PHYS 4xx Net2 - Elastic moduli in 2D

General symmetries of elastic moduli

- u_{ij} is symmetric under exchange of i and j; hence, C_{ijkl} can be defined such that it is pairwise symmetric under exchange of i and j or k and $/$

$$
\begin{equation*}
C_{\mathrm{ijkl}}=C_{\mathrm{jjkl}}=C_{\mathrm{ijlk}} . \tag{1}
\end{equation*}
$$

- $u_{\mathrm{ij}} u_{\mathrm{kl}}$ is symmetric under exchange of the pairs of indices $i j$ and $k l$; hence:

$$
\begin{equation*}
C_{\mathrm{ijkl}}=C_{\mathrm{klij}} . \tag{2}
\end{equation*}
$$

- these two symmetries alone reduce the number of independent moduli to 6 in 2D

$$
\begin{gather*}
C_{\mathrm{xxxx}} \\
C_{\mathrm{yyyy}} \quad C_{\mathrm{xxyy}}=C_{\mathrm{yyxx}} \tag{3}\\
C_{\mathrm{xyxy}}=C_{\mathrm{xyyx}}=C_{\mathrm{yxyx}}=C_{\mathrm{yxxy}} \\
C_{\mathrm{xxx}}=C_{\mathrm{xxyx}}=C_{\mathrm{xyxx}}=C_{\mathrm{yxxx}} \\
C_{\mathrm{yyxy}}=C_{\mathrm{yyyx}}=C_{\mathrm{xyyy}}=C_{\mathrm{yxyy}} .
\end{gather*}
$$

Six-fold networks in 2D

- change from Cartesian coordinates x and y to complex coordinates ξ and η (Landau and Lifshitz)

$$
\xi \equiv x+\mathrm{i} y \quad \eta \equiv x-\mathrm{i} y
$$

- rotation by θ changes (x, y) to $(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$ or

$$
x+\mathrm{i} y \rightarrow(x \cos \theta+\mathrm{i} x \sin \theta)+(\mathrm{i} y \cos \theta-y \sin \theta)=x(\cos \theta+\mathrm{i} \sin \theta)+\mathrm{i} y(\cos \theta+\mathrm{i} \sin \theta)
$$

hence:

$$
\begin{equation*}
\xi \rightarrow \xi \exp (\mathrm{i} \theta) \quad \eta \rightarrow \eta \exp (-\mathrm{i} \theta) \tag{5}
\end{equation*}
$$

- six-fold symmetry demands the moduli be invariant under rotations through $\theta=\pi / 3$

$$
\xi \rightarrow \xi \exp (\mathrm{i} \pi / 3) \quad \text { and } \quad \eta \rightarrow \eta \exp (-\mathrm{i} \pi / 3) .
$$

- the only components of C_{ijk} unchanged by this transformation contain ξ and η the same number of times, since $\exp (\mathrm{i} \pi / 3) \exp (-\mathrm{i} \pi / 3)=1$
- only two moduli are invariant under 6-fold symmetry; the free energy density $\Delta \mathcal{F}$ is then

$$
\begin{equation*}
\Delta \mathcal{F}=2 C_{\xi \eta \xi \eta} u_{\xi \eta} u_{\xi \eta}+C_{\xi \xi \eta \eta} u_{\xi \xi} u_{\eta \eta}, \tag{6}
\end{equation*}
$$

[the first term results from four permutations of $C_{\xi \eta \xi \eta}$ and the second term from two permutations of $C_{\xi \xi \eta \eta}$; the expression includes a normalization factor of 1/2]

- the components of a tensor transform as the products of the corresponding coordinates. i.e., since $\xi^{2}=(x+i y)^{2}=x^{2}-y^{2}+2 i x y$, then

$$
\begin{equation*}
u_{\xi \xi}=u_{x x}-u_{y y}+2 i u_{x y}, \quad u_{\eta \eta}=u_{x x}-u_{y y}-2 i u_{x y}, \quad u_{\xi \eta}=u_{x x}+u_{y y}, \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \mathcal{F}=2 C_{\xi \eta \xi \eta}\left(u_{\mathrm{xx}}+u_{\mathrm{yy}}\right)^{2}+C_{\xi \xi \eta \eta}\left\{\left(u_{\mathrm{xx}}-u_{\mathrm{yy}}\right)^{2}+4 u_{\mathrm{xy}}{ }^{2}\right\} . \tag{8}
\end{equation*}
$$

- replace C_{ijkl} by moduli more directly related to the pure deformation modes of area compression (K_{A}) or shear (μ)

$$
\begin{equation*}
K_{\mathrm{A}}=4 C_{\xi \eta \xi \eta} \quad \mu=2 C_{\xi \xi \eta \eta}, \tag{9}
\end{equation*}
$$

so that (8) becomes

$$
\begin{equation*}
\Delta \mathcal{F}=\left(K_{\mathrm{A}} / 2\right)\left(u_{\mathrm{xx}}+u_{\mathrm{yy}}\right)^{2}+\mu\left\{\left(u_{\mathrm{xx}}-u_{\mathrm{yy}}\right)^{2 / 2}+2 u_{\mathrm{xy}}{ }^{2}\right\} \quad \text { (six-fold symmetry). } \tag{10}
\end{equation*}
$$

Isotropic materials

- only two rotationally invariant combinations of u; hence, only two elastic moduli
- (10) applies to isotropic materials in 2D as well

Networks of springs

We now relate the macroscopic moduli C_{ijk} to the microscopic parameters of a model network with 6 -fold connectivity. The bond elements are Hookean springs with
spring constant $=k_{\text {sp }}$
unstretched length $=s_{0}$
potential energy $V_{\mathrm{sp}}=k_{\mathrm{sp}}\left(s-s_{o}\right)^{2} / 2$
Our method is to compare $\Delta \mathcal{F}$ in two representations to get the elastic moduli in terms of k_{sp} and s_{0}.

Compression modulus

- stretch each spring a small amount $\delta \equiv s-s_{0}$ away from s_{0}

- with three springs per vertex, the change in potential energy per vertex ΔU_{v} is

$$
\begin{equation*}
\Delta U_{\mathrm{v}}=3 \Delta V_{\mathrm{sp}}=3 k_{\mathrm{sp}} \delta^{2} / 2 \tag{12}
\end{equation*}
$$

- divide (12) by the network area per vertex of $A_{v}=\sqrt{ } 3 s_{0}{ }^{2} / 2$

$$
\begin{equation*}
\Delta \mathcal{F}=\Delta U / A_{v}=\sqrt{3} k_{\mathrm{sp}}\left(\delta / s_{0}\right)^{2} \tag{13}
\end{equation*}
$$

- Eq. (10) for $\Delta \mathcal{F}$ uses the strain tensor; its elements are
the deformations are uniform in x and $y \cdots u_{x x}=u_{y y}=\delta / s_{0}$
the displacement in the y-direction is independent of the position of the triangle in the x-direction $-->u_{x y}=0$
- thus:

$$
\begin{equation*}
\Delta \mathcal{F}=2 K_{\mathrm{A}}\left(\delta / s_{0}\right)^{2} \tag{14}
\end{equation*}
$$

- comparing (13) and (14) yields

$$
\begin{equation*}
K_{\mathrm{A}}=\sqrt{3} k_{\mathrm{sp}} / 2 \quad \text { (six-fold network) } \tag{15}
\end{equation*}
$$

Shear modulus The shear modulus can be obtained from the deformation

Hence $\Delta s=\delta / 2$

- moving the top vertex an amount δ in the x-direction changes the diagonal spring lengths by $\pm \delta / 2$ (to lowest order in δ); no change in bottom spring $--->\Delta U=\left(k_{\mathrm{sp}} / 2\right) \cdot\left(s-s_{0}\right)^{2}=k_{\mathrm{sp}} \delta^{2} / 8$ for either stretched spring
- at three springs per vertex:

$$
\Delta U_{\mathrm{v}}=2 k_{\mathrm{sp}} \delta^{2} / 8+0=k_{\mathrm{sp}} \delta^{2 / 4}
$$

$$
\begin{equation*}
\Delta \mathcal{F}=\Delta U_{\mathrm{v}} / A_{\mathrm{v}}=\left(k_{\mathrm{sp}} \delta^{2 / 4}\right) /\left(\sqrt{ } 3 s_{\mathrm{o}}^{2} / 2\right)=k_{\mathrm{sp}}\left(\delta / s_{\mathrm{o}}\right)^{2} /(2 \sqrt{ } 3) \tag{16}
\end{equation*}
$$

- the strain tensor of the deformation is
$\cdot x$ and y distances are unchanged $-->u_{x x}=u_{y y}=0$.
-each successive row of vertices is displaced by δ in the positive x-direction for each increase $\sqrt{ } 3 s_{0} / 2$ in the y-direction ---> $\partial u_{x} / \partial y=2 \delta / \sqrt{ } 3 s_{0}$ $u_{x y}=(1 / 2)\left(\partial u_{x} / \partial y+\partial u_{y} / \partial x\right)=(1 / 2) \cdot\left[2 \delta /\left(\sqrt{ } 3 s_{0}\right)+0\right]=\delta / \sqrt{ } 3 s_{0}$
- thus, (10) reads:

$$
\begin{equation*}
\Delta \mathcal{F}=(2 \mu / 3)\left(\delta / s_{0}\right)^{2} \tag{17}
\end{equation*}
$$

- comparing (16) and (17) yields
$\mu=\sqrt{3} k_{\mathrm{sp}} / 4 \quad$ (six-fold network).
Note: $K_{\mathrm{A}} / \mu=2$ for six-fold networks in 2D.

