
Chapter 2

Some basic tools

2.1 Time series: Theory

2.1.1 Stochastic processes

A stochastic process is a sequence of random variables . . . , x0, x1, x2, . . .. In
this class, the subscript always means time. As always, x can be a vector.

Associated with this stochastic process is its history:

Ht = {xt, xt−1, xt−2, . . .} (2.1)

The history is just the set of past values of xt.

The expected value at time t of a particular random variable is just:

Et(xs) = E(xs|Ht) (2.2)

or its expected value conditional on all information available at t. Notice
that if s ≤ t, then Et(xs) = xs.

A few results from basic probability theory should be noted here.

1. E(.) is a linear operator, i.e., if X, Y , and Z are random variables then
E(a(Z)X + b(Z)Y |Z = z) = a(z)E(x|Z = z) + b(z)E(y|Z = z).

2. The law of iterated expectations. Let Ω0 ⊂ Ω1 be sets of conditioning
variables (or equivalently let Ω0 and Ω1 be events and let Ω1 ⊂ Ω0),
and let X be a random variable. Then E(E(X|Ω1)|Ω0) = E(X|Ω0).
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3. If E(Y |X) = 0, then E(f(x)Y ) = 0 for any function f(.).

Next we consider two special classes of stochastic process that macroeconomists
find particularly useful.

2.1.2 Markov processes

Definition 2.1.1 (Markov process) A Markov process is a stochastic pro-
cess with the property that:

Pr(xt+1|Ht) = Pr(xt+1|xt) (2.3)

where Pr(x) is the probability distribution of x.

In other words, once we know today’s state, knowing history previous to
today does not change our forecasts of the future.

Markov processes are very convenient to work with, and far less restrictive
than one might think. The reason is that any process for which only a finite
history matters can be redefined as a Markov process. Let xt be a random
variable such that:

Pr(xt+1|Ht) = Pr(xt+1|xt, xt−1, . . . , xt−k) (2.4)

Then we can define yt as

yt ≡


xt

xt−1
...

xt−k

 (2.5)

Note that the vector yt is a Markov process.

Definition 2.1.2 (Markov chain) A Markov chain is a Markov process
with a countable state space.

What does countable mean? Formally, a set A is countable if it is finite, or
if there exists a one-to-one mapping between A and the natural numbers.
Examples of countably infinite sets include the integers, and the rational
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numbers. Examples of uncountable sets include the real numbers, the ir-
rational numbers, and the complex numbers. In practice we will focus on
Markov chains with finite state space.

A Markov chain can be defined using three items: an n-dimensional vector
ω ∈ Rn defining the state space, an n-dimensional vector of initial probabil-
ities π0:

π0i = Pr(x0 = ωi) (2.6)

and an n-by-n Markov transition matrix:

P =


p11 p21 . . . pN1

p12 p22 . . . pN2
...

... . . .
...

p1N p2N . . . pNN

 (2.7)

where pij = Pr(xt+1 = ωj|xt = ωi).

Now, in order for everything to be well-defined, we need:

n∑
i=1

π0i = 1 (2.8)

n∑
j=1

pi,j = 1 (2.9)

Also let’s introduce some additional notation. Let the n-vector πt be defined
as:

πti = Pr(xt = ωi) (2.10)

Note that πt is not random.

Now, why might we find Markov chains convenient for modeling? The first
reason is that dynamic programming problems are often easier to solve for a
discrete state space than a continuous space. It will often be the case that
there is a Markov chain which is “close enough” to another Markov process
to serve as more convenient approximation. The second reason is that many
of the properties of a given Markov chain can be derived from the transition
matrix without much trouble.
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An example

Let’s construct a simple example, with 2 states. Let xt be the stochastic
process in question, let

ω =

[
σ
−σ

]
(2.11)

Let the transition matrix be given by

P =

[
p 1− p

1− q q

]
(2.12)

Let the initial probability vector be given by:

π0 =

[
p0

1− p0

]
(2.13)

What to do with a Markov chain?

First, how do we find Pr(xt+k = ωj|xt = ωi)?

Pr(xt+k = ωj|xt = ωi) =
(
P k
)

i,j
(2.14)

How do we find the unconditional probability distribution of xt?

Pr(xt = ωj) =
(
π′0P

t
)

j
(2.15)

Another way of writing this is:

π′t = π′0P
t (2.16)

A quantity that we will often be interested in is the limit of the equation
above.

π∞ ≡ lim
t→∞

πt (2.17)

= lim
t→∞

(
π′0P

t
)

This definition, of course, presumes that such a limit exists. There are P
such that this limit does not exist, for example

P =

[
0 1
1 0

]
(2.18)
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Think of π∞ as providing a measure of the behavior of the system after it has
been running for a long time. Notice that the initial condition π0 appears
here. When π∞ is the same for every π0, we say that the Markov chain is
“asymptotically stationary.”

Define a stationary distribution of a given Markov chain as a probability
distribution π such that:

π′ = π′P (2.19)

In other words if the initial distribution is π, the unconditional distribution
at time 1 will be π as well. This implies the unconditional distribution at any
time t will be π. A stationary distribution is also called an invariant measure
or invariant distribution. Finding a stationary distribution is actually fairly
easy, it’s just a matter of solving a system of linear equations.

We can prove that there will always be at least one stationary distribution
for any transition matrix. When is there exactly one?

Theorem 1 Let P be a Markov transition matrix such that there exists n ≥ 1
such that (P n)i,j > 0 for all i, j. Then P is asymptotically stationary and
has a unique stationary distribution.

An informal way of putting this condition is that all states “talk to each
other.” One way this can be satisfied is if every element of P is strictly
positive.

Now, if the conditions of the theorem above hold, then for any initial distri-
bution π0:

lim
t→∞

πt = π (2.20)

where π solves equation (2.19).

So, if we are looking at a well-behaved macro model whose equilibrium can
be expressed as a Markov chain, we can do the following:

1. Check to see that the conditions of the theorem above are satisfied.

2. If so,

(a) Solve equation (2.19) to get at the long-run or stationary proba-
bility distribution over states.
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(b) Use the stationary distribution combined with the transition ma-
trix and the state space to calculate means, variances, covariances,
autocovariances, etc. for the model.

3. If not, go read more about Markov chains. An introductory textbook
on stochastic processes (e.g. Hoel, Port, and Stone) is the place to look.

Forecasting

Note that:

E(xt) = π′tω (2.21)

Also, we can forecast;

E(xt+k|xt = ωi) =
(
P kω

)
i

(2.22)

2.1.3 Linear stochastic processes

We will go over linear stochastic processes in scalar form. The textbook
generalizes to vectors.

Definition 2.1.3 (White noise) Define a stochastic process εt with the fol-
lowing properties:

E(εt) = 0 (2.23)

E(ε2
t ) = σ2

ε (2.24)

E(εtεs) = 0 if t 6= s (2.25)

A process that satisfies these conditions is known as “white noise”.

Definition 2.1.4 (Moving average (MA) process) The stochastic pro-
cess xt is a moving average process of order k (usually abbreviated MA(k))
if:

xt = εt + c1εt−1 + c2εt−2 + . . . + ckεt−k (2.26)

where {c1, c2, . . . , ck} is a sequence of real numbers and εt is a white noise
process.
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An MA process can be rewritten as:

xt = εt +
k∑

i=1

ciεt−i (2.27)

We can also construct an infinite-order moving average process MA(∞):

xt = εt +
∞∑
i=1

ciεt− i (2.28)

Definition 2.1.5 (Autoregressive (AR) process) The stochastic process
xt is an autoregressive process of order k, or an AR(k) process, if:

xt = εt +
k∑

i=1

aixt−i (2.29)

where ai are constants, and εt is a white noise process.

2.1.4 Moments of linear processes

Let xt be an MA(k) process.

E(xt) = E

(
k∑

i=0

ciεt−i

)
(2.30)

=
k∑

i=0

ciE(εt−i)

= 0

E(xtxt+s) = E

[(
k∑

i=0

ciεt−i

)(
k∑

i=0

ciεt+s−i

)]
(2.31)

=
k∑

i=0

k∑
j=0

cicjE (εt−iεt+s−j)

=

{
σ2

ε

∑k−s
i=0 cici+s if s ≤ k
0 otherwise

var(xt) = E(x2
t ) = σ2

ε

k∑
i=0

c2
i (2.32)
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Alternatively, if xt is an MA(∞) process, then we have E(xt) = 0 and
var(xt) = σ2

ε

∑∞
i=0 c2

i . In other words, an MA(∞) process will have finite
variance if and only if

∑∞
i=0 c2

i is finite.

An autoregressive process is a little more complicated. For our purposes it
will be enough to consider an AR(1) process. Letting xt = axt−1 + εt, where
εt is white noise, we have:

xt = a(axt−2 + εt−1) + εt (2.33)

= a(a(axt−3 + εt−2) + εt−1) + εt

= asxt−s +
s−1∑
i=0

aiεt−i

=
∞∑
i=0

aiεt−i if lims→∞ asxt+s = 0 a.s.

for any s ≥ 0 (actually, any s). Taking expectations, we have E(xt) = 0. To
calculate covariances, we get:

E(xtxt+s) = E

( ∞∑
i=0

aiεt−i

) ∞∑
j=0

ajεt+s−j

 (2.34)

= σ2
ε a

s
∞∑
i=0

a2i

var(xt) = σ2
ε

∞∑
i=0

a2i (2.35)

Now, in order for var(xt) to be finite, we need
∑∞

i=0 a2i to be finite.

Here is a result we will use a lot: If |a| < 1 then
∑∞

i=0 ai = 1
1−a

. Otherwise∑∞
i=0 ai does not exist (i.e., is not finite).

So, for an AR(1) process with |a| < 1:

E(xtxt+s) =
as

1− a2
σ2

ε (2.36)

Notice that one example of an AR(1) process without a finite variance is the
“random walk” xt = xt−1 + εt.
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Stationarity

Definition 2.1.6 (Stationary stochastic process) A (strictly) stationary
stochastic process is one where the joint distribution of xt and xs depends only
on |t− s|.

This is a fairly strong restriction, we will use a weaker one.

Definition 2.1.7 (Covariance-stationary stochastic process) A second-
order stationary or a covariance-stationary process is one in which:

E(xt) = E(xs) = µ

cov(xt, xs) = E[(xt − µ)(xs − µ)] = σ(t− s)

var(xt) = σ(0) < ∞

For the rest of the course we will use “stationary” as a shorthand for “co-
variance stationary.” σ is often called the autocovariance function. We can
normalize a stationary process so that µ = 0, and drop it from now on.

Why do we care about stationary processes?

• Many standard results in econometrics (e.g., the Central Limit The-
orem) require stationarity. Nonstationarity will introduce numerous
complications; estimators and test statistics will often have nonstan-
dard asymptotic distributions.

• It will make our models easier to work with.

First, we note the following results which can be proved by inspection:

1. A white noise process is stationary.

2. If xt and yt are stationary, then axt + byt is stationary for any (finite)
a and b.

3. If xt is stationary and yt is nonstationary, then axt+byt is nonstationary
for any b 6= 0.
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4. If xt and yt are both nonstationary, then there may or may not be an
a and a b such that axt + byt is stationary. For a trivial example, note
that xt − xt is stationary.

5. Therefore, for finite k, any MA(k) process is stationary.

6. An MA(∞) process is stationary if
∑∞

i=0 c2
i exists (is finite).

7. An AR(1) process is stationary if and only if |a| < 1.

Theorem 2 (Wold representation theorem) Any covariance-stationary
stochastic process can be represented as the sum of a stationary MA(∞) pro-
cess and a “deterministic process”.

The part about the deterministic process is something we can ignore here
because it will never come up. In other words, any stationary process has a
deeply linear structure - its a linear combination of white noise processes.

Prediction

Suppose that xt is an MA process. How would we predict xt given information
at time t− s? Now:

xt =
k∑

i=0

ciεt−i (2.37)

Taking Et−s of both sizes, we get:

Et−s(xt) =
k∑

i=0

ciEt−s(εt−i) (2.38)

=


xt s ≤ 0∑k

i=s ciεt−i 0 < s ≤ k
0 s > k

(2.39)

Notice that a linear stochastic process built with white noise gives us a handy
feature: the value of Et(εs) is either zero or εs.

Now consider xt be an AR(1) process. We already established that

xt = asxt−s +
s−1∑
i=0

aiεt−i

(2.40)

So Et−s(xt) = asxt−s
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2.1.5 Nonstationary processes

One of the most common nonstationary stochastic processes is the random
walk:

xt = xt−1 + εt (2.41)

where εt is white noise.

A random walk is a special case of a martingale:

Definition 2.1.8 (Martingale) A martingale is a stochastic process with
the property:

Et(xt+1) = xt (2.42)

As an aside, the law of iterated expectations imply that any optimal predic-
tion is a martingale. Specifically, let y be any random variable, and let the
stochastic process xt be defined as:

xt ≡ E(y|Ωt) (2.43)

where Ωt is a sequence of conditioning variables such that Ωt−1 ⊂ Ωt. Then:

Et(xt+1) = xt (2.44)

Definition 2.1.9 (Martingale difference sequence) A martingale differ-
ence sequence is any stochastic process εt with the property:

Et(εt+1) = 0 (2.45)

White noise is an example of a martingale difference sequence.

Random walks and martingales are found all over macroeconomics. A simple
model of stock prices implies they follow a random walk. A simple version of
the permanent income hypothesis implies that the growth rate of consump-
tion follows a martingale.

It’s easy to show that a random walk is not stationary, but that its first dif-
ference xt−xt−1 is stationary. We call a process with this property integrated
of order 1 or I(1), or we say that xt has a unit root. A stationary process is
sometimes called an I(0) process.
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2.1.6 Vector stochastic processes

Suppose that xt is a scalar random variable that follows an AR(3) process:

yt = εt +
3∑

i=1

aiyt−i (2.46)

We can create a vector Xt that follows an AR(1) process.

Xt ≡


yt

yt−1

yt−2

yt−3

 (2.47)

The stochastic process can then be written
yt

yt−1

yt−2

yt−3

 =


a1 a2 a3 a4

1 0 0 0
0 1 0 0
0 0 1 0




yt−1

yt−2

yt−3

yt−4

+


σε

0
0
0

wt (2.48)

(where wt = εt/σε) or
Xt = A0Xt−1 + Cwt (2.49)

This is the format for a linear stochastic process in vectors used by Sargent,
where Xt is a n by 1 vector, A0 is an n×n matrix. The m× 1 vector (notice
there is no requirement that m = n) of shocks wt is “white noise” which
Sargent defines as meeting the conditions:

Et(wt+1) = 0 (2.50)

Et(wt+1w
′
t+1) = I

The n×m matrix takes these orthogonal, normalized (unit variance) shocks,
and converts them into shocks which are correlated and have whatever vari-
ance you want. By a little linear algebra, the covariance matrix of Cwt+1

is
E (Cwt+1(Cwt+1)

′) = CE(wt+1w
′
t+1)C

′ = CC ′ (2.51)

As an aside, note that any symmetric, positive definite matrix A has a
Cholesky decomposition, an upper triangular matrix U such that A = U ′U .
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So we can set up this model to produce any covariance matrix we want for
these shocks by simply taking the transpose of its Cholesky decomposition.

Sargent goes over how to analyze linear stochastic processes for vectors. Most
of the ideas associated with scalar processes carry over in vector language;
for example the scalar AR(1) process is stationary if and only if |a| < 1, while
the vector process is stationary if and only if the real parts of the eigenvalues
of A0 are less than one.


