441 0.1807 0.0886 0.1357 0.0550 0.1228
SD 0.2225 0.2444 0.2031 0.2305 0.1648 0.2006 0.1300 0.2008
RMSE 0.3114 0.3563 0.2491 0.2929 0.1871 0.2422 0.1412 0.2354
Coverage
95% 84.1 80.6 90.1 86.5 93.8 90.4 92.2 90.3
90% 82.9 77.9 88.3 85.1 89.7 89.5 87.9 89.7

Table 7: Estimation of the Calvo parameter ζp = 0.908 in the medium-scale model.
Performance of SMAS estimators (with and without regularization) when matching
impulse responses over medium (Panel A) and long horizons (Panel B) in all indices
with sample size T = 236 and 944. We fit VAR(4) and consider N = 1, 000 replications.

Matching IR over medium and long horizons in all 7 indices
H = 20 H = 80

Regularized Non-regularized Regularized Non-regularized
γp ζp γp ζp γp ζp γp ζp

mean 0.4945 0.7638 0.5037 0.6987 0.4872 0.7498 0.5069 0.7002
MAD 0.0255 0.1442 0.0347 0.2093 0.0182 0.1852 0.0378 0.2078
SD 0.2832 0.2356 0.2725 0.2641 0.2722 0.2333 0.2711 0.2567
RMSE 0.2843 0.2762 0.2747 0.3369 0.2728 0.2819 0.2738 0.3303
Coverage
95% 100 88.4 100 83.6 100 87.9 100 83.9
90% 94.3 87.5 95.2 81.8 95.2 86.7 94.8 81.9
Joint Coverage
95% 89.2 84.9 88.6 85.9
90% 88.0 83.2 86.9 83.1

Table 8: Joint estimation of the degree of price indexation γp = 0.469 and the Calvo
parameter ζp = 0.908. Performance of optimal SMAS estimator (with and without
regularization) when matching impulse responses over medium horizons (H = 20) and
long horizons (H = 80) in all indices. The sample size is T = 236; we fit VAR(4), and
consider N = 1, 000 replications.
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B.3 Baseline stylized DSGE model

We consider the baseline stylized DSGE model from Fernandez-Villaverde et al. (2016)

as adapted from DelNegro and Schorfheide (2008). The log-linearized equilibrium con-

ditions of the model for output, xt, labor share, lsht, inflation, πt and interest rate, Rt,

are given by:

x̂t = Et[x̂t+1]− (R̂t −Et[π̂t+1]) + Et[zt+1] l̂sht = x̂t + φt ,

π̂t = βEt[π̂t+1] +
(1− ζpβ)(1− ζp)

ζp
(l̂sht + λt) R̂t =

1

β
π̂t + σRǫR,t.

where the log deviation of a variable wt from its steady-state is denoted by ŵt; β is

the stochastic discount rate and ζp is the Calvo parameter (or probability with which

a given firm is unable to re-optimize its price). Four exogenous shocks influence the

dynamics of the variables: a technology shock, zt, a price markup shock, λt, a shock

that affects the preference for leisure, φt, and a monetary policy shock, ǫR,t. Except for

the monetary policy shock, which is assumed to be independently and identically nor-

mally distributed with mean zero and variance one, the remaining shocks are assumed

to follow autoregressive processes. Thus, for each shock i = z, λ, φ, the autoregression

coefficient is ρi and the standard deviation is σi. Overall, the unknown structural pa-

rameters of the model are [ζp, β, γ, λ, π
∗, ρφ, ρλ, ρz, σφ, σλ, σz, σR]

′, where γ is the growth

rate of technology, λ is the steady-state markup charged by the intermediate goods

producers, and π∗ is the steady-state inflation rate. The steady-states for the interest

rate and for the labor share can be obtained from the expressions R̄ = π∗γ/β, and,
¯lsh = 1/(1 + λ), respectively.

This baseline model is designed to have a state-space representation which is used

to obtain the associated IRs analytically. Let γt and st denote the vector of observables

and state variables, respectively, with γt = M ′
γ[log(Xt/Xt−1), log lsht, log πt, logRt]

′ -

with M ′
γ a selection matrix - and st = [φt, λt, zt, ǫR,t, x̂t−1]

′. Then, we have:

γt = Ψ0(θ) + Ψ1(θ)st

st = Φ1(θ)st−1 + Φǫ(θ)ǫt ,
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Parameter Value

β stochastic discount rate 0.98
γ growth rate of technology 1.005
λ steady-state intermediate goods markup 0.15
π∗ steady-state inflation rate 1.005
ρz autoregression parameter of the technology shock 0.13
ρλ autoregression parameter of the price markup shock 0.88
ρφ autoregression parameter of the shock that affects the preference for leisure 0.30
σz standard deviation of the technology shock 1.50
σλ standard deviation of the price markup shock 0.50
σφ standard deviation of the shock that affects the preference for leisure 3.00
σR standard deviation of the monetary policy shock 1.00

Table 9: Parameter values in the baseline stylized model.

Panel A: Matching IR over medium horizons H = 20
T = 200 T = 400

Infeasible SMAS Infeasible SMAS
reg. non-reg. reg. non-reg. reg. non-reg. reg. non-reg.

mean 0.6187 0.7453 0.5905 0.7490 0.6435 0.7423 0.6273 0.7357
MAD 0.0313 0.0953 0.0595 0.0990 0.0065 0.0923 0.0227 0.0857
SD 0.1637 0.3557 0.1939 0.3540 0.1762 0.3458 0.1796 0.3517
RMSE 0.1667 0.3682 0.2028 0.3675 0.1763 0.3580 0.1811 0.3620
Coverage
95% 94.0 100.0 92.4 100.0 95.8 100.0 96.1 100.0
90% 91.1 93.9 89.3 93.6 90.5 93.0 88.3 92.4

Panel B: Matching IR over long horizons H = 80
T = 200 T = 400

Infeasible SMAS Infeasible SMAS
reg. non-reg. reg. non-reg. reg. non-reg. reg. non-reg.

mean 0.6201 0.7397 0.6054 0.7490 0.6512 0.7692 0.6352 0.7682
MAD 0.0299 0.0897 0.0446 0.0990 0.0012 0.1192 0.0148 0.1182
SD 0.1780 0.2900 0.2058 0.2775 0.1809 0.2649 0.1853 0.2646
RMSE 0.1805 0.3036 0.2106 0.2946 0.1809 0.2905 0.1859 0.2898
Coverage
95% 95.2 95.7 93.3 96.6 97.5 96.5 95.6 97.4
90% 88.6 93.7 88.8 94.3 89.5 95.4 91.8 94.2

Table 10: Estimation of the Calvo parameter ζp = 0.65 in the baseline stylized model.
Performance of the feasible and infeasible SMAS estimators with and without regular-
ization when matching impulse responses over medium to long horizons. We consider
dynamic responses obtained up to five years after the shock (20 periods) in Panel A,
and up to twenty years (80 periods) in Panel B with sample sizes T = 200 and T = 400.
We fit VAR(4) and consider N = 1, 000 replications.
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C Computation of (structural) impulse responses

We start by postulating a reduced-form VARmodel of order p to represent the dynamics

of the vector of observables XT on inflation and interest rate:

xt = Φ1xt−1 + Φ2xt−2 + . . .+ Φpxt−p + Φ0 + ut, ut ∼ (0,Σ)

Assuming that the reduced-form errors ut are linked to the structural model innovations

ǫt via the equation Put = ǫt with PΣP
′ = I, a Choleski decomposition can be applied

to the variance-covariance matrix Σ. The impulse response of the structural shock ǫj,t

on the variable xi,t at horizon h is defined as

IRF (i, j, h) = ∂xi,t+h/∂ǫj,t

and given by the appropriate coefficient in the following model,

xt = Θ(L)Φ0 +Θ(L)P−1Put ≡ ψ0 +Ψ(L)ǫt, ǫt ∼ (0, I)

with Θ(L) = (I −
p∑

j=1

ΦjL
j)−1 .

After estimating the above model, we obtain the impulse responses at chosen horizon

h, as well as the residuals ǫ̂t and the transition matrix Ψ̂(L).
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Supplementary Appendix to:

Simulation-based estimation with many auxiliary statistics

applied to long-run dynamic analysis

by Bertille Antoine and Wenqian Sun

In Supplementary Appendix S.1, we present the proofs of our theoretical results.

In S.2, we explain how to computate the optimal SMAS estimator by spectral decom-

position. In S.3, we present additional Monte-Carlo results obtained in the context of

the medium-scale model discussed in section 5.2 of the main paper. In S.4, we present

results on the direct estimation of the asymptotic variance of SMAS obtained in the

context of the small-scale model discussed in section 5.1 of the main paper.

S.1 Proofs

• Proof of Theorem 1:

Under our regularity assumptions, the consistency of extremum estimators follows, and

the proof is rather standard. It requires showing that

sup
θ∈Θ

|QT (θ)−Q(θ)| = oP(1) .

This, together with the fact that θ0 is the unique solution of z(θ0) = 0 - and unique

minimizer of Q(θ) over Θ - delivers the result. �

• Proof of Theorem 2:

We start our proof by showing a preliminary result.

Lemma C.1. Assumption 7 implies that BT (
√
TzT (., θ0))

d→ BZ ∼ N (0, BKB′) with

B′ the adjoint operator of B.

Proof of Lemma C.1:

Throughout, we write zT (θ) for zT (., θ). By assumption 7(ii), the random element√
TzT (θ0) is bounded for T large enough, and it converges to Z in distribution as

T → ∞. By definition, the covariance of Z is E

[
(Z − EZ)(Z − EZ)

]
. Then, for any
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f well-defined in the Hilbert space H , the covariance of the inner product (Z, f) is:

E

(
[(Z, f)− E(Z, f)][(Z, f) − E(Z, f)]

)
= E

(
[(Z, f)− (EZ, f)][(Z, f) − (EZ, f)]

)

= E

[
(Z − EZ, f)(Z − EZ, f)

]

= E

(
(Z − EZ, f)(Z − EZ), f

)
,

where E

[
(Z − EZ, f)(Z − EZ)

]
≡ Kf defines the covariance operator K.

Then, we can show that BT

√
TzT (θ0)

d→ BZ:

∥∥∥BZ − BT

√
TzT (θ0)

∥∥∥ =
∥∥∥BZ − BTZ +BTZ − BT

√
TzT (θ0)

∥∥∥

≤ ‖BZ − BTZ‖+
∥∥∥BTZ − BT

√
TzT (θ0)

∥∥∥

≤ ‖B − BT‖‖Z‖+‖BT‖
∥∥∥Z −

√
TzT (θ0)

∥∥∥
P−→ 0

which follows from Assumption 7(i) and (ii) which ensure that each term is either

bounded or converging to 0 appropriately.

Similarly, the covariance of the inner product (BZ, f) is

E

(
[(BZ, f)− E(BZ, f)][(BZ, f)− E(BZ, f)]

)

= E

(
[(BZ, f)− (EBZ, f)][(BZ, f)− (EBZ, f)]

)

= E

[
(BZ −B(EZ), f)(BZ −B(EZ), f)

]

= E

[
(B(Z − EZ), f)(B(Z − EZ), f)

]

= E

(
(B[Z − EZ], f)B[Z − EZ], f

)
.

Define the operator BKB′ such that

(BKB′)(f) ≡ E
[
(B[Z −EZ], f)B[Z − EZ]

]
.

The covariance of (BZ, f) is then

(
f, (BKB′)(f)

)
. �
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We now return to the proof of Theorem 2. From the definition of the SMAS

estimator, we have:

θ̂SMAS ≡ argmin
θ∈Θ

∥∥BT zT (., θ)
∥∥ = argmin

θ∈Θ

(
BT zT (., θ), BTzT (., θ)

)
.

By Assumption 6 and from the symmetry of the inner product, the first order conditions

(FOC) are:

(
BT

∂

∂θ′
zT (θ̂SMAS), BT zT (θ̂SMAS)

)
= 0 .

From Theorem 1, we know θ̂SMAS
a.s.−−→ θ0; then, and a mean value expansion of

zT (θ̂SMAS) around θ0 yields:

zT (θ̂SMAS) =
(
zT (θ0) +

∂

∂θ′
zT (θ̄)(θ̂SMAS − θ0)

)
=

(
zT (θ0) +GT (θ̄)(θ̂SMAS − θ0)

)
,

where θ̄ lies between θ0 and θ̂SMAS component by component, and GT (θ) ≡ ∂zT (θ)/∂θ
′.

Substitute back into the FOC to get:

(
BTGT (θ̂SMAS), BT

(
zT (θ0) +GT (θ̄)(θ̂SMAS − θ0)

))
= 0

⇔
(
BTGT (θ̂SMAS), BTzT (θ0) +BTGT (θ̄)(θ̂SMAS − θ0)

)
= 0

⇔
(
BTGT (θ̂SMAS), BTzT (θ0)

)
+

(
BTGT (θ̂SMAS), BTGT (θ̄)(θ̂SMAS − θ0)

)
= 0 .

Under our regularity assumptions, combined with Lemma C.1, we can write, for T

large enough:

√
T (θ̂SMAS − θ0) =

(
BG(θ0), BG(θ0)

)−1(
BG(θ0), BZ

)
+ oP(1) .

Since BZ ∼ N (0, BKB′) and BG(θ0) ∈ H , we have, by definition

(BG(θ0), BZ) ∼ N (0,
(
BG(θ0), (BKB

′)BG(θ0)
)
) .

Therefore, as T → ∞, we have:

√
T (θ̂T − θ0)

d−→ N (0, V ) ,
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with V =
∥∥BG(θ0)

∥∥−2 (
BG(θ0), (BKB

′)BG(θ0)
)∥∥BG(θ0)

∥∥−2
.

�

• Proof of Theorem 3:

Gonçalves and White (2004) (hereafter GW(04)) provide a unified framework for an-

alyzing bootstrapped extremum estimators of nonlinear dynamic models for heteroge-

neous dependent stochastic processes. They prove the first-order asymptotic validity

of the bootstrap approximation to the true distribution of quasi-maximum likelihood

estimators (QMLE) for a broad class of models and data generating processes with-

out imposing stationarity and restrictive memory conditions24. Even though GW(04)

focus on QMLE, they explain on page 211 that their results can be applied to prove

the validity of bootstrap methods for other extremum estimators. Indeed, the key

lemmas (see their Lemmas A.2 and A.3) which are used to prove their main theorems

(resp. Theorems 2.1 and 2.2) are written for a general objective function. We show

below that, under our maintained assumptions, these lemmas apply in our framework.

Accordingly, their Theorems 2.1 and 2.2 hold and we conclude that our suggested

bootstrap procedure is first-order valid as stated in Theorem 3.

• Theorem 2.1 in GW(04) follows from applying Lemma A.2 in GW(04) which

provides sufficient conditions to ensure the consistency of the extremum estimator and

its bootstrap version. The consistency of our SMAS estimator is established in Theorem

1 under Assumptions 1 to 4. The consistency of its bootstrap version is established

under three conditions: (b1) measurability of Q∗
T ; (b2) continuity of Q∗

T on Θ a.s.-P;

(b3) supθ∈Θ |Q∗
T (θ) − QT (θ)| P ∗

→ in prob-P. (b1) and (b2) follow from Assumptions

2(i) and 4(i); (b3) follows from Assumption 4(ii) and the block bootstrap scheme with

ℓ = o(T ).

• Theorem 2.2 in GW(04) follows from applying Lemma A.3 in GW(04) which

provides sufficient conditions to ensure the asymptotic normality of the extremum es-

timator and its bootstrap version. The asymptotic normality of our SMAS estimator

is established under further regularity assumptions including differentiability and func-

tional convergence of the objective function. The formal result is provided in Theorem

2 under Assumptions 1 to 7. The asymptotic normality of its bootstrap version is

established under verifying similar regularity assumptions hold on the bootstrap ob-

jective function: once again, these follow from our maintained assumptions and the

block bootstrap scheme with ℓ = o(
√
T ). �

24We maintain stationarity and weak dependence in our framework.
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• Proof of Theorem 4:

We start with three preliminary results: the first one ensures that our simulation-based

objective function converges to its population counterpart asymptotically and it is key

to our proof. The remaining two establish asymptotic properties of the eigenvalues of

the operator and of the operator; they are useful to prove Theorem C.2. All three are

formally proved at the end of the proof of Theorem 4.

Theorem C.2. For any g, gT such that ‖gT − g‖ = OP ∗( 1√
T
) in prob-P, and assuming

‖KT −K‖ = OP ∗(1/T ν) in prob-P for some ν > 0, we have:

(i)

∥∥∥∥K
− 1

2

T,agT −K− 1

2 g

∥∥∥∥
P ∗

→ 0 in prob-P, when g ∈ H(K) + H(K)⊥, as a → 0 and

T νa
3

4 → ∞;

(ii)
∥∥∥K−1

T,agT −K−1g
∥∥∥ P ∗

→ 0 in prob-P, when g ∈ D(K−1), as a→ 0 and T νa3/2 → ∞.

Theorem C.3. Under the assumptions of Theorem 4, when T/N(T ) → ζ as T → ∞
with 0 < ζ <∞, we have:

(λ
(T )
j − λj) = OP ∗(

1√
T
) in prob-P

Theorem C.4. Under the assumptions of Theorem 4, when T/N(T ) → ζ as T → ∞
with 0 < ζ <∞, we have: ‖KT −K‖ = OP ∗

(
1/
√
T
)
in prob-P.

The consistency of the estimator (as T → ∞, a → 0, and
√
Ta3/4 → ∞) directly

follows from Theorem C.2 applied to z∗T and z under Assumption 9:

∥∥∥∥K
− 1

2

T,az
∗
T (., θ)−K− 1

2 z(., θ)

∥∥∥∥
P ∗

→ 0 in prob-P

∥∥∥K−1
T,a∂z

∗
T (., θ)/∂θ −K−1∂z(., θ)/∂θ

∥∥∥ P ∗

→ 0 in prob-P ,

Following similar steps as those taken in the proof of Theorem 2, we can show that,

with GT (θ) ≡ ∂zT (θ)/∂θ:

(K
−1/2
T,a GT (θ̂

opt
SMAS),K

−1/2
T,a zT (θ0)) + (K

−1/2
T,a GT (θ̂

opt
SMAS),K

−1/2
T,a GT (θ)(θ̂

opt
SMAS − θ0)) = 0

⇔ (K
−1/2
T,a GT (θ̂

opt
SMAS),K

−1/2
T,a GT (θ))

√
T (θ̂optSMAS − θ0) = −(K−1

T,aGT (θ̂
opt
SMAS),

√
TzT (θ0))

where θ lies between θ0 and θ̂optSMAS component by component.
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We focus on the RHS term:

(K−1
T,aGT (θ̂

opt
SMAS),

√
TzT (θ0))

= (K−1
T,aGT (θ̂

opt
SMAS)−K−1G(θ0),

√
TzT (θ0)) + (K−1G(θ0),

√
TzT (θ0))

Since
√
TzT (θ0)

d→ Z ∼ N (0, K), we have:

(K−1G(θ0),
√
TzT (θ0))

d→ N (0, (K−1G(θ0), K
−1G(θ0)) .

In addition, we have:

(K−1
T,aG(θ̂

opt
SMAS)−K−1G(θ0),

√
TzT (θ0))

≤ ‖K−1
T,aGT (θ̂

opt
SMAS)−K−1G(θ0)‖ × ‖

√
TzT (θ0)‖

= oP ∗(1) in prob-P

since ‖
√
TzT (θ0)‖ = OP(1) and

‖K−1
T,aGT (θ̂

opt
SMAS)−K−1G(θ0)‖

≤ ‖K−1
T,a‖‖GT (θ̂

opt
SMAS)−G∗

T (θ̂
opt
SMAS)‖+ ‖K−1

T,aG
∗
T (θ̂

opt
SMAS)−K−1G(θ0)‖

= oP ∗(1) in prob-P

where the last equality follows from Theorem C.2 - and intermediate results in its proof

such as ‖K−1
T,a‖ ≤ 1/

√
a for T large enough - as well as

‖GT (θ̂
opt
SMAS)−G∗

T (θ̂
opt
SMAS)‖

≤ ‖GT (θ̂
opt
SMAS)−G(θ̂optSMAS)‖+ ‖G(θ̂optSMAS)−G∗

T (θ̂
opt
SMAS)‖

= OP ∗(1/
√
T ) in prob-P

which holds under the uniform convergence results maintained in Assumption 9 com-

bined with Lemma B.2 in Dovonon and Gonçalves (2017).

To complete the proof, notice that we have, for T large enough with a → 0 and√
Ta3/2 → ∞:

√
T (θ̂optSMAS − θ0) = −(K−1/2G(θ0), K

−1/2G(θ0))(K
−1G(θ0), Z) + oP×P ∗(1)

with (K−1/2G(θ0), K
−1/2G(θ0))(K

−1G(θ0), Z) ∼ N (0, ‖K−1/2G(θ0)‖−2).
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Finally, the optimality of θ̂optSMAS amounts to showing that (V − ‖K−1G(θ0)‖−2) is

positive definite - with V the asymptotic variance derived in Theorem 2. A similar

result has already been shown in Carrasco and Florens (2000) at the end of the proof

of their Theorem 8. �

We now prove the three preliminary results stated at the beginning of the proof.

Proof of Theorem C.2:

Our proof builds on the proofs of Theorem 7 in Carrasco and Florens (2000) and

Lemma B.2 in Carrasco et al. (2007). First, notice that:

∥∥∥∥K
− 1

2

T,agT −K− 1

2 g

∥∥∥∥ ≤
∥∥∥∥K

− 1

2

T,agT −K
− 1

2

T,ag

∥∥∥∥+

∥∥∥∥K
− 1

2

T,ag −K
− 1

2

a g

∥∥∥∥+

∥∥∥∥K
− 1

2

a g −K− 1

2 g

∥∥∥∥

We study each of the 3 terms on the RHS separately to show that:

(A)

∥∥∥∥K
− 1

2

T,agT −K
− 1

2

T,ag

∥∥∥∥
P ∗

→ 0 in prob-P as T
√
a→ ∞ and a→ 0

(B)

∥∥∥∥K
− 1

2

T,ag −K
− 1

2

a g

∥∥∥∥
P→ 0 as

√
Ta3/4 → ∞ and a→ 0

(C)

∥∥∥∥K
− 1

2

a g −K− 1

2g

∥∥∥∥ → 0 as a→ 0

Then, the expected result follows by applying, e.g. Lemma B.2 from Dovonon and Gonçalves

(2017).

• Part (A):

∥∥∥∥K
− 1

2

T,agT −K
− 1

2

T,ag

∥∥∥∥ ≤
∥∥∥∥K

− 1

2

T,a

∥∥∥∥‖gT − g‖

with

∥∥∥∥K
− 1

2

T,a

∥∥∥∥
2

=
(
(K2

T + aI)−
1

2K
1

2

T , (K
2
T + aI)−

1

2K
1

2

T

)

=
(
(K2

T + aI)−
1

2 , (K2
T + aI)−

1

2KT

)

≤
∥∥∥(K2

T + aI)−
1

2

∥∥∥
∥∥∥(K2

T + aI)−
1

2KT

∥∥∥ .

The second term is bounded by 1, while the first term is bounded by 1/
√
a for T large

enough. As a result, since ‖gT − g‖ = OP ∗( 1√
T
) by assumption, the result follows as

long as
√
Ta1/4 → ∞.
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• Part (B):

∥∥∥∥K
− 1

2

T,ag −K
− 1

2

a g

∥∥∥∥ ≤
∥∥∥∥(K2

T + aI)−
1

2K
1

2

T g − (K2
T + aI)−

1

2K
1

2 g

∥∥∥∥ (B1)

+
∥∥∥(K2

T + aI)−
1

2K
1

2 g − (K2 + aI)−
1

2K
1

2 g
∥∥∥ (B2)

- Part (B1)

∥∥∥∥(K2
T + aI)−

1

2K
1

2

T g − (K2
T + aI)−

1

2K
1

2 g

∥∥∥∥ =

∥∥∥∥(K2
T + aI)−

1

2 (K
1

2

T −K
1

2 )g

∥∥∥∥

≤
∥∥∥(K2

T + aI)−
1

2

∥∥∥
∥∥∥∥K

1

2

T −K
1

2

∥∥∥∥‖g‖

The first term is bounded by 1/
√
a as discussed in Part (A). The second term is

such that:

∥∥∥∥K
1

2

T −K
1

2

∥∥∥∥ = OP ∗( 1√
T
) in prob-P which follows from Theorem C.4 and

the continuity of the square-root transformation. Hence, overall, (B1) goes to zero as√
T
√
a→ ∞.

- Part (B2)

∥∥∥(K2
T + aI)−

1

2K
1

2 g − (K2 + aI)−
1

2K
1

2g
∥∥∥

≤
∥∥∥(K2

T + aI)−
1

2K
1

2 g − (K2
T + aI)−

1

2K(K2 + aI)−
1

2K
1

2g
∥∥∥ (B2.1)

+
∥∥∥(K2

T + aI)−
1

2K(K2 + aI)−
1

2K
1

2 g − (K2
T + aI)−

1

2KT (K
2 + aI)−

1

2K
1

2g
∥∥∥ (B2.2)

+
∥∥∥(K2

T + aI)−
1

2KT (K
2 + aI)−

1

2K
1

2 g − (K2 + aI)−
1

2K
1

2 g
∥∥∥ (B2.3)

We study each term on the right-hand side separately:

(B2.1) ≤
∥∥∥(K2

T + aI)−
1

2K
∥∥∥
∥∥∥∥(K− 1

2 −K
− 1

2

a )g

∥∥∥∥

The first term goes to one as a→ 0 and T → ∞, while the second one goes to zero as

a→ 0 as shown in Part (C).

(B2.2) ≤
∥∥∥(K2

T + aI)−
1

2

∥∥∥‖KT −K‖
∥∥∥∥K

− 1

2

a g

∥∥∥∥

The first term is bounded by 1/
√
a as discussed in Part (A). From Theorem C.4, the

second term is such that: ‖KT −K‖ = OP ∗( 1√
T
) in prob-P. Finally, the third term is
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bounded by a−1/4‖g‖ as shown in Part (A).

(B2.3) =

∥∥∥∥((K2
T + aI)−

1

2K
1

2

T −K
− 1

2

T )K
1

2

T (K
2 + aI)−

1

2K
1

2 g

∥∥∥∥

=

∥∥∥∥(K
− 1

2

T,a −K
− 1

2

T )K
1

2

T (K
2 + aI)−

1

2K
1

2g

∥∥∥∥

≤
∥∥∥∥K

1

2

T (K
2 + aI)−

1

2K
1

2

∥∥∥∥
∥∥∥∥(K

− 1

2

T,a −K
− 1

2

T )g

∥∥∥∥

Similar to (B2.1), the first term converges to one as a → 0 and T → ∞. The second

term converges to 0 when a→ 0 for T large enough. Hence, overall, (B2) goes to 0 as√
Ta3/4 → ∞.

When we combine the properties of (B1) and (B2), we obtain the expected result.

• Part (C):

By definition, with λj and φj the eigenvalues and eigenfunctions of K, we have:

K− 1

2g =

∞∑

j=1

1√
λj

(g, φj)φj .

We also have:

K
− 1

2

a g =
∞∑

j=1

√
λj√

λ2j + a
(g, φj)φj ,

since

K
− 1

2

a g = (K2 + aI)−
1

2K
1

2 g = [(K2 + aI)K−1]−
1

2 g ,

and we can easily show that (K2+aI)K−1 has eigenvalues
λ2j+a

λj
and eigenfunctions φj.

Indeed, we have:

Kφj = λjφj

⇒ K2φj = λ2jφj and K−1φj = (1/λj)φj

⇒ (K2 + aI)φj = (λ2j + a)φj and K−1φj = (1/λj)φj

⇒ (K2 + aI)K−1φj =
λ2j + a

λj
φj
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Thus, we have:

K
− 1

2

a g −K− 1

2 g =

∞∑

j=1




√
λj√

λ2j + a
− 1√

λj


 (g, φj)φj

⇒
∥∥∥∥K

− 1

2

a g −K− 1

2 g

∥∥∥∥
2

=
∞∑

j=1




√
λj√

λ2j + a
− 1√

λj




2

(g, φj)
2φ2

j

=
∞∑

j=1




√
λj√

λ2j + a
− 1√

λj




2

(g, φj)
2

≤
∞∑

j=1

1

λj
(g, φj)

2 <∞

since it is easy to show that




√
λj√

λ2j + a
− 1√

λj




2

≤ 1

λj
∀j .

To compute the limit of the LHS when a→ 0, we switch the summation and the limit

and conclude that it converges to 0.

Overall,

∥∥∥∥K
− 1

2

T,agT −K− 1

2g

∥∥∥∥
P ∗

→ 0 in prob-P when a→ 0 and
√
Ta

3

4 → ∞. The proof

of part (ii) is similar to that of part (i). �

Proof of Theorem C.3:

Our proof builds on the proof of Theorem 3 in Carrasco and Florens (2000). We

consider λj as a function of F , the c.d.f of the joint probability measure P, that is

λj = Λ(F ). The bootstrap counterpart of F is denoted FT , and, accordingly, we have

λ
(T )
j = Λ(FT ). We define DΛF as the Fréchet derivative of the operator Λj with respect

to F . A first-order Taylor expansion with Fréchet derivative gives

λ
(T )
j − λj = DΛF (FT − F ) + ǫ(FT − F )‖FT − F‖ .

where norm is the sup-norm. Also, under Assumptions 7 and 9(i), the term ǫ(FT −F )
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converges to zero, and
√
T‖FT − F‖ is bounded in the sense that

ǫ(FT − F )
P ∗

→ 0 in prob-P and
√
T‖FT − F‖ = OP ∗(1) in prob-P.

As a result, we have:

√
T (λ

(T )
j − λj) =

√
TDΛF (FT − F ) + oP ∗(1) in prob− P . (C.1)

Rewrite the following equation (Kφj)(h) = λjφj(h) as

∑

s

k∗(h, s)φj(s) = λjφj(h) ⇔
∑

s

EP(z
∗(h, s))φj(s) = λjφj(h)

⇔
∑

s

EF (z
∗(h, s))φj(s) = λjφj(h) , (C.2)

with

z∗(h, s)

≡ lim
m

m∑

−m
(z∗(h,X∗

t , θ0)− EP(z
∗(h,X∗

t , θ0)))(z
∗(s,X∗

t+m, θ0)−EP(z
∗(s,X∗

t+m, θ0)))

Differentiate equation (C.2) with respect to F to get:

∑

s

EF̃ (z
∗(h, s))φj(s) +

∑

s

EF (z
∗(h, s))φ̃j(s) = λjφ̃j(h) + λ̃jφj(h) .

where EF̃ , φ̃, and λ̃ denote the differential elements respectively25.

Multiply by φj(h) on both sides, and integrate with respect to h to get:

∑

h

∑

s

EF̃ (z
∗(h, s))φj(h)φj(s) +

∑

h

∑

s

EF (z
∗(h, s))φj(h)φ̃j(s)

=
∑

h

λjφ̃j(h)φj(h) +
∑

h

λ̃jφ
2
j(h) .

Assume now that the eigenvalues λj (and λ
(T )
j ) are ranked in descending order, and

that the eigenfunctions φj(.) (and φ
(T )
j (.)) are orthonormalized (e.g.

∑
h φ

2
j(h) = 1).

25For example, λ̃ = DΛ(∆F )
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The previous equation simplifies to:

∑

h

∑

s

EF̃ (z
∗(h, s))φj(h)φj(s) +

∑

h

∑

s

EF (z
∗(h, s))φj(h)φ̃j(s)

=
∑

h

λjφ̃j(h)φj(h) + λ̃j .

Using (C.2), the second term on the left hand side can be rewritten as:

∑

h

∑

s

EF (z
∗(h, s))φj(h)φ̃j(s) =

∑

s

φ̃j(s)
∑

h

EF (z
∗(h, s))φj(h)

=
∑

s

φ̃j(s)λjφj(s)

=
∑

h

λjφ̃j(h)φj(h)

Therefore, we get:

λ̃j =
∑

h

∑

s

EF̃ (z
∗(h, s))φj(h)φj(s)

=
∑

h

∑

s

EFT
(z∗T (h, s))φj(h)φj(s)−

∑

h

∑

s

EF (z
∗(h, s))φj(h)φj(s)

+ǫ′(FT − F )‖FT − F‖
=

∑

h

∑

s

EFT
(z∗T (h, s))φj(h)φj(s)− λj + ǫ′(FT − F )‖FT − F‖ .

where ǫ′(FT − F )
P ∗

→ 0 in prob-P and
√
T‖FT − F‖ = OP ∗(1) in prob-P.

After substituting into (C.1), we have:

√
T (λ

(T )
j − λj)

=
√
T

[∑

h

∑

s

EFT
(z∗T (h, s))φj(h)φj(s)− λj

]
+ oP ∗(1)

=

√
T

N(T )

N(T )∑

n=1

[∑

h

∑

s

(
z
∗(n)
T,h − z̄∗T,h

)(
z
∗(n)
T,s − z̄∗T,s

)
− λj

]
+ oP ∗(1)

Under the maintained regularity assumptions, a bootstrap CLT applies to

[∑

h

∑

s

(
z
∗(n)
T,h,1 − z̄∗T,h

)(
z
∗(n)
T,s,1 − z̄∗T,s

)
− λj

]
,
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with rate
√
N(T ), and the result follows since T/N(T ) → ζ some positive constant. �

• Proof of Theorem C.4:

Our proof builds on the proof of Theorem 4 in Carrasco and Florens (2000) and the

proof of Theorem 3.3 in Carrasco et al. (2007). By Assumption 8(i), the kernel k∗(h, s)

satisfies
∑

h

∑

s

k∗(h, s)2 =

∞∑

j=1

λ2j <∞ ,

and the Hilbert-Schmidt norm of K is defined as:

‖K‖HS =

( ∞∑

j=1

λ2j

) 1

2

.

Since ‖KT −K‖ ≤‖KT −K‖HS, we have:

‖KT −K‖2 ≤
∑

h

∑

s

[
k∗T (h, s)− k∗(h, s)

]2

=
∑

h

∑

s

[
1

N(T )

N(T )∑

n=1

k
∗(n)
T (h, s)− k∗(h, s)

]2

=
1

N(T )2

N(T )∑

n,n′=1

∑

h,s

[
k
∗(n)
T (h, s)− k∗(h, s)

][
k
∗(n′)
T (h, s)− k∗(h, s)

]

Because the n-th and n′-th simulation paths are independent, we have

EP ∗

{∑

h,s

[
k
∗(n)
T (h, s)− k∗(h, s)

][
k
∗(n′)
T (h, s)− k∗(h, s)

]
|X n′

T

}
= 0

Under the maintained assumptions, we get, using Theorem C.3 and results estab-

lished in its proof:

‖KT −K‖2 = OP ∗(1/T ) in prob-P

And the expected results follow. �
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S.2 Extension

The operator KT has a degenerate kernel and, contrary to K, a finite dimensional

closed range with a finite number of eigenvalues and eigenfunctions (equal to N(T )).

In Lemma 1, we show how to compute them by solving a linear system of N(T )

equations which builds on section 3 in Carrasco and Florens (2000)26.

Lemma 1. (Computation of the eigenvalues and eigenvectors of KT )

Let φ
(T )
j denote the j-th eigenfunction and λ

(T )
j the associated eigenvalue of KT with

j = 1, · · · , N(T ). These eigenvalues and eigenfunctions are obtained as follows:

1. Find the eigenvalues µ
(T )
j and the associated eigenvectors Bj = [β1

j β
2
j ... β

N(T )
j ]′

(j = 1, . . . , N(T )) of the (N(T ), N(T ))-matrix C with (n, n′)-element

cn,n′ =
1

N(T )

∑

h

(
z
∗(n)
T (h, θ0)− z̄∗T (h, θ0)

)
×

(
z
∗(n′)
T (h, θ0)− z̄∗T (h, θ0)

)
.

2. The eigenvalues of KT are such that: λ
(T )
j = µ

(T )
j for j = 1, · · · , N(T ).

3. The eigenfunctions of KT are such that, for j = 1, . . . , N(T ),

φ
(T )
j (h) =

1

N(T )

(
z
(T )
h

)′Bj with z
(T )
h ≡




(
z
∗(1)
T (h, θ0)− z̄∗T (h, θ0)

)
(
z
∗(2)
T (h, θ0)− z̄∗T (h, θ0)

)
...(

z
∗(N(T ))
T (h, θ0)− z̄∗T (h, θ0)

)




From now on, we assume that the eigenvalues λ
(T )
j are ranked in descending order,

and that the eigenfunctions φ
(T )
j (h) have been orthonormalized. Then, the optimal

SMAS estimator is obtained as:

θ̂optSMAS ≡ argmin
θ

∥∥∥K−1/2
T,a zT (θ)

∥∥∥ = argmin
θ

N(T )∑

j=1

λ
(T )
j

(λ
(T )
j )2 + a

|(zT (θ), φ(T )
j )|2 .

26An alternative approach that does not involve the computation of eigenvalues and eigenfunctions
is developed in section 3.3 in Carrasco et al. (2007), which may have computational advantages,
particularly in large samples. Since our sample sizes remain small to moderately large in accordance
with our macro applications, we do not explore this approach.
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• Proof of Lemma 1:

In this proof, we simplify our notations as follows, for any integer h:

z
∗(n)
T,h ≡ z

∗(n)
T (h, θ0)

z̄∗T,h ≡ z̄∗T (h, θ0)

By definition, any eigenfunction φ(T ) and corresponding eigenvalue λ(T ) of the operator

KT are such that:

(KTφ
(T ))(h) = λ(T )φ(T )(h)

⇔ 1

N(T )

N(T )∑

n=1

(
z
∗(n)
T,h − z̄∗T,h

) ∞∑

s=1

(
z
∗(n)
T,s − z̄∗T,s

)
φ(T )(s) = λ(T )φ(T )(h) ,

from the representation of KT . Since λ
(T ) is a scalar, and since

∞∑

s=1

(
z
∗(n)
T,s − z̄∗T,s

)
φ(T )(s)

does not depend on s, there must exist some βn such that:

φ(T )(h) =
1

N(T )

N(T )∑

n=1

(
z
∗(n)
T,h,1 − z̄∗T,h

)
βn .

Overall, we can write:

(KTφ
(T ))(h) = λ(T )φ(T )(h)

⇔ 1

N(T )

N(T )∑

n=1

(
z
∗(n)
T,h − z̄∗T,h

) ∞∑

s=1

(
z
∗(n)
T,s − z̄∗T,s

)
× 1

N(T )

N(T )∑

n′=1

(
z
∗(n′)
T,s − z̄∗T,s

)
βn

′

= λ(T )
1

N(T )

N(T )∑

n=1

(
z
∗(n)
T,h,1 − z̄∗T,h

)
βn

To solve for λ(T ) and B = [β1 β2 ... βN(T )]′ in the previous equation, it is equivalent to

solve the following system of N(T ) equations, for n = 1, . . . , N(T ):

1

N(T )

N(T )∑

n′=1

βn
′

∞∑

s=1

(
z
∗(n′)
T,s − z̄∗T,s

)(
z
∗(n)
T,s − z̄∗T,s

)
= λ(T )βn .
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And, with the (N(T ), N(T ))-matrix C as defined in Lemma 1, the above system of

linear equations can be rewritten as:

CB = λ(T )B .

It is then easy to see that the eigenvalues ofKT , namely λ
(T )
j , are also the eigenvalues

of the matrix C with associated eigenvectors Bj = [β1
j β

2
j ... β

N(T )
j ]′, j = 1, . . . , N(T ).

Further, the eigenfunctions of KT are such that, for j = 1, . . . , N(T ),

φ
(T )
j (h) =

1

N(T )

(
z
(T )
h

)′Bj with z
(T )
h ≡




(
z
∗(1)
T,h − z̄∗T,h

)
(
z
∗(2)
T,h − z̄∗T,h

)
...(

z
∗(N(T ))
T,h − z̄∗T,h

)



.

�

S.3 Medium-scale New Keynesian model

Consider the medium-scale New Keynesian model with seven indices introduced in

Section 5.2 of the main text.

In Table 11, we present the estimation results of the degree of price indexation

alone when matching either up to H = 20 or H = 80 with sample size T = 236.

We report the performance of two SMAS estimators, respectively with the optimal

operator and the diagonal one, with regularization in terms of Monte-Carlo average

(mean), standard deviation (SD), Root Mean Squared Error (RMSE), Mean Absolute

Deviation (MAD), and effective coverage rates of 95% and 90% confidence intervals

obtained over 1,000 Monte-Carlo replications.

Overall, the performance of the optimal SMAS estimator dominates that of the

diagonal one; however, the differences remain small.
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Matching IR over medium to long horizons on all 7 indices
Horizons 1 to 20 Horizons 1 to 80 Horizons 21 to 80
optimal diagonal optimal diagonal optimal diagonal

mean 0.5078 0.5089 0.5656 0.5702 0.5052 0.5156
MAD 0.0388 0.0399 0.0965 0.1012 0.0362 0.0466
SD 0.2710 0.2780 0.2657 0.2642 0.2778 0.2797
RMSE 0.2738 0.2809 0.2827 0.2829 0.2802 0.2835
Coverage
95% 100.0 100.0 100.0 100.0 100.0 100.0
90% 94.8 92.9 94.8 92.9 94.6 93.2

Table 11: Estimation of the degree of price indexation γp = 0.469. Performance of
SMAS estimators (with and without regularization) when matching impulse responses
over medium to long horizons in all indices. We consider dynamic responses obtained
up to five years after the shock (20 periods), up to twenty years (80 periods), or between
five and twenty years (60 periods). The sample size is T = 232; we consider VAR(4),
N = 1, 000 replications.
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Next, we consider deviations from the model assumptions by redoing our simulation

study when the error terms in the real DGP are not normally distributed, but rather

t-distributed - with either 4 or 20 degrees of freedom. Everything else remains exactly

as before. In Table 12, we present the estimation results of the Calvo parameter

when matching either up to H = 20 or H = 80 with sample size either T = 236

or T = 944. We report the performance of two SMAS estimators, respectively with

the optimal operator and the diagonal one, with and without regularization in terms

of Monte-Carlo average (mean), standard deviation (SD), Root Mean Squared Error

(RMSE), Mean Absolute Deviation (MAD), and effective coverage rates of 95% and

90% confidence intervals obtained over 1,000 Monte-Carlo replications.

Overall, the results are on-par with those obtained in Table 7 in the main paper. In

particular, we notice that the performance of the regularized SMAS estimator is very

good and dominates that of the non-regularized one according to all reported measures

of performance. We do notice some small size distortions, which tend to disappear

when the sample size increases. Focusing now of the performance of regularized optimal

SMAS, it is better than that of diagonal SMAS as it delivers smaller SD and RMSE, and

improved coverage rates - especially with T = 236. In addition, its performance does

improve when adding IR at long horizons according to all measures of performance.

Finally, when considering deviations from normality that are more severe (e.g. with

t(4)), its performance deteriorates slightly with increased MAD and SD.

All in all, and similar to the results obtained in the small-scale model, our analysis

suggests that the SMAS estimator can indeed withstand deviations from the model

assumptions, including deviations in the distributions of the error terms.
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Panel A: the errors are t(20) and H = 20
T = 236 T = 944

Diagonal Optimal Diagonal Optimal
reg. non-reg. reg. non-reg. reg. non-reg. reg. non-reg.

mean 0.7105 0.6736 0.7634 0.7402 0.8396 0.7961 0.8572 0.8024
MAD 0.1975 0.2344 0.1446 0.1678 0.0684 0.1119 0.0508 0.1056
SD 0.2248 0.2425 0.2108 0.2251 0.1493 0.1940 0.1354 0.1908
RMSE 0.2992 0.3373 0.2556 0.2807 0.1642 0.2240 0.1446 0.2180
Coverage
95% 86.3 82.7 89.7 88.2 94.7 91.5 93.9 92.5
90% 85.8 80.7 88.5 86.2 90.2 90.4 90.8 91.7

Panel B: the errors are t(20) and H = 80
T = 236 T = 944

Diagonal Optimal Diagonal Optimal
reg. non-reg. reg. non-reg. reg. non-reg. reg. non-reg.

mean 0.6858 0.6536 0.7604 0.7387 0.8271 0.7790 0.8476 0.7913
MAD 0.2222 0.2544 0.1476 0.1693 0.0809 0.1290 0.0604 0.1167
SD 0.2272 0.2410 0.1955 0.2199 0.1558 0.1983 0.1414 0.1998
RMSE 0.3178 0.3504 0.2450 0.2776 0.1756 0.2366 0.1537 0.2314
Coverage
95% 83.2 80.4 90.6 88.2 95.2 91.3 92.7 92.2
90% 82.0 77.2 90.2 86.6 90.1 89.2 90.0 91.6

Panel C: the errors are t(4) and H = 20
T = 236 T = 944

Diagonal Optimal Diagonal Optimal
reg. non-reg. reg. non-reg. reg. non-reg. reg. non-reg.

mean 0.6994 0.6684 0.7528 0.7150 0.8267 0.7849 0.8526 0.7887
MAD 0.2086 0.2396 0.1552 0.1930 0.0813 0.1231 0.0554 0.1193
SD 0.2201 0.2312 0.2120 0.2428 0.1621 0.2062 0.1375 0.1954
RMSE 0.3033 0.3330 0.2627 0.3101 0.1814 0.2401 0.1482 0.2289
Coverage
95% 85.9 81.8 88.3 84.5 94.8 90.7 93.3 92.0
90% 83.8 80.7 86.0 82.3 90.1 89.5 90.2 90.7

Panel D: the errors are t(4) and H = 80
T = 236 T = 944

Diagonal Optimal Diagonal Optimal
reg. non-reg. reg. non-reg. reg. non-reg. reg. non-reg.

mean 0.6853 0.6530 0.7570 0.7292 0.8245 0.7792 0.8456 0.7820
MAD 0.2227 0.2550 0.1510 0.1788 0.0835 0.1288 0.0624 0.1260
SD 0.2245 0.2450 0.1950 0.2225 0.1580 0.1942 0.1459 0.2018
RMSE 0.3162 0.3536 0.2467 0.2855 0.1787 0.2330 0.1587 0.2379
Coverage
95% 84.8 80.4 91.0 87.4 95.8 91.0 94.9 90.8
90% 83.4 77.0 89.8 86.4 90.3 90.2 91.3 90.1

Table 12: Estimation of the Calvo parameter ζp = 0.908 in the medium-scale model
when the error terms are t-distributed, either as t(20) in Panels A and B, or t(4) in
Panels C and D. Performance of SMAS estimators (with and without regularization)
when matching impulse responses over medium and long horizons in all indices with
sample size T = 236 and 944. We fit VAR(4) and consider N = 1, 000 replications.
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S.4 Estimation of the asymptotic variance

We now present new simulation results to illustrate the validity of Theorem 2 in the

main text - especially the accuracy of finite sample standard errors and their con-

vergence towards their asymptotic equivalents. Specifically, we compute finite sample

standard errors and their asymptotic equivalents in the context of our benchmark

(small-scale) DSGE model presented in Section 5.1 in the main text.

We focus on the baseline experiment highlighted in Section 5.1 in the main text.

We estimate one unknown parameter denoted α, the probability of the price stickiness.

We fit a VAR(2) model to the sample of observations, match IR up to horizon H = 80,

and consider 500 Monte-Carlo replications. As proven in Theorem 2 in the main text,

the asymptotic variance of the SMAS estimator (computed with operator B) of α is a

real number defined as,

‖BG(α0)‖−2 ,

when B is chosen as the optimal operator, and defined as,

‖BG(α0)‖−2(BG(α0), (BKB
′)BG(α0))‖BG(α0)‖−2 ,

otherwise. The function G(.) - the derivative of the distance function z(.) with respect

to α - is approximated numerically as follows,

Ge(α) =
z(α + e)− z(α − e)

2e
,

with e a small (positive) constant. In practice, we choose e equal to the increment of

the grid of candidate values used to solve the optimization problem: that is, e = 0.005.

The results are presented in Table 13 where we report the percentage difference

between the finite sample variance (denoted σ̂2) of the SMAS estimator α̂ and its

asymptotic equivalent (denoted σ2
0), that is:

|(σ2
0 − σ̂2)|
σ2
0

× 100 .

We consider different sample sizes that are comparable to the ones used in the Monte-

Carlo study conducted in the main text: that is, T = 116, 232 and 464. We report the

percentage differences in the variances of two SMAS estimators, the optimal one and

the diagonal one. Overall, the differences between the finite sample variance and its

asymptotic equivalent can be large, especially for smaller sample sizes: for example,
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differences up to 19% for the smallest sample size, T = 116, for both optimal and

diagonal SMAS estimators. That being said, these differences tend to decrease when

the sample size increases: for example, this difference drops to 7.6% when T = 464 for

the optimal SMAS, and to 10.6% for the diagonal SMAS.

Matching IR over long horizons
Sample size T 116 232 464
% difference with optimal operator 18.94 18.06 7.64
% difference with diagonal operator 18.84 19.00 10.60

Table 13: Estimation of the price indexation α = 0.75 in the small-scale model when
matching IR up to H = 80. We report the percentage difference between the finite
sample variance of the SMAS estimator and its asymptotic equivalent for samples of
size T = 116, 232, and 464. The SMAS estimator is either computed with the optimal
operator or the diagonal one. We fit VAR(2), and consider 500 replications.

In practice, we do not recommend the above-mentioned direct estimation of the

asymptotic variance for two main reasons. First, it depends on the derivative of a

function that is not known in closed-form. This is actually related to our framework

of interest where auxiliary statistics are not known in closed-form. Second, even in a

simpler (or more standard) framework, it is well-documented that the asymptotic dis-

tribution of standard minimum distance estimators such as GMM or Indirect Inference

may not accurately reflect finite-sample performance. Further, it is not only about the

estimation of the asymptotic variance, but also about deviations from the true value.

Ultimately, what matters is that estimated variances appropriately adjust to deviations

from the true value to ensure associated confidence intervals and tests deliver reliable

inference on the parameter of interest - e.g. without severe size distortions. And this

is what we have focused on in the Monte-Carlo experiments presented in the main

text. To this end, we propose a bootstrap approach. Theorem 2 (and Theorem 4) in

the main text establish asymptotic properties of the SMAS estimator that are key to

validate our bootstrap approach.
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