# Exam \#2 Answer Key 

Economics 435: Quantitative Methods

Fall 2008

## 1 Dynamic panel data models

a) First we note that strict exogeneity implies that $\operatorname{cov}\left(u_{i, t}, a_{i}\right)=\operatorname{cov}\left(u_{i, t}, y_{i, t}\right)=\operatorname{cov}\left(u_{i, t}, y_{i, t-1}\right)=0$. This implies:

$$
\begin{aligned}
0 & =\operatorname{cov}\left(u_{i, t}, y_{i, t}\right) \quad \text { by strict exogeneity } \\
& =\operatorname{cov}\left(u_{i, t}, a_{i}+\beta y_{i, t-1}+u_{i, t}\right) \quad \text { by equation }(1) \\
& =\operatorname{cov}\left(u_{i, t}, a_{i}\right)+\beta \operatorname{cov}\left(u_{i, t}, y_{i, t-1}\right)+\operatorname{var}\left(u_{i, t}\right) \\
& =0+\beta 0+\operatorname{var}\left(u_{i, t}\right) \\
& >0 \quad \text { by equation }(2) \\
& \neq 0
\end{aligned}
$$

Since we have just shown that strict exogeneity implies $0 \neq 0$, it cannot possibly hold.
b)

$$
\begin{aligned}
\operatorname{plim} \hat{\beta}_{1}^{I V} & =\operatorname{plim} \frac{\operatorname{cov}\left(\Delta y_{i, t}, y_{i, t-2}\right)}{\operatorname{cov}\left(\Delta y_{i, t-1}, y_{i, t-2}\right)} \\
& =\frac{\operatorname{cov}\left(\Delta y_{i, t}, y_{i, t-2}\right)}{\operatorname{cov}\left(\Delta y_{i, t-1}, y_{i, t-2}\right)} \\
& =\frac{\operatorname{cov}\left(\beta_{1} \Delta y_{i, t-1}+\Delta u_{i, t}, y_{i, t-2}\right)}{\operatorname{cov}\left(\Delta y_{i, t-1}, y_{i, t-2}\right)} \\
& =\beta_{1}+\frac{\operatorname{cov}\left(\Delta u_{i, t}, y_{i, t-2}\right)}{\operatorname{cov}\left(\Delta y_{i, t-1}, y_{i, t-2}\right)} \\
& =\beta_{1}+\frac{\operatorname{cov}\left(u_{i, t}, y_{i, t-2}\right)-\operatorname{cov}\left(u_{i, t-1}, y_{i, t-2}\right)}{\operatorname{cov}\left(\Delta y_{i, t-1}, y_{i, t-2}\right)} \\
& =\beta_{1}+\frac{0-0}{\operatorname{cov}\left(\Delta y_{i, t-1}, y_{i, t-2}\right)} \\
& =\beta_{1}
\end{aligned}
$$

c)

$$
\begin{aligned}
\operatorname{plim} \hat{\beta}_{1}^{F D} & =\frac{\operatorname{cov}\left(\Delta y_{i, t}, \Delta y_{i, t-1}\right)}{\operatorname{var}\left(\Delta y_{i, t-1}\right)} \\
& =\frac{\operatorname{cov}\left(\beta_{1} \Delta y_{i, t-1}+\Delta u_{i, t}, \Delta y_{i, t-1}\right)}{\operatorname{var}\left(\Delta y_{i, t-1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\beta_{1}+\frac{\operatorname{cov}\left(\Delta u_{i, t}, \Delta y_{i, t-1}\right)}{\operatorname{var}\left(\Delta y_{i, t-1}\right)} \\
& =\beta_{1}+\frac{\operatorname{cov}\left(u_{i, t}, y_{i, t-1}\right)-\operatorname{cov}\left(u_{i, t}, y_{i, t-2}\right)-\operatorname{cov}\left(u_{i, t-1}, y_{i, t-1}\right)+\operatorname{cov}\left(u_{i, t-1}, y_{i, t-2}\right)}{\operatorname{var}\left(\Delta y_{i, t-1}\right)} \\
& =\beta_{1}+\frac{0-0-\operatorname{cov}\left(u_{i, t-1}, y_{i, t-1}\right)+0}{\operatorname{var}\left(\Delta y_{i, t-1}\right)} \\
& \neq \beta_{1}
\end{aligned}
$$

## 2 Instrumental variables and local average treatment effects

a) All of them are identified.
b)

$$
\begin{aligned}
E(p \mid z=1) & =1 * \operatorname{Pr}(\text { complier })+1 * \operatorname{Pr}(\text { always }- \text { taker })+0 * \operatorname{Pr}(\text { never }- \text { taker }) \\
& =\operatorname{Pr}(\text { complier })+\operatorname{Pr}(\text { always }- \text { taker }) \\
E(p \mid z=0) & =0 * \operatorname{Pr}(\text { complier })+1 * \operatorname{Pr}(\text { always }- \text { taker })+0 * \operatorname{Pr}(\text { never }- \text { taker }) \\
& =\operatorname{Pr}(\text { always }- \text { taker })
\end{aligned}
$$

So:

$$
\operatorname{Pr}(\text { complier })=E(p \mid z=1)-E(p \mid z=0)
$$

c) First:

$$
\begin{aligned}
E(y \mid z=1) & =E(y(0)+(y(1)-y(0)) p(z) \mid z=1) \\
& =E(y(0) \mid z=1)+E((y(1)-y(0)) p(1) \mid z=1) \\
& =E(y(0))+E((y(1)-y(0)) p(1)) \\
E(y \mid z=0) & =E(y(0)+(y(1)-y(0)) p(z) \mid z=0) \\
& =E(y(0) \mid z=1)+E((y(1)-y(0)) p(0) \mid z=0) \\
& =E(y(0))+E((y(1)-y(0)) p(0))
\end{aligned}
$$

Then take the difference:

$$
\begin{aligned}
E(y \mid z=1)-E(y \mid z=0)= & (E(y(0))+E((y(1)-y(0)) p(1)))-(E(y(0))+E((y(1)-y(0)) p(0))) \\
= & E((y(1)-y(0))(p(1)-p(0))) \\
= & E((y(1)-y(0))(p(1)-p(0)) \mid \text { complier }) \operatorname{Pr}(\text { complier }) \\
& +E((y(1)-y(0))(p(1)-p(0)) \mid \text { noncomplier }) \operatorname{Pr}(\text { noncomplier }) \\
= & E((y(1)-y(0))(1) \mid \text { complier }) \operatorname{Pr}(\text { complier }) \\
& +E((y(1)-y(0))(0) \mid \text { noncomplier }) \operatorname{Pr}(\text { noncomplier }) \\
= & E(T E \mid \text { complier }) \operatorname{Pr}(\text { complier })
\end{aligned}
$$

Divide the right side by $\operatorname{Pr}($ complier $)$ and the left side by $E(p \mid z=1)-E(p \mid z=0)$ (since we just showed that these are the same) and you get the result.
d) Yes.
e) No.
f) We start with:

$$
\begin{aligned}
\operatorname{cov}(y, z)= & E(y z)-E(y) E(z) \\
= & E(y z \mid z=1) \operatorname{Pr}(z=1)+E(y z \mid z=0) \operatorname{Pr}(z=0)- \\
& (E(y \mid z=1) \operatorname{Pr}(z=1)+E(y \mid z=0) \operatorname{Pr}(z=0))(1 \operatorname{Pr}(z=1)+0 \operatorname{Pr}(z=0)) \\
= & E(y \mid z=1) \operatorname{Pr}(z=1)-E(y \mid z=1) \operatorname{Pr}(z=1)^{2}-E(y \mid z=0)\left(\operatorname{Pr}(z=1)-\operatorname{Pr}(z=1)^{2}\right) \\
= & (E(y \mid z=1)-E(y \mid z=0)) \operatorname{Pr}(z=1) \operatorname{Pr}(z=0)
\end{aligned}
$$

By the same reasoning:

$$
\operatorname{cov}(p, z)=(E(p \mid z=1)-E(p \mid z=0)) \operatorname{Pr}(z=1) \operatorname{Pr}(z=0)
$$

Substituting in, we get:

$$
\begin{aligned}
\frac{\operatorname{cov}(y, z)}{\operatorname{cov}(p, z)} & =\frac{(E(y \mid z=1)-E(y \mid z=0)) \operatorname{Pr}(z=1) \operatorname{Pr}(z=0)}{(E(p \mid z=1)-E(p \mid z=0)) \operatorname{Pr}(z=1) \operatorname{Pr}(z=0)} \\
& =\frac{E(y \mid z=1)-E(y \mid z=0)}{E(p \mid z=1)-E(p \mid z=0)}
\end{aligned}
$$

g)

$$
\begin{aligned}
\operatorname{plim} \hat{\beta}^{I V} & =\operatorname{plim} \frac{\operatorname{côv}(y, z)}{\operatorname{cov}(p, z)} \quad \text { by definition } \\
& =\frac{\operatorname{plim} \operatorname{cov}(y, z)}{\operatorname{plim} \operatorname{cov}(p, z)} \quad \text { by the Slutsky theorem } \\
& =\frac{\operatorname{cov}(y, z)}{\operatorname{cov}(p, z)} \quad \text { by definition } \\
& =\frac{E(y \mid z=1)-E(y \mid z=0)}{E(p \mid z=1)-E(p \mid z=0)} \quad \text { proved in part (f) } \\
& =E(T E \mid \operatorname{complier}) \quad \text { proved in part (c) }
\end{aligned}
$$

