PHYS 4xx Net2 - Elastic moduli in 2D

General symmetries of elastic moduli

- *u*_{ij} is symmetric under exchange of *i* and *j*; hence, *C*_{ijkl} can be defined such that it is pairwise symmetric under exchange of *i* and *j* or *k* and *l C*_{iikl} = *C*_{iikl} = *C*_{iikl}. (1)
- $u_{ij}u_{kl}$ is symmetric under exchange of the pairs of indices *ij* and *kl*; hence: $C_{ijkl} = C_{klij}$. (2)
- these two symmetries alone reduce the number of independent moduli to 6 in 2D

$$C_{xxxx} \qquad C_{yyyy} \qquad C_{xxyy} = C_{yyxx}$$

$$C_{xyxy} = C_{xyyx} = C_{yxyx} = C_{yxxy}$$

$$C_{xxxy} = C_{xxyx} = C_{xyxx} = C_{yxxx}$$

$$C_{yyxy} = C_{yyyx} = C_{xyyy} = C_{yxyy}.$$
(3)

Six-fold networks in 2D

- change from Cartesian coordinates x and y to complex coordinates ξ and η (Landau and Lifshitz)

$$\xi = x + iy \qquad \eta = x - iy, \qquad (4)$$

• rotation by θ changes (x, y) to $(x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$ or

 $x + iy \rightarrow (x\cos\theta + ix\sin\theta) + (iy\cos\theta - y\sin\theta) = x(\cos\theta + i\sin\theta) + iy(\cos\theta + i\sin\theta)$

hence:

$$\xi \to \xi \exp(i\theta) \qquad \eta \to \eta \exp(-i\theta).$$
 (5)

- six-fold symmetry demands the moduli be invariant under rotations through $\theta = \pi/3$ $\xi \rightarrow \xi \exp(i\pi/3)$ and $\eta \rightarrow \eta \exp(-i\pi/3)$.
- the only components of C_{ijkl} unchanged by this transformation contain ξ and η the same number of times, since exp(i $\pi/3$)exp(-i $\pi/3$) = 1
- only two moduli are invariant under 6-fold symmetry; the free energy density $\Delta \mathcal{F}$ is then

$$\Delta \mathcal{F} = 2C_{\xi\eta\xi\eta} u_{\xi\eta} u_{\xi\eta} + C_{\xi\xi\eta\eta} u_{\xi\xi} u_{\eta\eta}, \tag{6}$$

[the first term results from four permutations of $C_{\xi\eta\xi\eta}$ and the second term from two permutations of $C_{\xi\xi\eta\eta}$; the expression includes a normalization factor of 1/2]

• the components of a tensor transform as the products of the corresponding coordinates. *i.e.*, since $\xi^2 = (x + iy)^2 = x^2 - y^2 + 2ixy$, then

$$u_{\xi\xi} = u_{xx} - u_{yy} + 2iu_{xy}, \qquad u_{\eta\eta} = u_{xx} - u_{yy} - 2iu_{xy}, \qquad u_{\xi\eta} = u_{xx} + u_{yy}, \quad (7)$$

and

$$\Delta \mathcal{F} = 2C_{\xi\eta\xi\eta} (u_{xx} + u_{yy})^2 + C_{\xi\xi\eta\eta} \{ (u_{xx} - u_{yy})^2 + 4u_{xy}^2 \}.$$
(8)

replace C_{ijkl} by moduli more directly related to the pure deformation modes of area compression (K_A) or shear (μ)

$$K_{\mathsf{A}} = 4C_{\xi\eta\xi\eta} \qquad \mu = 2C_{\xi\xi\eta\eta}, \qquad (9)$$

so that (8) becomes

$$\Delta \mathcal{F} = (K_{\text{A}}/2) (u_{\text{xx}} + u_{\text{yy}})^2 + \mu \{(u_{\text{xx}} - u_{\text{yy}})^2/2 + 2u_{\text{xy}}^2\} \text{ (six-fold symmetry). (10)}$$

Isotropic materials

- only two rotationally invariant combinations of u; hence, only two elastic moduli
- (10) applies to isotropic materials in 2D as well

Networks of springs

We now relate the macroscopic moduli C_{ijkl} to the microscopic parameters of a model network with 6-fold connectivity. The bond elements are Hookean springs with

spring constant =
$$k_{sp}$$

unstretched length = s_0
potential energy $V_{sp} = k_{sp}(s - s_0)^2 / 2$ (11)

Our method is to compare $\Delta \mathcal{F}$ in two representations to get the elastic moduli in terms of k_{sp} and s_{o} .

Compression modulus

• stretch each spring a small amount $\delta = s - s_0$ away from s_0

- with three springs per vertex, the change in potential energy per vertex ΔU_v is $\Delta U_v = 3\Delta V_{sp} = 3k_{sp}\delta^2/2,$ (12)
- divide (12) by the network area per vertex of $A_v = \sqrt{3} s_o^2/2$ $\Delta \mathcal{F} = \Delta U/A_v = \sqrt{3} k_{sp} (\delta/s_o)^2.$ (13)
- Eq. (10) for Δ𝑎 uses the strain tensor; its elements are the deformations are uniform in *x* and *y* ---> u_{xx} = u_{yy} = δ/s_o the displacement in the *y*-direction is independent of the position of the triangle in the *x*-direction ---> u_{xy} = 0
- thus: $\Delta \mathcal{F} = 2K_{A}(\delta/s_{o})^{2}, \qquad (14)$
- comparing (13) and (14) yields $K_{\rm A} = \sqrt{3} k_{\rm sp} / 2$ (six-fold network). (15)

Shear modulus The shear modulus can be obtained from the deformation

- moving the top vertex an amount δ in the *x*-direction changes the diagonal spring lengths by ±δ/2 (to lowest order in δ); no change in bottom spring
 ---> ΔU = (k_{so}/2)•(s s_o)² = k_{so}δ²/8 for either stretched spring
- at three springs per vertex: $\Delta U_{\rm V} = 2k_{\rm sp}\delta^2/8 + 0 = k_{\rm sp}\delta^2/4$

$$\Delta \mathcal{F} = \Delta U_{\rm v} / A_{\rm v} = (k_{\rm sp} \delta^2 / 4) / (\sqrt{3} \ s_{\rm o}^2 / 2) = k_{\rm sp} (\delta / s_{\rm o})^2 / (2\sqrt{3})$$
(16)

the strain tensor of the deformation is

•*x* and *y* distances are unchanged ---> $u_{xx} = u_{yy} = 0$.

•each successive row of vertices is displaced by δ in the positive *x*-direction for each increase $\sqrt{3} s_{o}/2$ in the *y*-direction ---> $\partial u_{x}/\partial y = 2\delta / \sqrt{3} s_{o}$ $u_{xy} = (1/2)(\partial u_{x}/\partial y + \partial u_{y}/\partial x) = (1/2) \cdot [2\delta/(\sqrt{3} s_{o}) + 0] = \delta / \sqrt{3} s_{o}$

- thus, (10) reads: $\Delta \mathcal{F} = (2\mu/3)(\delta/s_0)^2.$ (17)
- comparing (16) and (17) yields $\mu = \sqrt{3} k_{sp}/4$ (six-fold network). (18)

Note: $K_A / \mu = 2$ for six-fold networks in 2D.