
APPENDIX C - PERSISTENCE LENGTH

Consider an ideal chain with N segments each of length a, such that the contour
length Lc is

Lc = Na. (C.1)

If the orientation of each element on the chain is independent of any other element,
then the ensemble average of the end-to-end displacement ree is equal to

<ree2> = Na2. (C.2)

As discussed in Chap. 3, <ree2>  for all ideal chains has the same scaling form, namely

<ree2> ~ N1, (C.3)

although the prefactor in front of the N1 is not universal.  For example, DNA is much
stiffer than an alkane chain, and hence DNA has a much larger <ree2> for a given
contour length Na than does an alkane.  However, it is still true for both DNA and
alkanes, under physical conditions in which the chains are ideal, that doubling the
length of the chain increases <ree2> by just a factor of 2.  As a technical aside,

conventionally one measures the radius of gyration rg (<rg2> = mean square
displacement of all segments from the center-of-mass of the chain), and then obtains
ree from <ree2> = 6 <rg2>.

In this section, we address two issues:
•how to parametrize <ree2> for stiff chains

•how to relate <ree2> to the elastic stiffness of a chain.
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C.1  Parametrizations for <ree2>

There a number of ways to parametrize the functional form of <ree2> for chains
that are not completely flexible, but are nevertheless ideal.

Effective bond length, Beff

Keeping N as the number of monomers, Eq. (C.2) is written in terms of a new
parameter, the effective bond length Beff.  The expression for the contour length
remains as before and contains no information about Beff.

<ree2> = NBeff2 (C.4a)

Lc = Na. (C.4b)

Kuhn length K

In Kuhn's approach, both <ree2> and Lc are written in a self-consistent form, at
the expense of introducing two parameters.

<ree2> = NK K2 (C.5a)

Lc = NK K. (C.5b)

In this representation, the Kuhn length K of a stiff chain is longer than, say, the length
of the chemical monomer in the chain, but there are fewer segments of length K in the
chain.  That is, NK < N.

Persistence length p

The persistence length p has a somewhat different conceptual origin than the
Kuhn length, in that it measures the length along the chain over which the tangent
vectors of the chain become decorrelated.  The  persistence length for ideal chains is
half of the Kuhn length if Lc >> K:
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p = K / 2 if Lc >> K (C.6)

so that

<ree2> = 2Np p2 (C.7a)
if Lc >> K

Lc = Np p. (C.7b)

In Eq. (C.7), Np is the contour length of the chain expressed in units of the persistence
length.  As shown in Sec. C.3, these expressions are not particularly accurate for
extracting the persistence length for short chains, and one must use other, equally
simple, expressions.

C.2  Flexible rods

In Chap. 3, the scaling behavior of polymers was obtained by viewing the
polymer chain as a system of discrete elements.  In this section, we view the chain as a
smooth and continuous rod or string, with an arc length parameter s that runs from 0 at
one end of the rod, to Lc at the other end.

s = arc length

R(s) = position of point on chain

u(s) = unit tangent vector at point R(s)

At any point along the rod, a unit tangent vector can be obtained from the derivative of
the coordinate position R(s) with respect to s

u(s) = ∂R / ∂s. (C.8)

If the rod is stiff, then u changes only slowly in orientation with respect to s, whereas if
the rod is highly flexible, then u changes rapidly.
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The properties of flexible rods are derived and summarized in Doi and Edwards
(1986).  The simplest expression for the bending energy of a continuous, flexible rod
has the quadratic form

Ebend = (  f/2) ∫ ds(∂u/∂s)2

0

Lc

(C.9)

where Lc is the contour length and  f is the flexural rigidity of the rod (units of energy •
length).  This form for Ebend is called the Kratky-Porod model.  The conformations of
the rod at non-zero temperature can be obtained from the conventional Boltzmann
weight

[probability] ∝ exp { -(  f/2) ∫ ds(∂u/∂s)2}
0

Lc

(C.10)

where  = (kBT)-1 as usual.

For a rod described by Eq. (C.10), it is found that the orientation of the unit
tangent vector becomes decorrelated according to [see Doi and Edwards (1986)]

<u(s)•u(0)> = exp(-s / p), (C.11)

where p is the persistence length, which is given in terms of the flexural rigidity  f by

p =  f. (C.12)

Note that the persistence length is temperature-dependent, as one might expect: at
low temperature, the persistence length tends to infinity.  Note as well that p is a linear
function of the flexural rigidity.  The exponential decay in the correlation of u(s)
contained in Eq. (C.11) implies that the difference in the orientation of u is

< [u(s) - u(0)]2 > = 2s / p (C.13)

at small values of s.
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Lastly, the expectation <ree2> is related to the persistence length through

<ree2> = 2 pLc - 2 p2 [1 - exp(-Lc / p) ]. (C.14)

Eq. (C.14) reduces to a simpler expression in the limit where the contour length is
much longer than the persistence length

<ree2> = 2 pLc if Lc >> p. (C.15)

Comparing Eq. (C.15) with (C.5) shows that the persistence length is half the Kuhn
length for long chains

p = K / 2 if Lc >> p. (C.16)

C.3  Simulation of ideal chains

How well does the behavior of a small discrete chain reflect the results for
flexible rods presented in Sec. C.2?  In this section, various expressions from the
theory of flexible rods are used to obtain several values for the persistence length, and
the results are shown to be in good agreement.

We simulate an ideal segmented chain in three dimensions with the following
characteristics:
•the chain has N segments, each with the same length a
•the chain has a bending energy given by

H = (  f/a)Σ (1 - a i•a i+1)
i=1

N-1

(C.17)

where  f is the flexural rigidity, as before.  The (dimensionless) bond vector a i of the
discrete chain plays the same role as the unit tangent vector u of the flexible rod.  In
the small angle limit, Eqs. (C.9) and (C.17) agree.  The value of the persistence length
can be predicted or extracted by several means, and we compare the results below for
the specific case of a 20 segment chain with  f = 4.0a.  The simulation uses 2,000
independent configurations.
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Bending resistence

The persistence length is related to the bending resistence via Eq. (C.12).  For
the situation under consideration, Eq. (C.12) predicts

p = 4.0a. (C.18)

Difference in orientations of a

The expectation of the difference in orientations along the chain, <[a (s)-a (0)]2>,
is predicted to increase linearly with the difference in segment number, according to
Eq. (C.13).  Data are shown below for several nearby segments; ∆s / a = 1 represents
nearest neighbor segments, ∆s / a = 2 represents next nearest-neighbor segments etc.

        ∆s / a     <[a (s)-a (0)]2>
0 0.0
1 0.499
2 0.868
3 1.146
4 1.349

Since Eq. (C.13) should be most accurate for small ∆s / a , then we see that ∆s / a = 1
predicts the value of the persistence length to be

p = 4.0a. (C.19)

Product of orientations of a

The expectation of the product a i•a i+1 vanishes if the two segments are widely

separated along the contour of the chain.  A semi-log plot of <a i•a i+1> against ∆s
reveals the exponential decay predicted by Eq. (C.11).  From the slope of the graph,
the persistence length is found to be

p = 3.6a. (C.20)
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End-to-end distance

Some care must be used in extracting p from the end-to-end distance of short

chains.  Using Eq. (C.14), we find that <ree2> = 116.6a2 corresponds to

p = 3.5a, (C.21)

in agreement with the tangent correlations.  However, simply dividing the Kuhn length
by two leads to the less accurate value of p = 2.9a.

Summary

The four values of the persistence length, as determined from Eqs. (C.11) to
(C.14) are seen to be in general agreement in the simulated chain:

p = 4.0a from bending resistence

p = 4.0a from <[a (s)-a (0)]2> at ∆s = 1

p = 3.6a from <a i•a i+1>

p = 3.5a from <ree2>  (C.14)

Reference
M. Doi and S. F. Edwards The Theory of Polymer Dynamics (Oxford University Press,
1986), pgs. 316-318.
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