Exam \#1 Answer Key

Economics 435: Quantitative Methods

Spring 2006

1 Starter questions (20 points)

a)

$$
\operatorname{cov}(a x, b+c x+d y)=a c \operatorname{var}(x)+a d \operatorname{cov}(x, y)
$$

b)

- Yes.
- Yes.
- It is $\hat{\beta}_{1}=\frac{0.23+0.77}{2}=0.5$.
c) Suppose that $E(u \mid x)=0$. The law of iterated expectations implies that $E(u)=E(E(u \mid x))=E(0)=0$.
d) Suppose that $E(u \mid x)=0$. The law of iterated expectations implies that $E(u)=E(E(u \mid x))=E(0)=0$. Next we note that $E(u x \mid x)=x E(u \mid x)=x * 0=0$. Applying the law of iterated expectations again, $E(u x)=E(E(u x \mid x))=E(0)=0$. Then $\operatorname{cov}(u, x)=E(u x)-E(u) E(x)=0-0 E(x)=0$.

2 Biased sample selection (40 points)

a) β_{1} is just the slope of the line connecting $\left(X_{0}, Y_{0}\right)$ and $\left(X_{1}, Y_{1}\right)$, so:

$$
\hat{\beta}_{1}=\frac{\hat{Y}_{1}-\hat{Y}_{0}}{X_{1}-X_{0}}
$$

b) Here's how I did it:

$$
\begin{aligned}
\operatorname{plim} \hat{P}_{Y} & =\frac{\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n} I\left(y_{i}=Y \cap x_{i}=X_{0} \cap s_{i}=1\right)}{\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n} I\left(x_{i}=X_{0} \cap s_{i}=1\right)} \\
& =\frac{\operatorname{Pr}\left(y=Y \cap x=X_{0} \cap s=1\right)}{\operatorname{Pr}\left(x=X_{0} \cap s=1\right)} \\
& =\operatorname{Pr}\left(y=Y \mid x=X_{0} \cap s=1\right)
\end{aligned}
$$

c) First, note that Bayes' Law implies:

$$
\begin{aligned}
\operatorname{Pr}\left(y=Y \mid x=X_{0}, s=1\right) & =\frac{\operatorname{Pr}\left(y=Y \cap s=1 \mid x=X_{0}\right)}{\operatorname{Pr}\left(s=1 \mid x=X_{0}\right)} \\
& =\frac{\operatorname{Pr}\left(s=1 \mid x=X_{0} \cap y=Y\right) \operatorname{Pr}\left(y=Y \mid x=X_{0}\right)}{\operatorname{Pr}\left(s=1 \mid x=X_{0}\right)}
\end{aligned}
$$

Solving for $\operatorname{Pr}\left(y=Y \mid x=X_{0}\right)$ we get:

$$
\operatorname{Pr}\left(y=Y \mid x=X_{0}\right)=\frac{\operatorname{Pr}\left(y=Y \mid x=X_{0}, s=1\right) \operatorname{Pr}\left(s=1 \mid x=X_{0}\right)}{\operatorname{Pr}\left(s=1 \mid x=X_{0}, y=Y\right)}
$$

d) The condition is:

$$
\operatorname{Pr}\left(s=1 \mid x=X_{0}, y=Y\right)=\operatorname{Pr}\left(s=1 \mid x=X_{0}\right)
$$

In other words, if the probability of selection is a function of the explanatory variables but not the dependent variable, we can still use OLS.
e) The condition is:

$$
\operatorname{Pr}\left(s=1 \mid x=X_{0}, y=Y\right)>0
$$

In other words, if we can never observe cases in which $y=Y$, we cannot tell $\operatorname{Pr}(y=Y)$.

3 Measurement error (40 points)

a)

$$
b_{1}=\frac{\beta_{1} \operatorname{var}(x)+\operatorname{cov}\left(e_{x}, e_{y}\right)}{\operatorname{var}(x)+\operatorname{var}\left(e_{x}\right)}
$$

b)

- No.
- Yes.
- Yes.
c)
- Yes.
- Yes.
- No.
d)
- No.
- Yes.
- Yes.
e)
- Uncertain. "No" would be OK too here, because the condition that would have to hold is:

$$
\operatorname{cov}\left(e_{x}, e_{y}\right)=\beta_{1} \operatorname{var}\left(e_{x}\right)
$$

This is possible, but only by some amazing coincidence.

- Uncertain.
- Uncertain.
f)
- Uncertain. "No" would be OK too here.
- Uncertain.
- Yes.

