Exam \#1 Answer Key

Economics 435: Quantitative Methods

Fall 2008

1 A few warmup questions

a) First note that:

$$
\begin{array}{rlrl}
E(x u) & =E(E(x u \mid x)) & \quad \text { (by the law of iterated expectations) } \\
& =E(x E(u \mid x)) & \text { (by the conditioning rule) } \\
& =E(x E(u)) & \text { (since we are given } E(u \mid x)=E(x)) \\
& =E(x) E(u) & & \text { (by linearity of expectations) }
\end{array}
$$

Also note that

$$
\begin{aligned}
\operatorname{cov}(x, u) & =E((x-E(x))(u-E(u))) \quad \text { (by definition) } \\
& =E(x u-u E(x)-x E(u)+E(u) E(x)) \quad \text { (by algebra) } \\
& =E(x u-E(u) E(x)-E(x) E(u)+E(u) E(x) \quad \text { (by the linearity of expectations) } \\
& =E(x u)-E(x) E(u) \quad \text { (by algebra) } \quad \text { (by our earlier result that } E(x u)=E(x) E(u)) \\
& =E(x) E(u)-E(x) E(u) \quad \\
& =0 \quad \text {) }
\end{aligned}
$$

b) The way to prove this is by finding one example where $\operatorname{cov}(x, u)=0$ but $E(u \mid x) \neq E(u)$. There are a lot of ways of doing this, here's my example:

$$
\begin{aligned}
& x=\left\{\begin{array}{cc}
-1 & \text { with probability } 0.25 \\
0 & \text { with probability } 0.5 \\
1 & \text { with probability } 0.25
\end{array}\right. \\
& u=x^{2}
\end{aligned}
$$

Obviously $E(u \mid x)=x^{2}$, which depends on x. To find the covariance:

$$
\begin{aligned}
\operatorname{cov}(x, u) & =E(x u)-E(x) E(u) \\
& =[0.25(-1 * 1)+0.5(0 * 0)+0.25(1 * 1)]-[0.25 *(-1)+0.5 * 0+0.25 * 1][0.25(1)+0.5 * 0+0.25 * 1] \\
& =0-0 * 0.5 \\
& =0
\end{aligned}
$$

c) The slope is $\frac{d y}{d x}=\beta_{1} e^{\beta_{0}+\beta_{1} x}$ and the elasticity is $\frac{d y}{d x} \frac{x}{y}=\beta_{1} x$.
d) Let A be the event "snow in the air" and let B be the event " 2 cm of snow on the ground". The first column in the table gives $\operatorname{Pr}(B)$ and the second gives $\operatorname{Pr}(A \cap B)$. We are looking for $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A \cap B) / \operatorname{Pr}(B)$, which can be found by just plugging in the numbers

- Quebec: $\operatorname{Pr}(A \mid B)=0.50 / 1.00=0.50 \approx 50 \%$.
- Vancouver: $\operatorname{Pr}(A \mid B)=0.04 / 0.11=0.3636 \approx 36 \%$.
e) We have

$$
\operatorname{Pr}(A)=\operatorname{Pr}(A \cap B)+\operatorname{Pr}\left(A \cap B^{c}\right)=\operatorname{Pr}(A \cap B)+\operatorname{Pr}\left(A \mid B^{c}\right)(1-\operatorname{Pr}(B))
$$

We know everything in this expression but $\operatorname{Pr}\left(A \mid B^{c}\right)$. We know that $0 \leq \operatorname{Pr}\left(A \mid B^{c}\right) \leq 1$, so:

$$
\operatorname{Pr}(A \cap B) \leq \operatorname{Pr}(A) \leq \operatorname{Pr}(A \cap B)+(1-\operatorname{Pr}(B))
$$

Plugging in the numbers:

- Quebec: $0.50 \leq \operatorname{Pr}(A) \leq 0.50$, or more simply: $\operatorname{Pr}(A)=0.5$.
- Vancouver: $0.04 \leq \operatorname{Pr}(A) \leq 0.93$.

2 The relationship between least squares prediction and the expected value

a)

$$
\begin{align*}
E S P E & \equiv E\left[(x-m)^{2}\right] \quad \text { (by definition) } \\
& =E\left(x^{2}-2 m x+m^{2}\right) \quad \text { (by algebra) } \\
& =E\left(x^{2}\right)-2 m E(x)+m^{2} \quad \text { (by linearity of expectations) } \tag{1}
\end{align*}
$$

Taking derivatives:

$$
\frac{\partial E S P E}{\partial m}=-2 E(x)+2 m
$$

So ESPE is minimized where $-2 E(x)+2 m=0$. Solving for m we get $m=E(X)$ b)

$$
\begin{align*}
\frac{\partial A S P E}{\partial \hat{m}} & \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{\partial\left(x_{i}-\hat{m}\right)^{2}}{\partial \hat{m}} \quad \text { (by differentiation rules) } \\
& =\frac{1}{n} \sum_{i=1}^{n}-2\left(x_{i}-\hat{m}\right) \quad \text { (by differentiation rules) } \\
& =\frac{-2}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{m}\right) \quad \text { (by summation rules) } \\
& =\frac{-2}{n}\left(\left(\sum_{i=1}^{n} x_{i}\right)-\left(\sum_{i=1}^{n} \hat{m}\right)\right) \quad \text { (by summation rules) } \tag{2}
\end{align*}
$$

This quantity is zero if $\left(\sum_{i=1}^{n} x_{i}\right)-\left(\sum_{i=1}^{n} \hat{m}\right)=0$, or equivalently:

$$
\begin{aligned}
\sum_{i=1}^{n} \hat{m} & =\sum_{i=1}^{n} x_{i} \\
\frac{1}{n} \sum_{i=1}^{n} \hat{m} & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\frac{1}{n} n \hat{m} & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\hat{m} & =\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

3 The education production function

a) This is a standard omitted variables problem:

$$
\begin{aligned}
\operatorname{plim} \hat{\beta}_{1}^{A} & =\frac{\operatorname{cov}(c, q)}{\operatorname{var}(q)} \\
& =\frac{\operatorname{cov}\left(\beta_{0}+\beta_{1} q+\beta_{2} s+u, q\right)}{\operatorname{var}(q)} \\
& =\beta_{1}+\beta_{2} \frac{\operatorname{cov}(s, q)}{\operatorname{var}(q)}
\end{aligned}
$$

b) The bias is $\beta_{2} \frac{\operatorname{cov}(s, q)}{\operatorname{var}(q)}$. I would guess that students with high ability are likely to have both high initial achievement and high current achievement $\left(\beta_{2}>0\right)$. I would also guess that students with high initial achievement are likely to be in higher quality schools $(\operatorname{cov}(s, q)>0)$. This implies that the bias is positive, i.e., $\hat{\beta}_{1}$ overstates the true β_{1}.
c) We have:

$$
\begin{aligned}
\operatorname{plim} \hat{\beta}_{1}^{B} & =\frac{\operatorname{cov}(g, q)}{\operatorname{var}(q)} \\
& =\frac{\operatorname{cov}\left(\beta_{0}+\beta_{1} q+\left(\beta_{2}-1\right) s+u, q\right)}{\operatorname{var}(q)} \\
& =\beta_{1}+\left(\beta_{2}-1\right) \frac{\operatorname{cov}(s, q)}{\operatorname{var}(q)}
\end{aligned}
$$

d) Yes.
e) When $\beta_{2}<1$, then $\beta_{2}-1<0$. Since we earlier assumed that $\operatorname{cov}(s, q)>0$, this implies that the bias is negative.
f) First we note that:

$$
\begin{aligned}
E(c \mid q, \tilde{s}) & =\beta_{0}+\beta_{1} q+\beta_{2} E(s \mid q, \tilde{s}) \\
& =\beta_{0}+\beta_{1} q+\beta_{2}\left(a_{0}+a_{1} q+a_{2} \tilde{s}\right) \\
& \left.=\left(\beta_{0}+\beta_{2} a_{0}\right)+\left(\beta_{1}+\beta_{2} a_{1}\right) q+\beta_{2} a_{2} \tilde{s}\right)
\end{aligned}
$$

This implies that:

$$
\begin{align*}
\operatorname{plim} \hat{\beta}_{1}^{C} & =\beta_{1}+\beta_{2} a_{1} \\
& =\beta_{1}+\beta_{2} \operatorname{var}(\epsilon) \operatorname{cov}(q, s) \operatorname{var}(s) \operatorname{var}(q)\left(1-\operatorname{corr}(q, s)^{2}\right) \tag{3}
\end{align*}
$$

g) We already assumed that $\beta_{2}>0$, and were told that $a_{1}>0$, so the bias is positive.
h)

$$
\begin{aligned}
\operatorname{plim} \hat{\beta}_{1} & =\frac{\operatorname{cov}(\tilde{g}, q)}{\operatorname{var}(q)} \\
& =\frac{\operatorname{cov}\left(\beta_{0}+\beta_{1} q+\left(\beta_{2}-1\right) s+u+\epsilon, q\right)}{\operatorname{var}(q)} \\
& =\beta_{1}+\left(\beta_{2}-1\right) \frac{\operatorname{cov}(s, q)}{\operatorname{var}(q)}
\end{aligned}
$$

i) The gain score approach has lower asymptotic bias (in absolute value) whenever

$$
\left(1-\beta_{2}\right) \frac{\operatorname{cov}(s, q)}{\operatorname{var}(q)}<\beta_{2} \operatorname{var}(\epsilon) \operatorname{cov}(q, s) \operatorname{var}(s) \operatorname{var}(q)\left(1-\operatorname{corr}(q, s)^{2}\right)
$$

In other words, when measurement error $\operatorname{var}(\epsilon)$ is relatively large, and the amount of decay $\left(1-\beta_{2}\right)$ is relatively small.
j) Since plim $\hat{\beta}_{1}^{C}>\beta_{1}$ and plim $\hat{\beta}_{1}^{D}<\beta_{1}$, then the interval $\left[\hat{\beta}_{1}^{D}, \hat{\beta}_{1}^{C}\right]$ will contain the true value of β_{1} with probability approaching one as n approaches infinity.
k)

1. This is an example of random selection. OLS regression will consistently estimate β_{1}.
2. This is an example of selection on observables, or exogenous selection. OLS regression will consistently estimate β_{1}.
3. This is an example of selection on unobservables, or endogenous selection. OLS regression will not consistently estimate β_{1}.
4. This is an example of selection on an omitted variable. OLS regression will not consistently estimate β_{1}.
