Exam \#2 Answer Key

Economics 435: Quantitative Methods
Fall 2011

1 Short answers

a) Hopefully you've done this a few times before, but here it is again:

$$
\begin{aligned}
E(u) & =E(E(u \mid x)) \quad \text { (law of iterated expectations) } \\
& =E(0) \quad \text { (given) } \\
& =0 \\
E(x u) & =E(E(x u \mid x)) \quad \text { (law of iterated expectations) } \\
& =E(x E(u \mid x)) \quad \text { (conditioning) } \\
& =E(x 0) \quad \text { (given) } \\
& =0 \\
\operatorname{cov}(x, u) & =E(x u)-E(x) E(u) \quad \text { (a result we use all the time) } \\
& =0-E(x) 0 \\
& =0
\end{aligned}
$$

b)

$$
\begin{array}{rlr}
\operatorname{plim} e^{\bar{x}} & =e^{\operatorname{plim} \bar{x}} \quad \text { (Slutsky theorem) } \\
& =e^{\mu} \quad \text { (law of large numbers) }
\end{array}
$$

c) If $g(\theta)=e^{\theta}$, then the rules of differentiation imply that $g^{\prime}(\theta)=e^{\theta}$ as well. So:

$$
\sqrt{n}\left(e^{\bar{x}}-e^{\mu}\right) \rightarrow^{D} \quad N\left(0, e^{2 \mu} \sigma^{2}\right)
$$

d) The Central Limit Theorem tells us that the sample average of a large random sample is approximately normally distributed. This is useful for performing inference (hypothesis tests and confidence intervals) because inference requires us to know the probability distribution of our statistics - most of the time the finite-sample distribution is intractable, so having a convenient approximation is very helpful.

2 The 2011 Census

a) We now have a random sample of size $n=N S R$, so

$$
\operatorname{var}(\bar{y})=\frac{\sigma_{y}^{2}}{N S R}
$$

b)

$$
\begin{aligned}
\sqrt{\frac{\operatorname{var}(\bar{y} ; S=0.333333, R=0.5)}{\operatorname{var}(\bar{y} ; S=0.2, R=0.95)}} & =\sqrt{\frac{\frac{\sigma_{y}^{2}}{\frac{N \times 0.333 \times 0.5}{\sigma_{y}^{2}}}}{N \times 0.2 \times 0.95}} \\
& =\sqrt{\frac{0.19}{0.1667}} \\
& =\sqrt{1.14} \\
& =1.07
\end{aligned}
$$

It raises the variance by about 14%, and the standard error by about 7%.
c) No.
d) Since $E\left(y_{i} \mid r_{i}=0\right) \in[a, b]$, we have

$$
E\left(y_{i} \mid r_{i}=1\right) R+a(1-R) \leq E\left(y_{i}\right) \leq E\left(y_{i} \mid r_{i}=1\right) R+b(1-R)
$$

e) The lower bound would be:

$$
\bar{y} R+a(1-R)
$$

and the upper bound would be:

$$
\bar{y} R+b(1-R)
$$

f) The percentage lies between $0.10 * 0.95$ and $0.10 * 0.95+0.05$, or 9.5% and 14.5%.
g) The percentage lies between $0.10 * 0.5$ and $0.10 * 0.5+0.5$ or between 5% and 55%.
h)

$$
\begin{aligned}
\theta= & E\left(y_{i} \mid x_{i}=1\right)-E\left(y_{i} \mid x_{i}=0\right) \\
= & \left(E\left(y_{i} \mid x_{i}=1, r_{i}=1\right) \operatorname{Pr}\left(r_{i}=1\right)+E\left(y_{i} \mid x_{i}=1, r_{i}=0\right) \operatorname{Pr}\left(r_{i}=0\right)\right) \\
& -\left(E\left(y_{i} \mid x_{i}=0, r_{i}=1\right) \operatorname{Pr}\left(r_{i}=1\right)+E\left(y_{i} \mid x_{i}=0, r_{i}=0\right) \operatorname{Pr}\left(r_{i}=0\right)\right) \\
= & \left(E\left(y_{i} \mid x_{i}=1, r_{i}=1\right)-E\left(y_{i} \mid x_{i}=1, r_{i}=1\right)\right) \operatorname{Pr}\left(r_{i}=1\right) \\
& +\left(E\left(y_{i} \mid x_{i}=1, r_{i}=0\right)-E\left(y_{i} \mid x_{i}=1, r_{i}=0\right)\right) \operatorname{Pr}\left(r_{i}=0\right) \\
= & \beta_{1} R+\left(E\left(y_{i} \mid x_{i}=1, r_{i}=0\right)-E\left(y_{i} \mid x_{i}=1, r_{i}=0\right)\right)(1-R)
\end{aligned}
$$

We can determine that $\left(E\left(y_{i} \mid x_{i}=1, r_{i}=0\right)-E\left(y_{i} \mid x_{i}=1, r_{i}=0\right)\right)$ lies between $(0-1)=-1$ and $(1-0)=1$, so

$$
\beta_{1} R-(1-R) \leq \theta \leq \beta_{1} R+(1-R)
$$

i) The bounds would be:

$$
\hat{\beta}_{1} R-(1-R) \leq \theta \leq \hat{\beta}_{1} R+(1-R)
$$

j)

$$
-0.05=(0 \times 0.95)-(1-0.95) \leq \theta \leq(0 \times 0.95)+(1-0.95)=0.05
$$

So being in a female-headed household may raise or lower the probability of living in poverty by as much as 5%.
k)

$$
-0.5=(0 \times 0.5)-(1-0.5) \leq \theta \leq(0 \times 0.5)+(1-0.5)=0.5
$$

So being in a female-headed household may raise or lower the probability of living in poverty by as much as 50%.

3 Cluster data with fixed effects

a) First we show:

$$
\begin{aligned}
\bar{y}_{s} & =\frac{1}{n_{s}} \sum_{i: s(i)=s} y_{i} \\
& =\frac{1}{n_{s}} \sum_{i: s(i)=s} a_{s(i)}+\beta_{1} F D K_{s(i) t(i)}+\beta_{2} x_{i}+u_{i} \\
& =\frac{1}{n_{s}} \sum_{i: s(i)=s} a_{s}+\beta_{1} \frac{1}{n_{s}} \sum_{i: s(i)=s} F D K_{s t(i)}+\frac{1}{n_{s}} \sum_{i: s(i)=s} \beta_{2} x_{i}+\frac{1}{n_{s}} \sum_{i: s(i)=s} u_{i} \\
& =a_{s}+\beta_{1} \overline{F D K}_{s}+\beta_{2} \bar{x}_{s}+\bar{u}_{s} \\
y_{i}-\bar{y}_{s(i)} & =\left(a_{s(i)}+\beta_{1} F D K_{s(i) t(i)}+\beta_{2} x_{i}+u_{i}\right)-\left(a_{s(i)}+\beta_{1} \overline{F D K}_{s(i)}+\beta_{2} \bar{x}_{s(i)}+\bar{u}_{s(i)}\right) \\
& =\beta_{1}\left(F D K_{s(i) t(i)}-\overline{F D K}_{s(i)}\right)+\beta_{2}\left(x_{i}-\bar{x}_{s(i)}\right)+\left(u_{i}-\bar{u}_{s(i)}\right)
\end{aligned}
$$

Then we show:

$$
\begin{aligned}
& E\left(u_{i}-\bar{u}_{s(i)} \mid\left(F D K_{s(i) t(i)}-\overline{F D K}_{s(i)}\right),\left(x_{i}-\bar{x}_{s(i)}\right)\right) \\
= & E\left(E\left(u_{i}-\bar{u}_{s(i)} \mid a_{s(i)},\left\{F D K_{s(i) t}\right\}_{t=2009}^{2011},\left\{x_{j}\right\}_{j: s(j)=s(i)}\right) \mid\left(F D K_{s(i) t(i)}-\overline{F D K}_{s(i)}\right),\left(x_{i}-\bar{x}_{s(i)}\right)\right) \\
= & E\left(\left.E\left(\left.u_{i}-\frac{1}{n_{s(i)}} \sum_{j: s(j)=s(i)} u_{j} \right\rvert\, a_{s(i)},\left\{F D K_{s(i) t}\right\}_{t=2009}^{2011},\left\{x_{j}\right\}_{j: s(j)=s(i)}\right) \right\rvert\,\left(F D K_{s(i) t(i)}-\overline{F D K}_{s(i)}\right),\left(x_{i}-\bar{x}_{s(i),},\right.\right. \\
= & E\left(E\left(u_{i} \mid a_{s(i)},\left\{F D K_{s(i) t}\right\}_{t=2009}^{2011},\left\{x_{j}\right\}_{j: s(j)=s(i)}\right) \mid\left(F D K_{s(i) t(i)}-\overline{F D K}_{s(i)}\right),\left(x_{i}-\bar{x}_{s(i)}\right)\right) \\
- & \frac{1}{n_{s(i)}} \sum_{j: s(j)=s(i)} E\left(E\left(u_{j} \mid a_{s(i)},\left\{F D K_{s(i) t}^{2011}\right\}_{t=2009}^{20,},\left\{x_{j}\right\}_{j: s(j)=s(i)}\right) \mid\left(F D K_{s(i) t(i)}-\overline{F D K}_{s(i)}\right),\left(x_{i}-\bar{x}_{s(i)}\right)\right)
\end{aligned}
$$

(by linearity of the expected value)

$$
=E\left(0 \mid\left(F D K_{s(i) t(i)}-\overline{F D K}_{s(i)}\right),\left(x_{i}-\bar{x}_{s(i)}\right)\right)-\frac{1}{n_{s(i)}} \sum_{j: s(j)=s(i)} E\left(0 \mid\left(F D K_{s(i) t(i)}-\overline{F D K}_{s(i)}\right),\left(x_{i}-\bar{x}_{s(i)}\right)\right)
$$

(by strict exogeneity)
$=0-\frac{1}{n_{s(i)}} \sum_{j: s(j)=s(i)} 0$

$$
=0
$$

b) First we show:

$$
\begin{aligned}
\bar{y}_{s t} & =\frac{1}{n_{s t}} \sum_{i: s(i)=s, t(t)=t} y_{i} \\
& =\frac{1}{n_{s t}} \sum_{i: s(i)=s, t(i)=t} a_{s(i)}+\beta_{1} F D K_{s(i) t(i)}+\beta_{2} x_{i}+u_{i} \\
& =\frac{1}{n_{s t}} \sum_{i: s(i)=s, t(i)=t} a_{s}+\beta_{1} \frac{1}{n_{s t}} \sum_{i: s(i)=s, t(i)=t} F D K_{s t}+\frac{1}{n_{s t}} \sum_{i: s(i)=s, t(i)=t} \beta_{2} x_{i}+\frac{1}{n_{s t}} \sum_{i: s(i)=s, t(i)=t} u_{i} \\
& =a_{s}+\beta_{1} F D K_{s t}+\beta_{2} \bar{x}_{s t}+\bar{u}_{s t} \\
\bar{y}_{s t}-\bar{y}_{s} & =\left(a_{s}+\beta_{1} F D K_{s t}+\beta_{2} \bar{x}_{s t}+\bar{u}_{s t}\right)-\left(a_{s}+\beta_{1} \overline{F D K}_{s}+\beta_{2} \bar{x}_{s}+\bar{u}_{s}\right) \\
& =\beta_{1}\left(F D K_{s t}-\bar{F}_{s}\right)+\beta_{2}\left(\bar{x}_{s t}-\bar{x}_{s}\right)+\left(\bar{u}_{s t}-\bar{u}_{s}\right)
\end{aligned}
$$

Then we show:

$$
\begin{aligned}
& E\left(\bar{u}_{s t}-\bar{u}_{s} \mid\left(F D K_{s t}-\overline{F D K}_{s}\right),\left(\bar{x}_{s t}-\bar{x}_{s}\right)\right) \\
= & E\left(E\left(\bar{u}_{s t}-\bar{u}_{s} \mid a_{s},\left\{F D K_{s t}\right\}_{t=2009}^{2011},\left\{x_{j}\right\}_{j: s(j)=s}\right) \mid\left(F D K_{s t}-\overline{F D K}_{s}\right),\left(\bar{x}_{s t}-\bar{x}_{s}\right)\right)
\end{aligned}
$$

(by the Law of Iterated Expectations)

$$
=E\left(\left.E\left(\left.\frac{1}{n_{s t}} \sum_{j: s(j)=s, t(j)=t} u_{j}-\frac{1}{n_{s}} \sum_{j: s(j)=s} u_{j} \right\rvert\, a_{s},\left\{F D K_{s t}\right\}_{t=2009}^{2011},\left\{x_{j}\right\}_{j: s(j)=s}\right) \right\rvert\,\left(F D K_{s t}-\overline{F D K}_{s}\right),\left(\bar{x}_{s t}-\bar{x}_{s}\right)\right.
$$

(by substitution)

$$
=\frac{1}{n_{s t}} \sum_{j: s(j)=s, t(j)=t} E\left(E\left(u_{j} \mid a_{s},\left\{F D K_{s t}\right\}_{t=2009}^{2011},\left\{x_{j}\right\}_{j: s(j)=s}\right) \mid\left(F D K_{s t}-\overline{F D K}_{s}\right),\left(\bar{x}_{s t}-\bar{x}_{s}\right)\right)
$$

$$
-\frac{1}{n_{s}} \sum_{j: s(j)=s} E\left(E\left(u_{j} \mid a_{s},\left\{F D K_{s t}\right\}_{t=2009}^{2011},\left\{x_{j}\right\}_{j: s(j)=s}\right) \mid\left(F D K_{s t}-\overline{F D K}_{s}\right),\left(\bar{x}_{s t}-\bar{x}_{s}\right)\right)
$$

(by linearity of the expected value)

$$
\begin{aligned}
& =\frac{1}{n_{s t}} \sum_{j: s(j)=s, t(j)=t} E\left(0 \mid\left(F D K_{s t}-\overline{F D K}_{s}\right),\left(\bar{x}_{s t}-\bar{x}_{s}\right)\right) \\
& -\frac{1}{n_{s}} \sum_{j: s(j)=s} E\left(0 \mid\left(F D K_{s t}-\overline{F D K}_{s}\right),\left(\bar{x}_{s t}-\bar{x}_{s}\right)\right)
\end{aligned}
$$

(by strict exogeneity)
$=\left(\frac{1}{n_{s t}} \sum_{j: s(j)=s, t(j)=t} 0\right)-\left(\frac{1}{n_{s}} \sum_{j: s(j)=s} 0\right)$
$=0$
c) Estimate the OLS regression of $\left(y_{i}-\bar{y}_{s(i)}\right)$ on $\left(F D K_{s(i) t(i)}-\overline{F D K}_{s(i)}\right)$ and $\left(x_{i}-\bar{x}_{s(i)}\right)$.
d) Estimate the OLS regression of $\left(y_{s t}-\bar{y}_{s}\right)$ on $\left(F D K_{s t}-\overline{F D K}_{s}\right)$ and $\left(\bar{x}_{s t}-\bar{x}_{s}\right)$.

