Exam #1 Answer Key

Economics 435: Quantitative Methods

Fall 2008

1 A few warmup questions

a) First note that:

E(xu)	=	E(E(xu x))	(by the law of iterated expectations)
	=	E(xE(u x))	(by the conditioning rule)
	=	E(xE(u))	(since we are given $E(u x) = E(x)$)
	=	E(x)E(u)	(by linearity of expectations)

Also note that

$$cov(x, u) = E((x - E(x))(u - E(u)))$$
(by definition)
= $E(xu - uE(x) - xE(u) + E(u)E(x))$ (by algebra)
= $E(xu - E(u)E(x) - E(x)E(u) + E(u)E(x)$ (by the linearity of expectations)
= $E(xu) - E(x)E(u)$ (by algebra)
= $E(x)E(u) - E(x)E(u)$ (by our earlier result that $E(xu) = E(x)E(u)$)
= 0

b) The way to prove this is by finding one example where cov(x, u) = 0 but $E(u|x) \neq E(u)$. There are a lot of ways of doing this, here's my example:

$$x = \begin{cases} -1 & \text{with probability } 0.25 \\ 0 & \text{with probability } 0.5 \\ 1 & \text{with probability } 0.25 \end{cases}$$
$$u = x^2$$

Obviously $E(u|x) = x^2$, which depends on x. To find the covariance:

$$cov(x,u) = E(xu) - E(x)E(u)$$

= $[0.25(-1*1) + 0.5(0*0) + 0.25(1*1)] - [0.25*(-1) + 0.5*0 + 0.25*1] [0.25(1) + 0.5*0 + 0.25*1]$
= $0 - 0*0.5$
= 0

c) The slope is $\frac{dy}{dx} = \beta_1 e^{\beta_0 + \beta_1 x}$ and the elasticity is $\frac{dy}{dx} \frac{x}{y} = \beta_1 x$.

d) Let *A* be the event "snow in the air" and let *B* be the event "2 cm of snow on the ground". The first column in the table gives $\Pr(B)$ and the second gives $\Pr(A \cap B)$. We are looking for $\Pr(A|B) = \Pr(A \cap B) / \Pr(B)$, which can be found by just plugging in the numbers

ECON 435, Fall 2008

- Quebec: $\Pr(A|B) = 0.50/1.00 = 0.50 \approx 50\%$.
- Vancouver: $\Pr(A|B) = 0.04/0.11 = 0.3636 \approx 36\%$.
- e) We have

$$\Pr(A) = \Pr(A \cap B) + \Pr(A \cap B^c) = \Pr(A \cap B) + \Pr(A|B^c)(1 - \Pr(B))$$

We know everything in this expression but $Pr(A|B^c)$. We know that $0 \leq Pr(A|B^c) \leq 1$, so:

$$\Pr(A \cap B) \le \Pr(A) \le \Pr(A \cap B) + (1 - \Pr(B))$$

Plugging in the numbers:

- Quebec: $0.50 \le \Pr(A) \le 0.50$, or more simply: $\Pr(A) = 0.5$.
- Vancouver: $0.04 \leq \Pr(A) \leq 0.93$.

2 The relationship between least squares prediction and the expected value

 \mathbf{a}

$$ESPE \equiv E[(x-m)^2] \quad \text{(by definition)}$$

= $E(x^2 - 2mx + m^2) \quad \text{(by algebra)}$
= $E(x^2) - 2mE(x) + m^2 \quad \text{(by linearity of expectations)}$

Taking derivatives:

$$\frac{\partial ESPE}{\partial m} = -2E(x) + 2m$$

So ESPE is minimized where -2E(x) + 2m = 0. Solving for m we get m = E(X)b)

$$\frac{\partial ASPE}{\partial \hat{m}} \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{\partial (x_i - \hat{m})^2}{\partial \hat{m}} \quad \text{(by differentiation rules)}$$
$$= \frac{1}{n} \sum_{i=1}^{n} -2(x_i - \hat{m}) \quad \text{(by differentiation rules)}$$
$$= \frac{-2}{n} \sum_{i=1}^{n} (x_i - \hat{m}) \quad \text{(by summation rules)}$$
$$= \frac{-2}{n} \left(\left(\sum_{i=1}^{n} x_i \right) - \left(\sum_{i=1}^{n} \hat{m} \right) \right) \quad \text{(by summation rules)}$$

(1)

(2)

This quantity is zero if $(\sum_{i=1}^{n} x_i) - (\sum_{i=1}^{n} \hat{m}) = 0$, or equivalently:

$$\sum_{i=1}^{n} \hat{m} = \sum_{i=1}^{n} x_i$$
$$\frac{1}{n} \sum_{i=1}^{n} \hat{m} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
$$\frac{1}{n} n \hat{m} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
$$\hat{m} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

3 The education production function

a) This is a standard omitted variables problem:

plim
$$\hat{\beta}_1^A = \frac{cov(c,q)}{var(q)}$$

= $\frac{cov(\beta_0 + \beta_1 q + \beta_2 s + u,q)}{var(q)}$
= $\beta_1 + \beta_2 \frac{cov(s,q)}{var(q)}$

b) The bias is $\beta_2 \frac{cov(s,q)}{var(q)}$. I would guess that students with high ability are likely to have both high initial achievement and high current achievement ($\beta_2 > 0$). I would also guess that students with high initial achievement are likely to be in higher quality schools (cov(s,q) > 0). This implies that the bias is positive, i.e., $\hat{\beta}_1$ overstates the true β_1 .

 $\mathbf{c})~$ We have:

$$plim \hat{\beta}_1^B = \frac{cov(g,q)}{var(q)}$$

$$= \frac{cov(\beta_0 + \beta_1 q + (\beta_2 - 1)s + u, q)}{var(q)}$$

$$= \beta_1 + (\beta_2 - 1)\frac{cov(s,q)}{var(q)}$$

d) Yes.

e) When $\beta_2 < 1$, then $\beta_2 - 1 < 0$. Since we earlier assumed that cov(s,q) > 0, this implies that the bias is negative.

f) First we note that:

$$\begin{split} E(c|q,\tilde{s}) &= \beta_0 + \beta_1 q + \beta_2 E(s|q,\tilde{s}) \\ &= \beta_0 + \beta_1 q + \beta_2 (a_0 + a_1 q + a_2 \tilde{s}) \\ &= (\beta_0 + \beta_2 a_0) + (\beta_1 + \beta_2 a_1) q + \beta_2 a_2 \tilde{s}) \end{split}$$

ECON 435, Fall 2008

This implies that:

$$plim \ \hat{\beta}_1^C = \beta_1 + \beta_2 a_1 = \beta_1 + \beta_2 var(\epsilon) cov(q, s) var(s) var(q) \left(1 - corr(q, s)^2\right)$$
(3)

g) We already assumed that $\beta_2 > 0$, and were told that $a_1 > 0$, so the bias is positive. **h**)

$$plim \hat{\beta}_1 = \frac{cov(\tilde{g}, q)}{var(q)}$$

$$= \frac{cov(\beta_0 + \beta_1 q + (\beta_2 - 1)s + u + \epsilon, q)}{var(q)}$$

$$= \beta_1 + (\beta_2 - 1)\frac{cov(s, q)}{var(q)}$$

i) The gain score approach has lower asymptotic bias (in absolute value) whenever

$$(1 - \beta_2)\frac{cov(s,q)}{var(q)} < \beta_2 var(\epsilon)cov(q,s)var(s)var(q)\left(1 - corr(q,s)^2\right)$$

In other words, when measurement error $var(\epsilon)$ is relatively large, and the amount of decay $(1 - \beta_2)$ is relatively small.

j) Since plim $\hat{\beta}_1^C > \beta_1$ and plim $\hat{\beta}_1^D < \beta_1$, then the interval $[\hat{\beta}_1^D, \hat{\beta}_1^C]$ will contain the true value of β_1 with probability approaching one as n approaches infinity.

 \mathbf{k})

- 1. This is an example of random selection. OLS regression will consistently estimate β_1 .
- 2. This is an example of selection on observables, or exogenous selection. OLS regression will consistently estimate β_1 .
- 3. This is an example of selection on unobservables, or endogenous selection. OLS regression will not consistently estimate β_1 .
- 4. This is an example of selection on an omitted variable. OLS regression will not consistently estimate β_1 .