Exam \#1 Answer Key

Economics 435: Quantitative Methods
Spring 2005

1 Regression with standardized variables

a)

$$
\hat{\beta}_{0}=0
$$

b)

$$
R^{2}=\hat{\beta}_{1}^{2}
$$

c)

$$
\operatorname{corr}(\tilde{y}, \tilde{x})=\hat{\beta}_{1}
$$

d) Well, since we have shown that $\hat{\beta_{1}}=\operatorname{corr}(\tilde{x}, \tilde{y})$, and all correlations are between -1 and +1 , the answer to the question is "no."

2 Heteroskedasticity: A simple example

a) There are many ways to show this, but here's one:

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{\operatorname{côv}(y, x)}{v \hat{a r} r(x)} \\
& =\frac{1 / n \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{1 / n \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n} y_{i}\left(x_{i}-\bar{x}\right)-\bar{y} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}{n \bar{x}(1-\bar{x})} \\
& =\frac{\sum_{i=1}^{n} x_{i} y_{i}(1-\bar{x})+\left(1-x_{i}\right) y_{i}(0-\bar{x})}{n \bar{x}(1-\bar{x})} \\
& =\frac{(1-\bar{x}) \sum_{i=1}^{n} x_{i} y_{i}-\bar{x} \sum_{i=1}^{n}\left(1-x_{i}\right) y_{i}}{n \bar{x}(1-\bar{x})} \\
& =\frac{\sum_{i=1}^{n} x_{i} y_{i}}{n \bar{x}}-\frac{\sum_{i=1}^{n}\left(1-x_{i}\right) y_{i}}{n(1-\bar{x})} \\
& =\bar{y}_{1}-\bar{y}_{0}
\end{aligned}
$$

For $\hat{\beta}_{0}$, we simply note that $\bar{y}=(1-\bar{x}) \bar{y}_{0}+\bar{x} \bar{y}_{1}$, and substitute.
b) Assumptions SLR1-SLR4 are met, so the OLS estimators are unbiased and consistent.
c)

$$
\begin{aligned}
\operatorname{var}\left(\hat{\beta}_{0}\right) & =\operatorname{var}\left(\bar{y}_{0}\right) \\
& =\frac{\sigma_{0}^{2}}{n(1-\bar{x})} \\
\operatorname{var}\left(\hat{\beta}_{1}\right) & =\operatorname{var}\left(\bar{y}_{1}\right)+\operatorname{var}\left(\bar{y}_{0}\right)-2 \operatorname{cov}\left(\bar{y}_{1}, \bar{y}_{0}\right) \\
& =\frac{\sigma_{1}^{2}}{n \bar{x}}+\frac{\sigma_{0}^{2}}{n(1-\bar{x})} \\
\operatorname{cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right) & =\operatorname{cov}\left(\bar{y}_{0}, \bar{y}_{1}-\bar{y}_{0}\right) \\
& =\operatorname{cov}\left(\bar{y}_{0}, \bar{y}_{1}\right)-\operatorname{var}\left(\bar{y}_{0}\right) \\
& =\frac{\sigma_{0}^{2}}{n(1-\bar{x})}
\end{aligned}
$$

3 Hypothesis testing

a) Our best chance for rejecting the null is if all of our observations are greater than zero $\left(\bar{y}_{n}=1\right)$ of if all observations are less than zero $\left(\bar{y}_{n}=0\right)$. If this is the case then $|t|=\sqrt{n}$. With a sample size of two, the largest possible value for $|t|$ is $\sqrt{2}=1.414<1.96$. In general, we will have no chance of rejecting the null if $\sqrt{n}<1.96$ or if $n<1.96^{2}=3.84$. In other words we need a sample of size four or greater to have a chance at rejecting the null.
b) I would define:

$$
t=\sum_{i=1}^{n} I\left(x_{i}>10\right)
$$

Under the null hypothesis:

$$
\operatorname{Pr}(t=0)=1
$$

So we can reject the null at the 5% significance level (actually, at any significance level) if $t>0$.
In other words, we can reject the null if we ever see a value of x bigger than 10 , and we cannot reject the null otherwise. This makes sense, hopefully.

4 Craps

a)

$$
\begin{aligned}
\operatorname{Pr}(x=2) & =1 / 36 \\
\operatorname{Pr}(x=3) & =2 / 36 \\
\operatorname{Pr}(x=4) & =3 / 36 \\
\operatorname{Pr}(x=5) & =4 / 36 \\
\operatorname{Pr}(x=6) & =5 / 36 \\
\operatorname{Pr}(x=7) & =6 / 36 \\
\operatorname{Pr}(x=8) & =5 / 36 \\
\operatorname{Pr}(x=9) & =4 / 36 \\
\operatorname{Pr}(x=10) & =3 / 36 \\
\operatorname{Pr}(x=11) & =2 / 36 \\
\operatorname{Pr}(x=12) & =1 / 36
\end{aligned}
$$

b) The probabilities are:

$$
\begin{aligned}
\operatorname{Pr}(x \in\{7,11\}) & =8 / 36 \\
\operatorname{Pr}(x \in\{2,3,12\}) & =4 / 36 \\
\operatorname{Pr}(x=4) & =3 / 36 \\
\operatorname{Pr}(x=5) & =4 / 36 \\
\operatorname{Pr}(x=6) & =5 / 36 \\
\operatorname{Pr}(x=8) & =5 / 36 \\
\operatorname{Pr}(x=9) & =4 / 36 \\
\operatorname{Pr}(x=10) & =3 / 36
\end{aligned}
$$

c) The probabilities are:

$$
\begin{aligned}
\operatorname{Pr}(x=4 \mid x \in\{4,7\}) & =\frac{3 / 36}{3 / 36+6 / 36}=1 / 3 \\
\operatorname{Pr}(x=5 \mid x \in\{5,7\}) & =\frac{4 / 36}{4 / 36+6 / 36}=2 / 5 \\
\operatorname{Pr}(x=6 \mid x \in\{6,7\}) & =\frac{5 / 36}{5 / 36+6 / 36}=5 / 11 \\
\operatorname{Pr}(x=8 \mid x \in\{8,7\}) & =\frac{5 / 36}{5 / 36+6 / 36}=5 / 11 \\
\operatorname{Pr}(x=9 \mid x \in\{9,7\}) & =\frac{4 / 36}{4 / 36+6 / 36}=2 / 5 \\
\operatorname{Pr}(x=10 \mid x \in\{10,7\}) & =\frac{3 / 36}{3 / 36+6 / 36}=1 / 3
\end{aligned}
$$

d) The probability is:

$$
\begin{aligned}
\operatorname{Pr}(\text { win }) & =8 / 36+3 / 36 * 1 / 3+4 / 36 * 2 / 5+5 / 36 * 5 / 11+5 / 36 * 5 / 11+4 / 36 * 2 / 5+3 / 36 * 1 / 3 \\
& =\frac{244}{495} \\
& \approx 49.3 \%
\end{aligned}
$$

e) For every $\$ 1$ bet, the casino's profit is $\$ 1$ with 50.7% probability and $-\$ 1$ with 49.3% probability. The expected profit per $\$ 1$ bet is thus approximately 1.4 cents.

