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We are extremely grateful to the discussants appointed by the co-Editors of Journal

of Financial Econometrics for their thorough and constructive comments on our paper.

Lars P. Hansen has chosen to set the focus on the population analysis while Patrick

Gagliardini and Diego Ronchetti have co-authored an impressive contribution mainly

devoted to (statistical) comparison of estimators. Furthermore, Sydney Ludvigson,

on the one hand, Raymond Kan and Cesare Robotti, on the other, have shared their

discussion between the two dual issues of population analysis and inferential meth-

ods. We are also grateful to Rachidi Kotchoni for his discussion at the 2018 CIREQ

Econometrics Conference on “Recent Advances in the Method of Moments” that was

insightful about identification issues.

The four discussions appointed by Journal of Financial Econometrics are right to

the point, and as a result, share some common observations. For this reason, we have

chosen to organize our rejoinder according to the relevant themes of discussion. We

first address in section 1 the reviewers’ questions about our focus on a misspecified

SDF rather than a valid one (the closest to our misspecified one), as well as the status

of the positivity constraint. Section 2 considers the related issue of a state dependent

pseudo-true value. In our paper, we study a pseudo-true value which, albeit focused

on conditional pricing errors, is time invariant, and minimizes a mean squared error
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of conditional pricing. We review possible alternatives based on local GMM (Lewbel,

2007), or Extended Method of Moments (Gagliardini, Gouriéroux and Renault, 2011).

Section 3 discusses issues related to estimation of pseudo-true values through a choice

of instruments (or managed portfolios), the corresponding estimation dilemma, as well

as weak identification issues. Finally, section 4 considers different nonparametric es-

timation techniques (in particular, kernel smoothing and SMD) for assessing a time

invariant pseudo-true value, their relative performances, and the role of conditioning

information.

Whenever necessary, the discussants’ questions are rewritten with the notations of

our paper.

1 Why not a valid SDF?

1.1 Pseudo-true value of structural parameters

L.P. Hansen starts with the following question: “Why not use the misspecified stochastic

discount factor m(θ∗) to select the valid SDF M∗ that is closest to m (θ∗) and prices

vector returns correctly?”. There is no doubt that such a valid SDF is an object of

interest, in particular because “the better the model, the smaller the adjustment” from

m (θ∗) to M∗. This question is fully sensible when the main goal is to evaluate asset

pricing models by comparing their HJ distances. However, as noted by S. Ludvigson,

the computation of the HJ distance “also provides an implicit recommendation on how

to choose θ”. This pseudo-true value θ∗ of θ is the focus of interest of our paper. It seems

to us that there are also economic motivations for choosing a structural parametric

model that complement the statistical motivations such as

(i) “Nonparametric estimators have slower rates of convergence and this may make

the practical construction of M∗ less reliable” as acknowledged by L.P. Hansen;

(ii) Models that are not tightly specified with structural content may suffer from

over-fitting and poor out of sample performance;

there are also economic motivations. For example, the plausible value of a risk aversion

parameter has been the focus of interest for years of research about the equity premium

puzzle; disentangling the risk aversion parameter from the elasticity of intertemporal

substitution and correctly interpreting the risk aversion parameter when agents are

endowed with the recursive preferences of Epstein and Zin (1989) has also been another

debate (Garcia, Renault, and Semenov (2006)).
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More generally, the specific (pseudo-true) value θ∗ of a vector θ of structural param-

eters is, in our opinion, an object of interest. We refer in the paper to the philosophy

promoted by Lettau and Ludvigson (2001), stating that, irrespective of some well-

documented empirical shortcomings, “the reputation of the theoretical paradigm” of

some popular factor models “remains well preserved”. There are some fundamental

factors that are well priced by the pseudo-true SDF m (θ∗) irrespective of the fact that

the corrected SDF M∗ prices correctly all the asset returns at hand. This is the reason

why we enhance the ability of the pseudo-true SDF mt+1(θt) (resp. mt+1 (θ
∗)) to price

exactly at each point of time t (resp. exactly on average over time) all the local factors.

1.2 Positivity constraint

L.P. Hansen completes his first question with the following one: “Why not impose that

M > 0 with probability one in the constraint set for minimization?”. As far as our

focus of interest remains the pseudo-true value θ∗ (or, more generally the conditional

one θt) rather than the corrected SDF M∗, the information content of the additional

constraintM > 0 is unclear. The point is that the essential information comes from the

choice of the structural model L = {mt+1 (θ) ; θ ∈ Θ ⊂ Rp}. If the structural model is a

conditionally affine model (resp. exponentially conditionally affine model), there is no

way to make the pseudo-true SDF nonnegative (resp. it is automatically nonnegative)

irrespective of maintaining or not the additional constraint M > 0.

Again, it seems to us that the only potential benefits of imposing a nonnegativity

constraint are statistical ones when considering inference on the modified SDF M∗

rather than on the structural model. In their discussion, R. Kan and C. Robotti dub

“unconstrained HJ distance” (resp. “constrained HJ distance”) the distance between

the proposed SDF mt+1 (θ) and the set of admissible SDFs (resp. nonnegative admis-

sible SDFs). They recall the in-depth analysis of Gospodinov, Kan and Robotti (2016)

where “the equivalence of the asymptotic distributions of the sample constrained and

constrained HJ-distance tests” is shown. Therefore, there is no clear benefit in taking

the constraint into account for specification testing. As far as estimation is concerned,

it is intriguing to think about the potential use of the analysis of Moon and Schorfheide

(2009) regarding empirical likelihood estimators where inequality moment conditions

provide over-identifying information. While they show that the use of this information

leads to a reduction of the asymptotic mean-squared estimation error, one may wonder
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if over-identifying information like

E [MZ] ≥ 0,∀Z ≥ 0

may be relevant for moment-based estimation of a valid SDF M .

2 Why not a State-Dependent Pseudo-True Value?

L.P. Hansen’s third question asks: “Why not let the “parameter” θ be scaling of the

underlying factors for conditional factor models or their exponential counterparts (...)

and solve conditional minimization (...)?”. As explained below, it is arguably the most

important question since it is at the core of why one may be interested in pseudo-true

values.

As already mentioned, the evaluation of asset pricing models through their HJ dis-

tances is not our main interest. That being said, and as noticed by R. Kan and C.

Robotti, by setting the focus on the average HJ distance δ2 (θ) (and not on the con-

ditional one δ2 (θ) [I(t)]), we overlook the “potentially interesting task of determining

how different models perform relative to each other over time”. We actually share an

alternative viewpoint where an excessively time-varying minimum pricing error is a

shortcoming for the practical use of an asset pricing model; accordingly, it then makes

sense to minimize the mean squared pricing error over time.

However, the main question remains: why not perform “conditional parameter

estimation” of a state dependent pseudo-true value θt? To address this important

issue, it is worth adopting the point of view put forward by Lewbel (2007).

2.1 Estimation of a state dependent pseudo-true value

We are working on the n conditional moment restrictions:

E[ψt+1(θ) |I(t)] = 0 with ψt+1(θ) = m [I(t+ 1), θ]Rt+1 − 1n (1)

When setting the focus on a state-dependent pseudo-true θt, we choose to see θt as an

additional random vector of parameters in the estimating functions ψt+1(θt). As noted

by Lewbel (2007), it may be worth simplifying the general theory of Ai and Chen (2003)

regarding conditional moment restrictions with unknown functions by imposing that

the unknown function depends on the state of nature only through the conditioning

information:

θt = θ̃[I(t)] (2)
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where θ̃[.] is a nonparametric deterministic function to estimate. The extension of

Gagliardini, Gouriéroux and Renault (2011) (GGR hereafter) of Lewbel’s (2007) i.i.d.

setting to time series is especially convenient for us since the interpretation of a state-

dependent pseudo-true value is fully consistent with (2). Such a framework puts on

the table two alternative interpretations of the concept of misspecification of an asset

pricing model:

• Either we consider that the asset pricing model (1) is misspecified because it

assumes a constant vector θ of structural parameters, but we do not question the

existence of a state dependent solution θ̃[I(t)] of:

E[ψt+1(θ̃[I(t)]) |I(t)] = 0 (3)

• Or, we consider that the relaxation (3) of model (1) is still misspecified, meaning

that θ̃[I(t)] is defined as a pseudo-true value (denoted by θt in the paper) that

minimizes the conditional HJ distance δ2 (θ) [I(t)] without putting it at zero.

Lewbel (2007) develops a local GMM methodology under the maintained assumption

(3) with the conditioning information I(t) summarized by some state variable vector

Xt,

θ̃[I(t)] = θ(x)

for all possible value x of the random vector Xt. Up to replacing expectations and

variances by conditional ones given Xt = xt, the pattern of local GMM formulas (ob-

jective function, asymptotic distribution of GMM estimators) looks similar to standard

GMM based on unconditional expectations. However, while we end up with a point-

wise asymptotic normal distribution of the estimator θ̂(T )(x) for any possible value x

of Xt, the rate of convergence of this estimator is nonparametric, and determined by

the nonparametric estimator Ê(T )[ψt+1(θ) |Xt] of the conditional expectation operator

E[ψt+1(θ) |Xt]. Even though this asymptotic theory has not been developed in the liter-

ature, it should characterize the asymptotic distribution of Ê(T )[ψt+1(θ̂
(T )(x)) |Xt = xt]

and the associated J-test of overidentification of the null hypothesis:

∃θt : E[ψt+1(θt) |Xt = xt] = 0 (4)

The null hypothesis associated with (4) is defined at each date t0 = 1, ..., T . For

the test of a given H0(t0), the complete dataset at dates t ̸= t0 is used to define

the nonparametric estimator of the conditional expectation operator E[ψt+1(θ) |Xt].

Note that our discussion is simplified by only contemplating individual tests of the
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hypotheses H0(t0), t0 = 1, ..., T ; of course, joint tests could also be performed. In any

event, there are two cases of interest:

• Either we fail, in general, to reject the null hypotheses H0(t0), t0 = 1, ..., T , and

so we have estimated a sequence θt, t = 1, ..., T of conditional true values. The

model is misspecified because the true values are time varying. There is still

room to make inference on our constant pseudo-true value θ∗ that minimizes the

average HJ distance δ2 (θ) while the conditional ones δ2 (θ) [I(t)] actually define

state-dependent true values. For inference on these conditional true values, a

dynamic extension of the results of Lewbel (2007) (see GGR) is available.

• Or, the null hypothesesH0(t0), t0 = 1, · · · , T , are generally rejected, which means

that the asset pricing model is misspecified date by date. Then, the results of

Lewbel (2007) do not apply anymore. The asymptotic theory of Lewbel (2007)

should be revisited to account for misspecification, as thoroughly as Hall and

Inoue (2003) had to revisit the GMM theory of Hansen (1982) to accommodate

misspecification. One may wonder whether such a study is worthwhile. After all,

what is the point to resort to a structural asset pricing model if the model does

not maintain any structural constraint? This is the reason why we have rather

chosen to set the focus on the constant pseudo-true value θ∗.

2.2 Additional structural restrictions

In our opinion, working on a sequence of conditional pseudo-true values is worth doing

only if one introduces some additional restrictions to keep some structural features for

our misspecified asset pricing model. We know at least two examples of this strategy

in the extant literature. In both cases, some additional structural restrictions are

reckoned to recover estimators with root T convergence, at least in some directions of

the parameter space.

GGR have extended Lewbel (2007) by considering that, besides some local moment

restrictions,

E[ψt0+1(θ) |Xt0 = xt0 ] = 0 (5)

there are some global moment restrictions,

E[φt (θ)] = 0, ∀t = 1, ..., T (6)

Note that the local moment restrictions (5) mean that the solution θ may depend on the

state at date t0. Since we set the focus on this particular date (rather than considering
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local restrictions at other dates), our notation does not need to explicitly account

for the fact that θ may be time-varying. Moreover, the global moment restrictions

(6) may be not informative enough to fully identify a constant vector θ; they may

only define a few components of the parameter vector (or some linear combinations)

that are time invariant and may be estimated at a parametric rate of convergence.

GGR deliver the comprehensive asymptotic theory for inference on θ under the joint

set of moment restrictions (5) and (6). Some linear combinations of θ have root T

consistent estimators while others are only consistently estimated at nonparametric

rates. GGR had in mind option pricing when the underlying asset and the short

term bond price properly discounted by a SDF mt+1 (θ) and relevant instruments have

dynamics conformable to global moment restrictions (6). By contrast, the option

prices are only considered at time t0 (with various strike prices and maturities) and

only provide state dependent conditional information. Typically, the price of volatility

risk is only identified through option price data, is estimated at a nonparametric rate,

and depends on the special state at time t0.

The bottom line is that we never question that the state dependent directions in the

parameter space are about true values, and not pseudo-true values. It is also the case

of an alternative approach recently put forward by Creal et al. (2020) who, similarly to

GGR, allow some directions in the parameter space to be state dependent. However,

by contrast with GGR, they do not give up parametric rate of convergence to estimate

these directions, because they add some information about their dynamics and the

possibility to filter them. The key idea is to define some “observation driven filtering”

that generalizes the former literature (see e.g. Creal, Koopman and Lucas (2013) on

score driven generalized autoregressive models with time varying parameters). Such

additional filtering information is arguably structural, even though not explicitly based

on economic theory. Once again we are talking about state dependent true values, as

there is no such thing as state dependent pseudo-true values.

3 Why not Managed Portfolios?

3.1 An identification issue

As explained in the paper, a fixed pseudo-true value θ∗ ∈ Θ ⊂ Rp should be character-

ized by the p first-order conditions,

E

{
E

[
∂mt+1 (θ

∗)

∂θ
R′

t+1 |I(t)]
]
Ω−1 [I(t)]E[mt+1 (θ

∗)Rt+1 − 1n |I(t)]
}

= 0 (7)
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These first-order conditions average out over the conditioning information I(t) the local

conditions that define a state-dependent (pseudo) true value θt as solution of

E

[
∂mt+1 (θt)

∂θ
R′

t+1 |I(t)]
]
Ω−1 [I(t)]E[mt+1 (θt)Rt+1 − 1n |I(t)] = 0 (8)

We have proposed to interpret these definitions through the concept of local factors,

FL
t+1(θ) =

∂mt+1 (θ)

∂θ

For the case 1 of conditionally affine SDF, the local factors are:

FL
t+1(θ) =

[
1

Ft+1

]
so that with an appropriate choice of factors, we can assume that

Rank
{
E
[
FL
t+1(θ)F

L
t+1(θ)

′ |I(t)]
]}

= p (9)

This rank condition should also be fulfilled in the case of an exponentially affine model.

With the notations of the paper:

mt+1 (θ) = exp [m̃t+1 (θ)] ⇒ FL
t+1(θ) = mt+1 (θ)

[
1

Ft+1

]
By contrast, for the case 2 of conditionally affine SDF (“scaled multifactor model” as

in Lettau and Ludvigson (2001)), the local factors are:

FL
t+1(θ) = Wt ⊗ Ft+1

and, without additional equality constraints on the parameter θ, it is obviously asso-

ciated with some rank deficiency:

Rank
{
E
[
FL
t+1(θ)F

L
t+1(θ)

′ |I(t)]
]}

= q < p

As shown in the paper, one can always define a subvector F̃L
t+1(θ) of FL

t+1(θ) of size

q, such that the square matrix E
[
F̃L
t+1(θ)F̃

L
t+1(θ)

′ |I(t)]
]
is nonsingular. On the one

hand, (7) is equivalent to exact unconditional pricing of F̃L
t+1(θ

∗):

E
[
mt+1 (θ

∗) F̃L
t+1(θ

∗)
]
= 1q (10)

On the other hand, (8) is equivalent to exact conditional pricing of F̃L
t+1(θt):

E[mt+1 (θt) F̃
L
t+1(θt) |I(t)] = 1q (11)

8



Obviously, when q < p, θ∗ is not identified and cannot be consistently estimated,

irrespective of the estimation method: local GMM as in Gagliardini and Ronchetti’s

work, or SMD as in our paper. A solution would be an XMM-type approach as put

forward by GGR. In our context, it would amount to assume that there is a specific

date t0 such that the conditional pricing equations (11) are fulfilled by θt = θt0 at all

dates t = 1, ..., T for at least a q̆-dimensional (q̆ ≤ q) subset F̆L
t+1(θ) of factors F̃

L
t+1(θt):

E[mt+1 (θt0) F̆
L
t+1(θt0) |I(t)] = 1q̆, ∀t = 1, ..., T

This would imply that some linear combinations of θt0 are not state dependent and

would provide additional identifying information about θ∗. Such an extension from

local GMM to XMM is beyond the scope of this paper, and we maintain the rank

condition (9).

An alternative approach would be to live with lack of identification. Korsaye,

Quaini and Trojani (2020) define an “APT-consistent” SDF such that, it first exactly

prices the traded factors (our condition (10)), and, second, it implies pricing errors

that satisfy some APT bound. In other words, the pseudo-true SDF is not unique, but

the focus is set on those SDFs which, albeit not valid, satisfy some misspecification

threshold. This is an interesting illustration of the general strategy suggested by L.P.

Hansen in his discussion: “Why the focus on inference about a pseudo-true parameter

vector instead of on the more general construction of a set of parameters that satisfies

a pre-specified misspecification bound?”.

This question paves the way for an interesting extension of partial identification in

asset pricing. In the first Journal of Financial Econometrics Invited Lecture (see also

Kaido and White (2009)), Halbert White1 showed that “under incomplete markets,

the market price of risk is not point-identified but is instead identified as a bounded

subset of an affine subspace”. For us, the pseudo-true SDF is only required to price

a set of q local factors which may not be sufficient (when q < p) to uniquely identify

the pseudo-true value of the SDF mt+1 (θ
∗) - just like with incomplete markets. This

would lead to define as target of inference an identified set as suggested above by L.P.

Hansen.

1We are pleased that this Halbert White Jr. Memorial JFEC Invited Lecture gives us an oppor-

tunity to revisit H. White’s seminal work.
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3.2 The estimation dilemma

While maintaining the assumption of point identification of the pseudo-true value θ∗,

we fully concur with S. Ludvigson’s statement that estimation of a pseudo-true value

“poses a fundamental dilemma”. As mentioned in the paper, the first-order conditions

(7) seem to define a vector of “optimal instruments”:

Zt (θ
∗) = E

[
∂mt+1 (θ

∗)

∂θ
R′

t+1 |I(t)]
]
Ω−1 [I(t)]

These instruments, dubbed “HJ-optimal instrument matrix” by Gagliardini and Ronchetti

in their discussion, may look a bit simpler than the genuine optimal instruments for

efficient GMM since, in line with the philosophy of the HJ distance, the weighting ma-

trix Ω [I(t)] does not depend on unknown parameters (that would call for a first step

estimator). Moreover, as it is well-known, the first-order conditions can be rewritten

and reinterpreted as pricing equations for managed portfolios with payoffs Zt (θ
∗)Rt+1:

E[mt+1 (θt)Zt (θ
∗)Rt+1 − Zt (θ

∗) 1n] = 0

However, as rightly noted by S. Ludvigson, when the SDF mt+1 (θ) is a nonlinear func-

tion of unknown θ - that is, when we go beyond conditional affine SDFs - these optimal

instruments do not “in general present a feasible estimation strategy”. This is in sharp

contrast with the case of efficient GMM where one faces a seemingly analog problem.

Following Newey (1990), “a problem in constructing efficient instrumental variables

estimators for such models is that the optimal instruments involve a conditional expec-

tation (...) Nonparametric methods provide a way of avoiding this difficulty”. Newey

(1990) promotes in particular series approximation which may be applied in two ways:

• Either using a countable basis of the space of I(t)-measurable functions, with

the hope that, by picking a large number JT of instruments Zj,t, j = 1, · · · , JT in

this base, one will span asymptotically the optimal instruments Zt (θ
∗). For JT

going to infinity at a proper rate with T , the GMM estimator based on managed

portfolios with payoffs Z ′
j,tRt+1, j = 1, · · · , JT will be asymptotically equivalent

to efficient GMM.

• Or, computing a nonparametric estimator of E
[
∂mt+1(θ)

∂θ
R′

t+1 |I(t)]
]
where θ is

replaced by a first-step consistent estimator θ̃T ; possibly with a series estimator,

or a nearest neighbor estimator as in Newey (1990).
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Unfortunately, none of these classical strategies will work in our context - hence the

aforementioned estimation dilemma. Since there is no such thing as a true value of θ,

each choice of a set (Zj,t)1≤j≤J of instruments will define a different pseudo-true value,

that may not even exist; and there is no reason to believe that we will capture the

optimal instruments Zt (θ
∗) when J goes to infinity. Moreover, a first-stage consistent

estimator of θ∗ is not available. Therefore, any choice of an initial value θ1 to compute

instruments Zt (θ
1) will also lead to different pseudo-true values. This is a problem

similar to the issue met by Hall and Inoue (2003) for GMM with misspecification

when any value of θ chosen to compute a weighting matrix will lead to a different

pseudo-true value (they consider unconditional moment restrictions, so that there is

no issue of optimal instruments). As explained in the paper, the only hope would be

the convergence of an iterative strategy, thanks to some contraction mapping property

whose validity is not easy to check.

The bottom line is well summarized by S. Ludvigson: “it seems clear from the

above discussion that any resolution of this dilemma must (in general) abandon the use

of some finite number Zts (or choice of arbitrary managed portfolios)” to give some

clear empirical content to the pseudo-true value. This provides the motivation for

nonparametric approaches described in section 4.

3.3 Weak Identification

As recalled by Kan and Robotti, “Dominguez and Lobato (2004) argue that, despite its

computational attractiveness, the standard GMM approach of Hansen (1982) based on

unconditional moment restrictions may result in efficiency losses and inconsistencies

that arise from possible nonidentifiability of the parameters of interest by the uncon-

ditional moment restrictions even when the conditional moment restrictions identify

the parameters”. We much appreciate that Kan and Robotti interpret our work as

aiming “at shedding some light on these issues” for the conditional HJ-distance. We

have initiated above a discussion on the tension between identification from the condi-

tional moment restrictions versus unconditional ones. However, we acknowledge that

“a rigorous treatment of the HJ distance metric in the presence of conditional moment

restrictions is still in its infancy” and much work remains to be done.

That being said, it is worth contemplating some extension of the Dominguez and

Lobato’s (2004) contribution, by considering in our context the possibility that the

so-called optimal instruments Zt (θ
∗) may not be the most efficient ones to protect

us against identification issues. Let us consider more generally the estimation of the
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pseudo-true value of interest from the moment conditions:

E[mt+1 (θ)ZtRt+1 − Zt1n] = 0 (12)

where Zt is a given vector of H (≥ p) managed portfolios (with payoffs ZtRt+1). When

considering these moment conditions, it is important to keep in mind that:

• First, if we do not maintain the assumption that the state dependent parameters

θt do not depend on the state I(t), we do not know whether equations (12) admit

at least a solution θ. In other words, we may have to follow Hall and Inoue

(2003) to define a pseudo-true value as minimizing a norm of the expected vector

in (12).

• Second, irrespective of how the moment conditions (12) may define a pseudo-

true value, it will, in general, depend on the choice of the managed portfolios.

We will denote it below by θ∗, without explicit accounting for its dependence on

the choice of the managed portfolios used in (12) and, possibly, on a weighting

matrix.

In spite of the dependence of the pseudo-true value θ∗ on the choice of managed

portfolios Zt, it is worth studying to what extent different choices of managed portfolios

Zt may lead to different levels of identification strength. Antoine and Renault (2020)

define identification strength through a sequence of deterministic nonsingular matrices

MT of size p such that

lim
T=∞

∂ρT
∂θ′

(θ∗)MT = Γ (θ∗)

where the limit matrix Γ (θ∗) exists, is full-column rank, and the sequence of functions

ρT (θ) define the moment conditions

ρT (θ) = E[mt+1 (θ)ZtRt+1 − Zt1n] .

These moments may depend on the sample size T since we consider a drifting DGP

to accommodate weak moment asymptotics à la Stock and Wright (2000). Typically,

standard (strong) identification is associated with a sequence of matrices MT that can

be chosen constant (such as the identity matrix without loss of generality), while weak

identification corresponds to a sequence of matrices that blows up to infinity, possibly

as fast as
√
T . Antoine and Renault (2020) set the focus (and test for) intermediate

cases of nearly-strong/nearly-weak identification where ∥MT∥ = o(
√
T ), but where the

sequence MT may diverge to infinity in different directions, albeit slower than
√
T :
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the slower the divergence of MT , the stronger the identification of θ∗ in corresponding

directions. It is worth interpreting this property in terms of managed portfolios. Since

∂ρT
∂θ′

(θ∗) = E

[
ZtRt+1

∂mt+1

∂θ′
(θ∗)

]
= E

[
ZtRt+1F

L
t+1(θ

∗)′
]

we see that
∂ρT
∂θ′

(θ∗)MT = E
[
ZtRt+1

(
M ′

TF
L
t+1(θ

∗)
)′]

Therefore, up to a risk free asset, the identification strength is characterized by the

amount of rescaling of local factors that is called for to (asymptotically) get a full

rank covariance matrix with the returns on managed portfolios under test. While this

amount of rescaling has been documented in the paper for some popular models, it

is worth recalling that variants of SMD have been put on the table by Antoine and

Lavergne (2014, 2020) for estimation and inference robust to weak identification. A key

idea is precisely to give up projections on instruments to avoid the perverse interplay

between the number of instruments and their strength.

4 Inference based on nonparametric estimation of

conditional moments

4.1 Different kernel-based nonparametric strategies

As explained above, the use of managed portfolios is problematic in the context of

misspecification, and motivated us to resort to kernel smoothing to capture the condi-

tional moments of interest. As summarized in Gagliardini and Ronchetti’s discusssion

(referred to as GR hereafter), there are basically three possible approaches:

(i) The local GMM estimator;

(ii) The GMM estimator with HJ-optimal instruments;

(iii) The smooth minimum distance (SMD) estimator with fixed kernel bandwidth h

which is the focus of sections 6 and 7 in our paper.

The terminology “local GMM” follows from Gospodinov and Otsu (2012) and should

not be confused with Lewbel’s (2007) method that was also dubbed “local GMM”. Lew-

bel (2007) sets the focus on conditional moment restrictions for only one value of the

conditioning variable, so that the parameters of interest are estimated at nonparamet-

ric rates of convergence as function of this conditioning value. By contrast, Gospodinov
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and Otsu’s (2012) method belong to the class of localized versions of the generalized

empirical likelihood as proposed by Kitamura, Tripathi and Ahn (2004), Antoine, Bon-

nal and Renault (2007), and Smith (2007). In this case, different conditioning values

are considered as uniformly defining the same values of unknown parameters that are

then estimated with root-T rates of convergence. Typically, all these localized ver-

sions of the generalized empirical likelihood deliver root-T consistent asymptotically

normal estimators that reach the semiparametric efficiency bound (with valid condi-

tional moment restrictions). GGR is a mixture of these two approaches, by considering

that uniformity (and associated parametric rates of convergence for estimators) is only

achieved for some directions in the parameter space.

Gagliardini and Ronchetti’s (2016) local GMM estimator is defined as:

θ̂ = argmin
θ∈Θ

[
1

T

T∑
t=1

1(xt)Ê[ψt+1(θ) |xt]′ Ω̂−1 (xt) Ê[ψt+1(θ) |xt]

]
(13)

where 1(xt) is a trimming factor, Ω̂ (xt) = Ê[Rt+1R
′
t+1 |xt], and Ê[. |xt] denotes the

Nadaraya-Watson kernel regression estimator. Up to the trimming factor, the criterion

function corresponds to the sample counterpart of the population expectation that

defines our conditional average HJ distance δ2 (θ). In the conditional extension of

(efficient) continuously updated GMM (where Ω̂ (xt) is replaced by a Nadaraya-Watson

estimator of the conditional variance of ψt+1(θ)), Antoine, Bonnal and Renault (2007)

showed that such an estimator was asymptotically equivalent to efficient GMM based

on a non-parametric estimator of optimal instruments. In their discussion, GR extend

this result to the case of HJ-optimal instruments with possible misspecification; see

their Appendix A1.

S. Ludvigson highlights as an alternative the methodology of Ai and Chen (2007)

which amounts to replacing the Nadaraya-Watson estimator Ê[ψt+1(θ) |xt] in (13) by

a sieve estimator. Ai and Chen (2007) recognize that, in case of misspecification,

the nonparametric estimator of the weighting matrix Ω̂−1 (xt) may contaminate the

estimators of the parameters of interest (including their rate of convergence), and

they resort to using the identity weighting matrix (instead of the HJ one). By doing

so, they implicitly point out a practical difficulty in the application of local GMM

as in Gagliardini and Ronchetti (2016) when, due to misspecification, a long-term

variance matrix needs to be estimated (see also below). Up to this difficulty, one should

acknowledge how seminal the work of Ai and Chen (2007) was in the context of possibly

misspecified conditional moment restrictions. Moreover, the fact that different sets of

conditioning variables may be considered in different moment restrictions should allow
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for some flexibility in the crucial choice of conditioning information for the definition

of pseudo-true values. More generally, when nonparametric estimation of conditional

expectations is concerned, there are well-documented pros and cons of the respective

approaches of kernel smoothing and sieve estimation.

In addition, GR provide an insightful interpretation of our estimation strategy

inspired by Lavergne and Patilea’s (2013) SMD estimator with fixed kernel bandwidth

h. We know that the corresponding pseudo-true value θ∗(h) depends on the chosen

bandwidth h, which can be seen as a calibration parameter. Several comments are in

order:

(i) GR show that when h → ∞, the vector θ∗(h) converges to the unconditional

pseudo-true value. This is conformable to intuition: the less we smooth (or

the smaller the bandwidth h), the more all relevant conditioning information is

taken into account. Even though our pseudo-true value is not state dependent

(see section 2 above), for finite h, it does set the focus on conditional pricing

errors. GR interestingly show that “when h increases, the criterion Q∞ (θ, h)

gives less weight to the unconditional Fourier transforms of the pricing errors for

large frequencies of the process {xt}”. In other words, there is arguably a trade-off

between taking h small (with associated curse of dimensionality) and introducing

more state variables in the conditioning information. As we argued, “we are not

keen on restricting the information set I(t) since this would also modify the

definition of the pseudo-true value”. In this respect, we see the fixed bandwidth

h as a price to pay for the flexibility to incorporate more state variables.

(ii) As recalled by S. Ludvigson “in implementation, fixing h (or the number of sieves)

is exactly what a researcher faced with a finite amount of data would do”. This is

of course our rationale for considering SMD with fixed bandwidth h. Our paper

also puts forward a state variables framework (see section 6.2.) that allows us

to interpret the SMD estimator similarly to the i.i.d. case so that, following

Lavergne and Patilea’s (2013) argument, we believe that, even in large samples,

there is some rationale for fixed bandwidth h. This is also illustrated by GR: “as

found in APR and confirmed in our numerical experiments in Section 3, there

are empirically relevant frameworks in which some components of vector θ∗(h)

vary slowly over relative small values of the parameter h”.

(iii) We expect that for a bandwidth h converging to zero, our pseudo-true value θ∗(h)

will converge towards the genuine conditional pseudo-true value θ∗ as estimated
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by Gagliardini and Ronchetti (2016) with local GMM (or equivalently with HJ

optimal instruments). GR confirm our intuition by a formal proof that goes one

step further. It is worth keeping in mind that, even when two sets of moment

conditions define the same vector of parameters, and by definition two alternative

consistent estimators of the same vector, the asymptotic distributions of the two

estimators may differ.

What is arguably the most impressive contribution of GR’s thorough discussion is

the fact that they are able to question the asymptotic equivalence of local GMM

and SMD (with bandwidth h converging to zero). In our paper (see page 23), we

present the loss of a martingale difference property due to misspecification as “one

of the main motivations for the introduction (...) of the alternative SMD approach

that sets the focus on the misspecified model conditional moment restrictions for

resorting to a central limit theorem for U-statistics.” The asymptotic theory

developed by GR confirms that it is precisely this loss of martingale difference

sequence property that will drive a wedge between these two methodologies. Of

course, this is tightly related to the treatment of relevant conditioning information

through state variables.

4.2 The Role of Conditioning Information

In section 6.2., our paper deploys three assumptions (A1, A2, A3) about the role of state

variables in summarizing the relevant information about returns and SDF dynamics.

Similarly, GR introduce an assumption S that is “more general than Assumptions A1,

A2, A3 (...) because it accommodates for the fact that the conditioning variable xt used

by the econometrician can be a subcomponent of the state vector st”. Even though there

is no general implication law, it is obviously Assumption A1 in our paper that requires

a large enough set of state variables st. It basically assumes that the state variables st

are a sufficient statistic to forecast the next net discounted return:

Ψt+1 (θ) = mt+1 (θ)Rt+1 − 1n

Formula (16) in GR shows that forecasting this vector (and the corresponding Jacobian

matrix) is tantamount to forecast the score vector φt+1 (θ
∗) of the local GMM estimator.

In other words, our assumptions A1, A2, A3 allow the perverse term δ (st) to disap-

pear in the decomposition (18) of the score vector stated in GR. Our assumptions are

suggested by a common practice in option pricing (see e.g. Garcia, Luger an Renault
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(2003) and references therein). For instance, option pricing models with stochastic

volatility characterize option prices as one-to-one functions of latent volatility, while,

given the path of the volatility process, consecutive asset returns remain serially in-

dependent. In other words, if the econometrician “observes” volatility through option

prices data, assumption A1 is fulfilled. The consequences of this observation for econo-

metric inference are extensively discussed in Pastorello, Patilea and Renault (2003).

While the exogeneity assumption A2 is rather innocuous for elicited state variables,

assumption A3 maintains the absence of leverage effect which is more problematic for

option pricing, but also maintained by GR.

For sake of expositional simplicity, we only comment on GR’s asymptotic theory

under the maintained assumptions A1, A2, A3. In this case, their decomposition (18)

of the score vector for local GMM can be written as

φt+1 (θ
∗) = ξt+1 + g(xt) with ξt+1 = φt+1 (θ

∗)− E[φt+1 (θ
∗) |I(t)]

and g(xt) = E[φt+1 (θ
∗) |I(t)] = 1 (xt) J (xt, θ

∗) Ω−1 (xt) e (xt, θ
∗)

with e (xt, θ) = E[Ψt+1 (θ) |I(t)] , J (xt, θ) = E[
∂Ψt+1 (θ)

∂θ′
|I(t)]

When the asset pricing model is correctly specified, θ∗ is the true unknown value of

θ, e (xt, θ
∗) = 0, and the score φt+1 (θ

∗) = ξt+1 is a martingale difference sequence

(mds hereafter). In this case, we have the standard semiparametric efficiency bound

for GMM with conditional moment restrictions (as in the iid case, or as in Gospodinov

and Otsu (2012) for time series). Then, local GMM and SMD with bandwidth h going

to zero are asymptotically equivalent and miss the efficiency bound only because they

do not use the optimal weighting matrix.

When the asset pricing model is misspecified, the additional term g(xt) is different

from zero: it causes the mds property for the score of local GMM to break down, and

drives a wedge between local GMM and SMD. According to GR, when the bandwidth

h is pushed to zero, the SMD method leads to a score vector:

lim
h→0

φt+1 (θ
∗(h), h) = ξt+1 + 2g(xt) .

We would guess that the symmetrization of the objective function needed to resort to

the asymptotic theory of U-statistics is responsible for this duplication of the scaled

pricing error term g(xt). Since, by definition, the two terms ξt+1 and g(xt) are not

correlated, the duplication of the term g(xt) can only be responsible for an increase

of asymptotic variance of the estimators. Basically, in addition to the variance of the

mds part, the local GMM (resp. the SMD with h→ 0) will involve once the long term
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variance (resp. twice the long term variance) of g(xt). Note that it is indeed a long

term variance since g(xt) is not a mds.

If local GMM appears to deliver an asymptotically more accurate estimator of

the pseudo-true value than SMD with bandwidth pushed to zero, GR point out that

this ranking is not always guaranteed: for example, in more general situations where

the observed set of state variables may not be sufficient to maintain assumption A1.

Moreover, as already explained, one may actually prefer to work with SMD and a fixed

bandwidth: e.g. to ensure a relevant definition of the pseudo-true value of interest by

incorporating many state variables. An alternative (or complementary) strategy may

be the use of modern techniques of dimensionality reduction to incorporate all relevant

conditioning information through some well chosen statistical summaries. A typical

example is the work of Ludvigson and Ng (2009) who resort to dynamic factor analysis

to retrieve the relevant conditioning information encapsulated in some macro factors.
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