Exam #1

Economics 435: Quantitative Methods

Spring 2006

1 Fitted values and residuals (33 points)

Suppose we are estimating an SLR¹ model. Let $\hat{\beta}_0$ and $\hat{\beta}_1$ be the usual OLS estimators of β_0 and β_1 . Let:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x \hat{u}_i = y_i - \hat{y}_i$$

a) Is the fitted value \hat{y}_i a consistent estimator of y_i ? That is, is it the case² that:

plim $\hat{y}_i = y_i$

Provide an argument (ideally, a proof) that your answer is correct.

b) Is the residual \hat{u}_i a consistent estimator of u_i ? That is, is it the case that:

plim $\hat{u}_i = u_i$

Provide an argument (ideally, a proof) that your answer is correct.

 \mathbf{c}) Suppose that you are concerned that the data have heteroskedasticity. You are willing to assume that any heteroskedasticity takes a linear form:

$$E(u^2|x) = \alpha_0 + \alpha_1 x$$

After estimating the original regression (of y on x) and calculating the fitted values, you use OLS to estimate a regression of the squared residual \hat{u}_i^2 on x_i . Let the resulting regression coefficients be $\hat{\alpha}_0$ and $\hat{\alpha}_1$. Is it the case that:

plim $\hat{\alpha}_1 = \alpha_1$

Provide an argument (a proof is not necessary here) that your answer is correct.

2 Averages (33 points)

Let x_1, x_2, \ldots, x_n be a random sample of size n on the random variable x. Let $\mu = E(x)$ and $\sigma^2 = var(x)$. Let a_1, a_2, \ldots, a_n be a sequence of n numbers.

¹In case you didn't write down the definition of the SLR model: Let (y, x, u) be a triplet of random variables such that (SLR1) $y = \beta_0 + \beta_1 x + u$ (SLR2) We have a random sample (y_i, x_i) of size *n* on the random variables (y, x) (SLR3) E(u|x) = 0 (SLR4) There is variation in x_i in the sample.

²If you're uncomfortable with the idea of a random variable having another random variable as its probability limit, then just think of an equivalent statement: plim $(\hat{y}_i - y_i) = 0$.

a) Let:

$$W_n = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

Find a condition on the *a*'s that imply that W_n is an unbiased estimator of μ .

b) Find $var(W_n)$ as a function of the *a*'s and of σ^2 .

c) For any set of numbers a_1, a_2, \ldots, a_n it is the case that:

$$\frac{(a_1 + a_2 + \dots + a_n)^2}{n} \le a_1^2 + a_2^2 + \dots + a_n^2$$

Use this to show that if W_n is an unbiased estimator of μ , then $var(W_n) \ge var(\bar{X}_n)$, where \bar{X}_n is the usual sample average.

3 Best linear predictors (34 points)

Let y and x be two random variables. The best linear predictor (BLP) of y given x is defined as the linear function

$$blp(x) = b_0 + b_1 x$$

that minimizes:

$$E\left(\left(y-b_0-b_1x\right)^2\right)$$

Note that we have not assumed that E(y|x) is linear in x, and Note that the BLP is defined for any pair of random variables, no matter whether E(y|x) is linear or not.

a) Show that:

$$b_1 = cov(x, y)/var(x)$$

$$b_0 = E(y) - b_1 E(x)$$

Hint: to find the minimum of a convex function, take the derivative and set it equal to zero.

b) Let $\hat{\beta}_0$ and $\hat{\beta}_1$ be the coefficients from an OLS regression of y on x from a random sample of (y_i, x_i) of size n. Are $\hat{\beta}_0$ and $\hat{\beta}_1$ consistent estimators of b_0 and b_1 ? Argue that your answer is correct (ideally, with a proof).

c) Does your result require assumption SLR1 or SLR3?