Exam #1 Answer Key

Economics 435: Quantitative Methods

Fall 2008

1 A few warmup questions

a) First note that:

E(zu) = E(E(zu|z)) (by the law of iterated expectations)
= FE(xE(ulx)) (by the conditioning rule)
= FE(zE(u)) (since we are given E(ulz) = E(x))
= E(x)E(u) (by linearity of expectations)

Also note that

cov(z,u) = E((z—E(@)(u—F
= F(zu—uE(x)—zF
= E(zu— E(uw)E(z) — E(z)E(u) + E(u)E(x) (by the linearity of expectations)
(zu) — E(z)E(u) (by algebra)

()E(u) — E(x)E(u) (by our earlier result that F(xu) = E(z)E(u))

w))) (by definition)

(
(u) + E(u)E(x)) (by algebra)

o
S o™

b) The way to prove this is by finding one example where cov(z,u) = 0 but E(ulz) # E(u). There are a
lot of ways of doing this, here’s my example:

—1 with probability 0.25
r = 0  with probability 0.5
1 with probability 0.25

u = x2

Obviously E(u|r) = 2%, which depends on x. To find the covariance:

cov(z,u) = E(zu)— E(z)E(u)
= [0.25(=1%1) +0.5(0%0) +0.25(1 % 1)] — [0.25 % (—1) + 0.5% 0 + 0.25 % 1] [0.25(1) + 0.5 % 0 + 0.25 * 1]
= 0-0x0.5
0
c) The slope is % = (10517 and the elasticity is g—g% = G1x.

d) Let A be the event “snow in the air” and let B be the event “2 cm of snow on the ground”. The first column
in the table gives Pr(B) and the second gives Pr(A N B). We are looking for Pr(A|B) = Pr(A N B)/Pr(B),
which can be found by just plugging in the numbers
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e Quebec: Pr(A|B) = 0.50/1.00 = 0.50 ~ 50%.
e Vancouver: Pr(A4|B) = 0.04/0.11 = 0.3636 ~ 36%.

e) We have
Pr(A) =Pr(ANB)+Pr(AN B°) =Pr(AN B) + Pr(4|B°)(1 — Pr(B))

We know everything in this expression but Pr(A|B¢). We know that 0 < Pr(A|B°) < 1, so:
Pr(ANnB) <Pr(A) <Pr(ANB)+ (1 -Pr(B))
Plugging in the numbers:

e Quebec: 0.50 < Pr(A) < 0.50, or more simply: Pr(A4) = 0.5.

e Vancouver: 0.04 < Pr(A) <0.93.

2 The relationship between least squares prediction and the ex-
pected value

ESPE

E [(z —m)?] (by definition)
= FB(z* - 2ma +m?) (by algebra)
= E(z%) —2mE(z) + m? (by linearity of expectations)

Taking derivatives:

OESPE

. = —2E(x)+2m

So ESPE is minimized where —2F(x) + 2m = 0. Solving for m we get m = E(X)
b)

(by differentiation rules)

i=1
_ n
= — Z(ml —1h) (by summation rules)
n

1
_2 n n . )
= — ( E xz> - ( m)) (by summation rules)
n
i=1 i=1
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This quantity is zero if (3}, x;) — (31—, ™) = 0, or equivalently:

n n
m = in
i=1 i=1
1, 1<
z = =N g
=1 i=1
1 I
—nih = =Y m
n i=1
A 1 ¢
m = =) x
n 4
=1
3 The education production function
a) This is a standard omitted variables problem:
plim Bf‘ cov(c, q)
var(q)
_ cov(Bo + g+ Pas + u, q)
var(q)
cov(s,
B+ ﬁzM
var(q)

b) The bias is 32 Cgsﬁm). I would guess that students with high ability are likely to have both high initial

achievement and high current achievement (82 > 0). I would also guess that students with high initial
achievement are likely to be in higher quality schools (cov(s,q) > 0). This implies that the bias is positive,
i.e., 1 overstates the true ;.

c) We have:
Y cov(g, q)
plim (3 W
_cov(fo + Prg+ (B2 — 1)s 4+ u,q)
- var(q)
= [+ (62— 1)62255(;;)1)
d) Yes.

e) When (2 < 1, then B3 — 1 < 0. Since we earlier assumed that cov(s, ¢) > 0, this implies that the bias is
negative.

f) First we note that:

E(clq,8) = po+ Piq+ B2E(s|q,5)
Bo + Brg + Ba(ao + ai1q + a28)
(Bo + B2ao) + (81 + B2a1)q + B2a23)
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This implies that:

plim 57 = Bi + faan
= 1+ Bavar(e)cov(q, s)var(s)var(q) (1 — corr(g, s)?)

g) We already assumed that 8 > 0, and were told that a; > 0, so the bias is positive.

h)
L cogg)
plim B; = W
~cov(fo+ Brg+ (B2 —1)s +u+e,q)
o var(q)
_ _pyeovls.a)
- ﬁl + (ﬁQ 1) UCLT((])

i) The gain score approach has lower asymptotic bias (in absolute value) whenever

(1- ﬁg)m < Bavar(e)cov(q, s)var(s)var(q) (1 — corr(q, 5)2)

In other words, when measurement error var(e) is relatively large, and the amount of decay (1 — (35) is

relatively small.

j) Since plim Bf > (1 and plim BP < (31, then the interval [3{37 Bf] will contain the true value of 8 with

probability approaching one as n approaches infinity.
k)

1. This is an example of random selection. OLS regression will consistently estimate ;.

2. This is an example of selection on observables, or exogenous selection. OLS regression will consistently

estimate ;.

3. This is an example of selection on unobservables, or endogenous selection. OLS regression will not

consistently estimate ;.

4. This is an example of selection on an omitted variable. OLS regression will not consistently estimate

P



