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PHYS 4xx Net2 - Elastic moduli in 2D 
 
General symmetries of elastic moduli 
 
• uij is symmetric under exchange of i and j; hence, Cijkl can be defined such that it is 

pairwise symmetric under exchange of i and j or k and l 
 Cijkl = Cjikl = Cijlk.          (1) 
 
• uijukl is symmetric under exchange of the pairs of indices ij and kl; hence: 
 Cijkl = Cklij.          (2) 
 
• these two symmetries alone reduce the number of independent moduli to 6 in 2D 
 Cxxxx  Cyyyy   Cxxyy = Cyyxx   
  Cxyxy = Cxyyx = Cyxyx = Cyxxy      (3) 
  Cxxxy = Cxxyx = Cxyxx = Cyxxx  
  Cyyxy = Cyyyx = Cxyyy = Cyxyy. 
 
 
Six-fold networks in 2D 

 
 
 
 
 

 
• change from Cartesian coordinates x and y to complex coordinates ξ and η (Landau 

and Lifshitz) 
 ξ ≡ x + iy    η ≡ x - iy,     (4) 
 
• rotation by θ changes (x, y) to (xcosθ - ysinθ, xsinθ + ycosθ) or 
 x + iy → (xcosθ + ixsinθ) + (iycosθ - ysinθ) = x(cosθ + isinθ) + iy(cosθ + isinθ) 
hence: 
 ξ → ξexp(iθ)    η → ηexp(-iθ).    (5) 
 
• six-fold symmetry demands the moduli be invariant under rotations through θ = π/3 
 ξ → ξexp(iπ/3)  and  η → ηexp(-iπ/3). 
 
• the only components of Cijkl unchanged by this transformation contain ξ and η the 

same number of times, since exp(iπ/3)exp(-iπ/3) = 1 
 
• only two moduli are invariant under 6-fold symmetry; the free energy density ΔF is 

then 
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 ΔF = 2Cξηξηuξηuξη + Cξξηηuξξuηη,      (6) 
 

[the first term results from four permutations of Cξηξη and the second term from 
two permutations of Cξξηη; the expression includes a normalization factor of 1/2] 

 
• the components of a tensor transform as the products of the corresponding 

coordinates.  i.e., since ξ2 = (x + iy)2 = x2 - y2 + 2ixy, then 
 uξξ = uxx - uyy + 2iuxy, uηη = uxx - uyy - 2iuxy, uξη = uxx + uyy, (7) 

and 
 ΔF = 2Cξηξη (uxx + uyy)2 + Cξξηη {(uxx - uyy)2 + 4uxy2}.   (8) 
 
• replace Cijkl by moduli more directly related to the pure deformation modes of area 

compression (KA) or shear (µ) 
 KA = 4Cξηξη  µ = 2Cξξηη,       (9) 
 

so that (8) becomes 
 ΔF  = (KA/2) (uxx + uyy)2 + µ {(uxx - uyy)2/2 + 2uxy2}    (six-fold symmetry).   (10) 
 
Isotropic materials 
• only two rotationally invariant combinations of u; hence, only two elastic moduli 
• (10) applies to isotropic materials in 2D as well 
 
Networks of springs 
 
We now relate the macroscopic moduli Cijkl to the microscopic parameters of a model 
network with 6-fold connectivity.  The bond elements are Hookean springs with 
 spring constant = ksp 
 unstretched length = so 
 potential energy Vsp = ksp(s - so)2 / 2      (11) 
 
Our method is to compare ΔF in two representations to get the elastic moduli in terms of 
ksp and so. 
 
Compression modulus 
• stretch each spring a small amount δ ≡ s - so away from so 

 
 
 
 
 
 
 

so + δ 
so 
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• with three springs per vertex, the change in potential energy per vertex ΔUV is 
 ΔUV = 3ΔVsp = 3kspδ2/2,        (12) 
 
• divide (12) by the network area per vertex of AV = √3 so

2/2 
 ΔF = ΔU/AV = √3 ksp(δ/so)2.        (13) 
 
• Eq. (10) for ΔF uses the strain tensor; its elements are 
 the deformations are uniform in x and y ---> uxx = uyy = δ/so 
 the displacement in the y-direction is independent of the position of the triangle  
  in the x-direction --->  uxy = 0 
• thus: 
 ΔF = 2KA(δ/so)2,         (14) 
 
• comparing (13) and (14) yields 
 KA = √3 ksp /2  (six-fold network).      (15) 
 
 
Shear modulus  The shear modulus can be obtained from the deformation 
          

 
 
 
 
 
    

 
 
 
• moving the top vertex an amount δ in the x-direction changes the diagonal spring 

lengths by ±δ/2 (to lowest order in δ); no change in bottom spring 
 ---> ΔU = (ksp/2)•(s - so)2 = kspδ2/8 for either stretched spring 

 
• at three springs per vertex:  ΔUV = 2kspδ2/8 + 0 = kspδ2/4 
 
 ΔF = ΔUV/AV = (kspδ2/4) / ( √3 so

2/2) = ksp(δ/so)2/(2√3)    (16) 
 
 
• the strain tensor of the deformation is 
 •x and y distances are unchanged ---> uxx = uyy = 0. 
 •each successive row of vertices is displaced by δ in the positive x-direction for  
  each increase √3 so/2 in the y-direction ---> ∂ux/∂y = 2δ / √3 so 
  uxy = (1/2)(∂ux/∂y + ∂uy/∂x) = (1/2)•[2δ/(√3 so) + 0] = δ/ √3 so 

s = ( [√3 so /2]2 + [so/2 + δ]2 )1/2 
   = so (3/4 + [1/2 + δ/so]2 )1/2 
   = so (3/4 + 1/4 + 2δ/ 2so + ... )1/2 
   = so (1 + δ/ 2so + ... ) 
Hence   Δs = δ/2 

so/2     δ 

√3 so/2       s0 

so 

δ 
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• thus, (10) reads: 
 ΔF = (2µ/3)(δ/so)2.         (17) 
 
• comparing (16) and (17) yields 
 µ = √3 ksp /4   (six-fold network).     (18) 
 
Note: KA / µ = 2 for six-fold networks in 2D. 
 


