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    The softness of a material implies that it deforms easily when subjected to 
a stress. For a cell, an applied stress could arise from the cell’s environment, 
such as the action of a wave on water-borne cells or the pressure from a 
crowded region in a multicellular organism. The exchange of energy with the 
cell’s environment due to thermal fl uctuations can also lead to deformations, 
although these may be stronger at the molecular level than the mesoscopic 
length scale of the cell proper. For example, Fig. 1.12 shows the fl uctuations 
in shape of a synthetic vesicle whose membrane is a pure lipid bilayer that has 
low resistance to out-of-plane undulations because it is so thin. At fi xed tem-
perature, fl exible systems may sample a variety of shapes, none of which need 
have the same energy because fi xed temperature does not imply fi xed energy. 
In this chapter, the kind of fl uctuating ensembles of interest to cell mechanics 
are introduced in Section 2.1, followed up with a review of viscous fl uids and 
their role in cell dynamics in Section 2.2. Many of the statistical concepts 
needed for describing fl uctuating ensembles are then presented, using as illus-
trations random walks in Section 2.3 and diffusion in Section 2.4. Lastly, the 
subject of correlations is presented in Section 2.5, focusing on correlations 
within the shapes of long, sinuous fi laments .  

  2.1     Fluctuations at the cellular scale 

 Among the common morphologies found among cyanobacteria (which 
trace their lineage back billions of years) are fi lamentous cells, two 
examples of which are displayed in  Fig. 2.1 . The images are shown at the 
same magnifi cation, as indicated by the scale bars. The upper panel is the 
thin fi lament    Geitlerinema  PCC 7407, with a diameter of 1.5 ± 0.2  μ m, 
while the lower panel is the much thicker fi lament    Oscillatoria  PCC 8973, 
with a diameter of 6.5 ± 0.7  μ m (Boal and Ng,  2010 ). The fi laments have 
been cultured in solution, then mildly stirred before imaging; clearly, the 
thinner fi lament has a more sinuous appearance than the thicker fi lament 
when seen at the same magnifi cation. This is as expected: the resistance to 
bending possessed by a uniform solid cylinder grows like the fourth power 
of its diameter, so the thinner fi lament should have much less resistance to 
bending and hence appear more sinuous than the thicker one.    

 Soft materials and fl uids        2 
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 We can quantify how “sinuous” a curve is by examining the behavior of 
the tangent vector  t  to the curve at different locations along it. It’s easiest 
to work with a unit tangent vector  , which means that the length of the 
vector is unity according to  t  •  t  = 1, where the notation  a •   b  represents the 
“dot” or scalar product of the two vectors  a  and  b . On  Fig. 2.2  is drawn an 
arbitrarily shaped curve (green), along which several unit tangent vectors 
have been constructed (red:  t  1 ,  t  2 , …  t   n  ) at three locations along the curve 
( s  1 ,  s  2 , …  s   n  ). The separation  Δ  s  between locations is equal to the distance 
(or arc length) along the curve; for example, between locations  s  1  and  s  2 , 
the separation  Δ  s  = | s  1  −  s  2 |. Thus, the separation between points  s  1  and  s   n   
is much larger than the (vector) displacement between the points:  Δ  s  takes 
into account the path length from  s  1  to  s   n  , whereas the magnitude of the 
displacement is the distance along a straight line drawn between the two 
positions.    

 Let’s suppose for a moment that a fi nite ensemble of vectors { t   i  } is 
selected at  N  random locations along the curve. The magnitude of the tan-
gent vectors  t   i   does not change with location  s   i  , so that an average that is 
taken over the ensemble obeys

  ( )∑ = ( )∑ = ( )=i i N )∑ N N N)
i

N

i

N/〉 ≡ ( /(( / N )/ ))∑N )∑/ (= ( 1=N1/ •)N ) ,
1 1

( )∑
=( )i i N(

i
(   

(2.1)
   

 because each contribution  t   i   •  t   i   = 1 in the ensemble average  , the latter 
denoted by 〈 ··· 〉. What happens if  we take the scalar product of  vectors 
at different locations? If  the curve is a straight line, then  t   i   •  t   j   = 1 even if  

    Fig. 2.1      Shape fl uctuations exhibited by two species of fi lamentous cyanobacteria:  Geitlerinema  PCC 7407 

(upper, 1.5 ± 0.2  μ m) and  Oscillatoria  PCC 8973 (lower, 6.5 ± 0.7  μ m), where the mean diameter of 

the fi lament is indicated in brackets. Both images are displayed at the same magnifi cation, and the 

scale bar is 20  μ m.  
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   Fig. 2.2  

   A sinuous curve (green) can be 

characterized by the variation 

in the orientation of its tangent 

vectors (red,  t  1 ,  t  2 , …  t   n  ) at 

locations along the curve ( s  1 , 

 s  2 , …  s   n  ). The separation  Δ  s  

between locations is equal to 

the distance along the curve, 

for example  Δ  s  = | s  1   −   s  2 |, but 

is not equal to the displacement 

between the points.  
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 i   ≠   j , because all the tangent vectors to a straight line point in the same 
direction. However, if  the tangent vectors point in different directions, 
then  t   i   •  t   j   can range between −1 and +1, so we would expect in general 

  −1  ≤  〈  t   i   •  t   j    〉  ≤  1,   ( i   ≠   j )  (2.2)  

 where the equal signs hold only if  all tangent vectors point in the same dir-
ection. If  the set { t   i  } is truly random, then the ensemble average will con-
tain about as many cases where  t   i   •  t   j   is positive as there are examples where 
it is negative, in which case 

  〈  t   i   •  t   j   〉  →  0   ( i   ≠   j , random orientations)   (2.3)  

 in the limit where  N  is large. Using calculus, it’s easy enough to generalize 
these results to the situation where  t  is a continuous function of  s , as is 
done in later chapters; for the time being, all we need is the discrete case. 
In  Section 2.5  of this chapter, we examine how  t   i   •  t   j   behaves when  s   i   and  s   j   
are separated by a fi xed value, rather than averaged over all values of  Δ  s  
considered for Eqs. (2.2) and (2.3); we will show that 〈  t   i   •  t   j   〉 Δ   s   quantitatively 
characterizes how sinuous the path is. 

 The shapes of  cells in an ensemble provide another example of  fl uc-
tuations of  importance in cell mechanics.  Figure 2.3  shows a small col-
lection of  the eukaryotic green alga    Stichoccocus S , a common alga 
found in freshwater ditches, ponds and similar environments; the green 
organelle in the cell’s interior is a chloroplast. The width of  these cells is 
fairly uniform from one cell to the next, having a mean value of  3.56 ± 
0.18  μ m, but the length is more variable, with a mean of  6.98 ± 1.29  μ m, 
where the second number of  each pair is the standard deviation. The 
large value of  the standard deviation of  the cell length relative to its 
mean value refl ects the fact that the length changes by a factor of  two 
during the division cycle.    

 Although the mean values of cell dimensions are obviously useful for 
characterizing the species, even more information can be gained from the 
distribution of cell shapes, as will be established in Chapter 12. For now, 
we simply wish to describe how to construct and utilize a continuous dis-
tribution from an ensemble using data such as the cell length and width. 
Knowing that  Stichococcus  grows at a fairly constant width, we choose 
as our geometrical observable the length to width ratio   Λ  , just to make 
the observable dimensionless. Each cell has a particular   Λ  , and from the 
ensemble one can determine how many cells  Δ  n   Λ   there are for a range  Δ   Λ   
centered on a given   Λ  . The total number of cells in the ensemble  N  is just 
the sum over all the cells  Δ  n   Λ   in each range of   Λ  . 

 Now, let’s convert  numbers  into  probabilities ; that is, let’s determine the 
probability of fi nding a cell in a particular range of   Λ  . This is straightfor-
ward: if  there are  Δ  n   Λ   cells in the range, then the probability of fi nding a 

   Fig. 2.3     

Sample of eukaryotic green alga 

 Stichococcus S ; this particular strain is 

from a freshwater ditch in Vancouver, 

Canada. Scale bar is 10  μ m. (Forde 

and Boal, unpublished).  
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cell in this range out of the total population  N  is just  Δ  n   Λ  / N . Unfortunately, 
the probability as we have defi ned it depends on the range  Δ   Λ   that we have 
used for collecting the individual cell measurements. We can remove this 
dependence on  Δ   Λ   by constructing a probability density   P (  Λ  ) simply by 
dividing the probability for the range by the magnitude of the range itself, 
 Δ   Λ  . Note that the probability density has units of   Λ     −    1  because of the oper-
ation of division. Let’s put these ideas into equations. Working with the 
fi nite range of  Δ   Λ  , we said 

  [ probability of fi nding cell in range   Δ   Λ  ] =  Δ  n   Λ   /  N ,   (2.4)  

 and 

 [ probability density around    Λ  ] = P (  Λ  ) 
  = [ probability of fi nding cell in range   Δ   Λ  ] /  Δ   Λ  , 
 (2.5)  

 so that 

  [ number of cells in range   Δ   Λ  ] =  Δ  n   Λ   =  N  P (  Λ  )  Δ   Λ  .   (2.6)  

 If  we now make the distribution continuous instead of grouping it into 
ranges of  Δ   Λ  , Eq. (2.6) becomes 

  d n   Λ   =  N  P (  Λ  ) d  Λ  .   (2.7)  

 By working with probability densities, we have removed the explicit depend-
ence of the distribution on the number of cells in the sample, and at the 
same time have obtained an easily normalized distribution function: 

   ∫  P (  Λ  ) d  Λ   = 1,   (2.8)  

 from which the mean value of   Λ   is 

  〈   Λ   〉 =  ∫    Λ   P (  Λ  ) d  Λ  .   (2.9)  

  Having done all of  this formalism, what do the data themselves look 
like?  Figure 2.4  shows the probability density for the length-to-width 
ratio of  the green alga  Stichococcus S  in Fig. 2.3. The fact that P is 
zero at small values of    Λ   just means that there are no cells in this range: 
  Λ   = 1 corresponds to a spherical cell, and  Stichococcus  is always elon-
gated, like a cylindrical capsule. The peak in P at the smaller values of 
  Λ   observed in the population indicates that the cell grows most slowly 
during this time. Once the cell begins to grow rapidly, there will be (rela-
tively) fewer examples of  it in a steady-state population, and that’s what 
the data indicate is occuring at large values of  cell length, near the end 
of  the division cycle.    

 These fi rst two examples of fl uctuations at the cellular level dealt with 
cell shape, either fl uctuations in the local orientation of a single, long bio-
fi lament, or the fl uctuations in cell length among a population under steady 

   Fig. 2.4  

   Probability density P for the 

length to width ratio   Λ   of the 

green alga  Stichococcus S , a 

specimen of which is shown 

in Fig. 2.3 (Forde and Boal, 

unpublished).  
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state growth. As a fi nal illustration, we examine the random motion of 
objects with sizes in the micron range immersed in a stationary fl uid: here, 
the objects are plastic spheres, and in Chapter 11, they are self- propelled 
cells. In everyday life, we’re familiar with several types of motion within a 
fl uid, even when the fl uid as a whole has no overall motion. For instance, 
convection is often present when there is a density gradient in the fl uid, 
such that less dense regions rise past more dense regions: warm (less dense) 
air at the surface of the Earth rises through cooler air above it. But even if  
the fl uid has a uniform density and displays no convective motion that we 
can see with the naked eye, there may be motion at length scales of microns 
or less. 

  Figure 2.5  shows the trajectories of small plastic (polystyrene) beads 
tracked at 5 s intervals as seen under a microscope; the spherical beads have 
a diameter of 1  μ m and they are immersed in pure water in a small cham-
ber on a microscope slide. Several trajectories are displayed, all taken from 
a region within about a hundred microns. The tracks possess

   no overall drift in a particular direction that might indicate convection • 
or fl uid fl ow,  
  no straight line behavior that would indicate motion at a constant • 
velocity.       

 Rather, the trajectories change speed and direction at random, though on 
a time scale fi ner than what appears in the fi gure, because the time between 
measurements is a relatively long 5 s. This is an example of Brownian 
motion, which arises because of the exchange of energy and momen-
tum between the plastic beads and their fl uid environment, much like the 
exchange of energy and momentum among particles in a box described in 
Section 1.4. 

 An instantaneous velocity can be assigned to the beads, but it changes 
constantly in magnitude and direction. A plot of  the position of  the 
beads relative to their initial location when their motion began to be 
recorded, exhibits much scatter from bead to bead, and even the mean 
value of  the (magnitude of  the) displacement does not increase linearly 
with time which would be expected for constant speed. However, the 
mean value of  the squared displacement does rise linearly with time, 
which is characteristic of  random motion as established in  Section 
2.3 . There aren’t suffi cient trajectories in Fig. 2.5 to obtain an accur-
ate description of  the motion, so we must be content with the poorly 
determined result 〈  r  2  〉 = (1.1 ± 0.3  μ m 2 /s)  t , where  r  is the magnitude of 
the displacement from the origin,  t  is the time, and the ensemble average 
〈 ··· 〉 is taken over just fi ve trajectories. Not only can the 〈  r  2  〉  ∝   t  behavior 
be explained from random motion, the proportionality constant (1.1 ± 
0.3  μ m 2 /s) has its origin in the fl uctuations in kinetic energy of  particles 
moving in a viscous fl uid. 

   Fig. 2.5  

   Trajectories of fi ve spherical 

polystyrene beads in pure 

water at room temperature, as 

observed under a microscope. 

The beads have a diameter 

of 1  μ m, and the tracks were 

recorded at 5 second intervals.  
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 In Section 1.4, we stated that the mean kinetic energy of a particle as 
it exchanges energy with its neighbors in an ideal system is equal to 3/2 
 k  B  T  in three dimensions, where  T  is the temperature in Kelvin and  k  B  is 
Boltzmann’s constant (1.38 × 10 −23  J/K). At room temperature, 3/2  k  B  T  = 
6 × 10 −21  J. One thing to note is that the mean kinetic energy of the particles 
in this system is independent of their mass, meaning that lighter particles 
travel faster than heavier ones. For a hydrogen molecule, with a mass of 
3.3 × 10 −27  kg, the root mean square (rms) speed is 1930 m/s, found by 
equating 3 k  B  T /2 =  m 〈  v  2  〉/2. The tiny plastic beads of Fig. 2.5 have a much 
greater mass than a diatomic molecule like H 2 , and their mean speed is 
thus many orders of magnitude smaller. Combining (i) the distribution of 
speeds in a gas at equilibrium with (ii) the drag force on an object moving 
in viscous medium, shows that 〈  r  2  〉 = 6 Dt  in three dimensions, where the 
diffusion coeffi cient    D  is given by  D  =  k  B  T  / 6 π   η   R  for spheres of radius  R  
moving in a fl uid with viscosity   η  . We return to this expression, called the 
Einstein relation  , in  Section 2.4  and use it to interpret the measurements in 
Fig. 2.5 in the end-of-chapter problems. 

 Before undertaking any further analysis of cell motion, we review in 
 Section 2.2  the effects of viscous drag on the movement of objects in a 
fl uid medium. This provides a better preparation and motivation for the 
discussion of random walks in  Section 2.3  and diffusion in  Section 2.4 . 
The formalism of correlation functions is presented in  Section 2.5 , but the 
material does not involve the properties of fl uids so Sections 2.2 and 2.4 
need not be read before starting  Section 2.5 .  

  2.2     Movement in a viscous fl uid 

 A fl uid is a material that can resist compression but cannot resist shear. 
Passing your hand through air or water demonstrates this, in that the 
air or water does not restore itself  to its initial state once your hand has 
passed by – rather, there has been mixing and rearranging of the gas or 
liquid. Yet even if  fl uids have zero shear resistance, this does not mean that 
their deformation under shear is instantaneous: there is a characteristic 
time scale for a fl uid to respond to an applied stress. For example, water 
spreads fairly rapidly when poured into a bowl, whereas salad dressing 
usually responds more slowly, and sugar-laced molasses slower still. What 
determines the response time is the strength and nature of the interac-
tions among the fl uid’s molecular components. For example, the molecules 
could be long and entangled (as in a polymer) or they could be small, but 
strongly interacting (as in water or molten glass). 
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 At low speeds, the response time of a fl uid to accommodating an applied 
stress depends on a physical property called the viscosity,   η  , among other 
factors. Unlike an elastic parameter like the compression modulus, which 
has the same dimensions of stress (force per unit area, or energy per unit 
volume in three dimensions), the dimensions of   η   include a reference to 
time. We illustrate this by considering one means of measuring   η  , which 
involves the application of a horizontal force to the surface of an otherwise 
stationary fl uid, as illustrated in  Fig. 2.6 . In the fi gure, a fl at plate of area  A  
on one side is pulled along the surface of the fl uid with a force  F , giving a 
shear stress of  F/A . If  the material in the fi gure were a solid, it would resist 
this stress until it attained a deformed confi guration where the applied and 
reaction forces were in equilibrium. But a fl uid doesn’t resist shear, and 
the fl oating plate continues to move at a speed  v  as long as the stress is 
applied. The magnitude of the speed depends inversely on the viscosity  : the 
higher the viscosity the lower the speed that can be achieved with a given 
stress. The relationship has the form:    

   F  / A  =   η   ( v  / h ),   (2.10)  

 where  h  is the height of the liquid in its container. Note that the fl uid is 
locally stationary at its boundaries: it is at rest at the bottom of the con-
tainer and moving with speed  v  beside the plate. 

 Elastic quantities such as the bulk modulus or shear modulus appear 
in Hooke’s law   expressions of  the form [ stress ] = [ elastic modulus ] • [ strain ]. 
Strain is a dimensionless ratio like the change in volume divided by 
the undeformed volume, so elastic moduli must have the dimensions 
of  stress. Equation (2.10) is different from this, in that the ratio  v / h  is 
not dimensionless but has units of  [ time ] −1 , so that   η   has dimensions of 
[ force / area ] • [ time ], or kg/m • s in the MKSA system. Thus,   η   provides the 
time scale for the relaxation, as expected. There are a variety of  ways of 
measuring   η  ; the viscosities of  some familiar fl uids are given in Table 2.1. 
Viscosity is often quoted in units of  Poise or P, which has the equivalence 
of  kg/m • s  ≡  10 P.    

  2.2.1   Translational drag 

   Moving through a viscous fl uid, an object experiences a drag force whose 
magnitude depends on the speed of the object with respect to the fl uid. 
At low speeds where the motion of the object does not induce turbulence 
in the fl uid, the drag force rises linearly with the speed, whereas at high 
speeds where turbulence is present, the drag force rises like the square of 
the speed. The detailed relationship between the drag force  F  drag  and the 
speed  v  depends on the shape of the object among other things, so for the 
time being we will simply write the relationship as 

   Fig. 2.6  

   In one measurement of viscosity, 

a horizontal force  F  is applied to 

a fl at plate of area  A  in contact 

with a liquid, resulting in the 

plate moving at a velocity  v . 

The height of the liquid in its 

container is  h  and the speed of 

the fl uid at the lower boundary 

is zero.  
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   F  drag  =  c  1  v   (low speeds)  (2.11a) 

   F  drag  =  c  2  v  2 ,  (high speeds)  (2.11b) 

 where the constants  c  1  and  c  2  depend on a variety of  terms. This is for 
linear motion through the fl uid, and there are similar relations for rota-
tional motion as will be described later in this section. Note that the 
power required to overcome the drag force, obtained from [ power ] =  Fv , 
grows at least as fast as  v  2  according to Eq. (2.11). Relatively speaking, 
viscous forces are so important in the cell that we need only be concerned 
with the low-speed behavior of  Eq. (2.11a); the dynamic properties of 
systems obeying Eq. (2.11b) are treated in the problem set at the end of 
this chapter. 

 Let’s now solve the motion of an object subject only to linear drag in the 
horizontal direction – that is, omitting gravity. The object obeys Newton’s 
law  F  =  ma  =  m  ( dv / dt ), so that the drag force from Eq. (2.11a) gives the 
relation 

   ma  =  m  (d v /d t ) = − c  1  v ,   (2.12)  

 where the minus sign indicates that the force is in the opposite direction to 
the velocity. Equation (2.12) can be rearranged to read 

  d v /d t  = −( c  1 / m )  v ,   (2.13)  

 which relates a velocity to its rate of change. This equation does not yield a 
specifi c number like  v  = 5 m/s; rather, its solution gives the  form  of  the func-
tion  v ( t ). It’s easy to see that the solution is exponential in form, because 

  de  x  /d x  = e  x  .   (2.14)  

 That is, the derivative of an exponential is itself  an exponential, satisfying 
Eq. (2.13). One still has to take care of the factor  c  1 / m  in Eq. (2.13), and it’s 
easy to verify by explicit substitution that 

 Table 2.1     Viscosities of some familiar fl uids measured at 20  ° C. A commonly quoted unit for 
viscosity is the Poise; in MKSA system, 1 kg/m  •  s = 10 P. 

Fluid   η   (kg/m  •  s)   η   (P)

Air 1.8  ×  10  −   5 1.8  ×  10  −   4 
Water 1.0  ×  10  −   3 1.0  ×  10  −   2 
Mercury 1.56  ×  10  −   3 1.56  ×  10  −   2 
Olive oil 0.084 0.84
Glycerine 1.34 13.4
Glucose 10 13 10 12 
Mixtures: blood 2.7  ×  10  −   3 2.7  ×  10  −   2 
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   v ( t ) =  v  o  exp(− c  1  t  /  m ),   (2.15)  

 where  v  o  is the speed of the object at  t  = 0. 
 The characteristic time scale for the velocity to decay to 1/ e  of  its ori-

ginal value is  m / c  1 . Even though the object is always moving because the 
velocity goes to zero only in the limit of infi nite time, nevertheless, the 
object reaches a maximum distance  mv  o / c  1  from its original location, also 
at infi nite time. The time-dependence of the distance can be found by inte-
grating Eq. (2.15) to yield: 

   Δ  x  = ( mv  o  /  c  1 ) • [1 – exp(− c  1  t  /  m )],   (2.16)  

 where the limiting value at  t   →   ∞  is obvious. 
 The strength of the drag force depends not only on the viscosity at low 

speeds, but also on the cross-sectional shape that is presented to the fl uid 
by the object in its direction of motion. A cigar, for instance, will experi-
ence less drag when moving parallel to its long axis than when moving with 
that axis perpendicular to the direction of motion. Analytical expressions 
are available for the drag force at low speeds, two examples of which are 
given in Table 2.2. The most commonly quoted one is   Stokes’ law for a 
sphere of radius  R :    

   F  = 6 π   η   Rv .   (2.17)  

 This expression will be used momentarily in an example. A sphere is a spe-
cial case of an ellipsoid of revolution   where the semi-major axis  a  and the 
semi-minor axis  b  are both equal:  a  =  b  =  R . When  a  >>  b , the drag force 
becomes 

   F  = 4 π   η   av /{ln(2 a / b ) – 1/2},   (2.18)  

 for motion at low speed parallel to the long axis of the ellipsoid. In this 
expression, note that if   b  is fi xed, then the drag force increases with the 
length of the ellipsoid as  a /ln a . 

 Table 2.2     Summary of drag forces for translation and rotation of spheres and ellipsoids at 
low speeds. For ellipsoids, the drag force, the torque   T   and the angular velocity   ω   are about 
the major axis; the expressions apply in the limit where the semi-major axis  a  is much longer 

than the semi-minor axis  b . 

 Sphere Ellipsoid ( a  >>  b )

Translational force  F  = 6 π   η   Rv  F  = 4 π   η   av /{ln(2 a / b ) – 1/2}
Rotational torque   T   = 8 π   η   R  3   ω    T   = (16/3)  π   η   ab  2   ω  
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 At higher speeds when turbulence   is present, the drag force for transla-
tional motion not only depends on the square of the speed, but it also has 
a different dependence on the shape of the object: 

   F  = (  ρ  /2) AC  D  v  2 ,   (2.19)  

 where   ρ   is the density of  the fl uid and  A  is the cross-sectional area of 
the object in its direction of  motion ( π  R  2  for a sphere). The dimension-
less drag coeffi cient    C  D  is often about 0.5 for many shapes of  interest, 
and somewhat less than this for sports cars (0.3). Note that the drag 
force in Eq. (2.19) depends on the density of  the fl uid, rather than its 
viscosity   η   in Eq. (2.18). Also, note the dependence on the square of  the 
transverse dimension in Eq. (2.19), compared to the linear dependence 
in Eq. (2.18). 

 Example 2.1. Consider an idealized bacterium swimming in water, 
assuming:

   the bacterium is a sphere of radius  • R  = 1  μ m,  
  the fl uid medium is water with  • η  = 10  −   3  kg / m  •  s,  
  the density of the cell is that of water,  • ρ  = 1.0  ×  10 3  kg/m 3 ,  
  the speed of the bacterium is  • v  = 2  ×  10  −   5  m/s.    

 What is the drag force experienced by the cell? If  the cell’s propulsion 
system were turned off, over what distance would it come to a stop 
(ignoring thermal contributions to the cell’s kinetic energy from the its 
environment)? 

 First, we calculate the prefactor  c  1  in Eq. (2.11a) 

  c  1  = 6 πη  R  = 6 π  • 10 −3  • 1 × 10 −6  = 1.9 × 10 −8  kg/s, 

 so that the drag force on the cell can then be obtained from Stoke’s 
law: 

  F  drag  =  c  1  v  = 1.9 × 10 −8  • 2 × 10 −5  = 0.4 pN  (pN = 10 −12  N). 

 To determine the maximum distance that the cell can drift without pro-
pulsion, we fi rst calculate the mass of the cell  m , 

  m  =  ρ  • 4 π  R  3  /3 = 10 3  • 4 π  (1 × 10 −6 ) 3  /3 = 4.2 × 10 −15  kg, 

 from which the stopping distance becomes, using Eq. (2.16) 

  x  =  mv  o  / c  1  = 4.2 × 10 −15  • 2 × 10 −5  / 1.9 × 10 −8  
= 4.4 × 10 −12  m = 0.04 Å.    

Example 2.1. Consider an idealized bacterium swimming in water, 
assuming:

the bacterium is a sphere of radius • R = 1 μm,
the fl uid medium is water with • η = 10−3 kg / m  •  s,  
the density of the cell is that of water,  • ρ = 1.0  × 10 3  kg/m3,  
the speed of the bacterium is • v = 2 ×  10 −5  m/s.

 What is the drag force experienced by the cell? If  the cell’s propulsion
system were turned off, over what distance would it come to a stop
(ignoring thermal contributions to the cell’s kinetic energy from the its
environment)?

First, we calculate the prefactor c1  in Eq. (2.11a) 

c1 = 6πηR = 6 π • 10−3 • 1 × 10 −6 = 1.9 × 10 −8  kg/s,

 so that the drag force on the cell can then be obtained from Stoke’s
law:

FdragFF = c1v = 1.9 × 10 −8  • 2 × 10−5 = 0.4 pN  (pN = 10−12  N).

 To determine the maximum distance that the cell can drift without pro-
pulsion, we fi rst calculate the mass of the cell m ,

m = ρ  • 4 πR3 /3 = 10 3  • 4 π (1 × 10 −6 )3  /3 = 4.2 × 10−15  kg, 

 from which the stopping distance becomes, using Eq. (2.16) 

x = mvo / c1 = 4.2 × 10 −15 • 2 × 10 −5  / 1.9 × 10 −8

= 4.4 × 10 −12 m = 0.04 Å.    
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  2.2.2   Rotational drag 

   The stress experienced by the surface of  an object moving through a 
viscous fl uid can retard the rotational motion of  the object, as well as 
its translational motion. The effect of  rotational drag is to produce a 
torque T that reduces the object’s angular speed   ω   with respect to the 
fl uid. At low angular speed, the torque from drag is linearly propor-
tional to   ω  , just as the linear relation Eq. (2.11a) governs translational 
drag: 

  T = −  χ    ω  .   (2.20)  

 where the minus sign indicates   T   acts to reduce the angular speed. Here, we 
adopt the usual convention that counter-clockwise rotation corresponds to 
positive   ω  . For a sphere of radius  R , the drag parameter   χ   is 

    χ   = 8 π   η   R  3 ,   (2.21)  

 where   η   is the viscosity of  the medium. The expression for   χ   for an ellips-
oid of  revolution is given in Table 2.2. Similar to the expressions for 
force, the power required to overcome the torque from viscous drag is 
given by [ power ] = T  ω  , which grows as   ω   2  for Eq. (2.20). Confusion can 
sometimes arise between frequency (revolutions per second) and angu-
lar speed (radians per second):   ω   is equal to 2 π  times the frequency 
of  rotation. Both quantities have units of  [ time ] −1  because radians are 
dimensionless. 

 It’s straightforward to set up the dynamical equations for rotational 
motion under drag, and to solve for the functional form   ω  ( t ) of  the 
angular speed and   θ  ( t ) of  the angle swept out by the object. For instance, 
if  the rotation is about the longest or shortest symmetry axis of  the 
object, then the torque produces an angular acceleration   α   that deter-
mines   ω  ( t ) via 

  T =  I   α   =  I  (d  ω  /d t ) = −   χ    ω  ,   (2.22)  

 where  I  is the moment of inertia about the axis of rotation. For a sphere 
of radius  R , the moment of inertia about all axes through the center of 
the sphere is  I  =  mR  2 /2. As in our discussion of translational motion, Eq. 
(2.22) determines the functional form of   ω  ( t ): 

    ω  ( t ) =   ω   o  exp(−   χ   t  /  I ),   (2.23)  

 where   ω   o  is the initial value of   ω  . Equation (2.23) can be integrated to yield 
the angle traversed during the slowdown, but this is left as an example in 
the problem set. 
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 Example 2.2. Consider an idealized bacterium swimming in water, 
assuming:

   the bacterium is a sphere of radius  • R  = 1  μ m,  
  the fl uid medium is water with  • η  = 10– 3  kg / m  •  s,  
  the bacterium rotates at a frequency of 10 revolutions per second.    • 

 Find the retarding torque from drag experienced by the cell. 
 First, the frequency of 10 revolutions per second corresponds to an 

angular frequency of  ω  = 20 π  s −1 . Next, the prefactor  χ  in Eq. (2.21) is 

  χ  = 8 πη R3 = 8 π  • 10 −3  • (1 × 10 −6 ) 3  = 8 π  × 10 −21  kg-m 2 /s, 

 so that the magnitude of the drag torque on the cell can then be obtained 
from: 

 T drag  =  χω  = 8 π  × 10 −21  • 20 π  = 1.6 × 10 −18  N-m.   

 As a fi nal caveat, most readers with a physics background are aware that 
the kinematic quantities   ω  ,   α  , and T are vectors and  I  is a tensor. Thus, the 
situations we have described are specifi c to rotations about a particular set 
of axes through an object. When   ω   and   T   have arbitrary orientations with 
respect to the symmetry axes, the motion is more complex than what has 
been described here.  

  2.2.3   Reynolds number 

   In Example 2.1 for translational motion, the drag force is so important 
that it causes a moving cell to stop in less than an atomic diameter once a 
cell’s propulsion unit is turned off. In the problem set, it is shown that rota-
tional motion also ceases abruptly under similar circumstances. (Note that 
both of these conclusions ignore any contribution to the kinetic energy 
from thermal fl uctuations.) Put another way, the effect of drag easily 
overwhelms the cell’s inertial movement at constant velocity that follows 
Newton’s First Law of mechanics. 

 In fl uid dynamics, a benchmark exists for estimating the importance of 
the inertial force compared to the drag force. This is the Reynolds number, 
a dimensionless quantity given by 

   R  =   ρ    v   λ  /   η  ,   (2.24)  

 where  v  and  λ  are the speed and length of the object, and   ρ   and   η   are the 
density and viscosity of the medium, all respectively. We won’t provide a 
derivation of  R  from the ratio of the inertia to drag forces experienced 
an object (see Nelson,  2003 ) as  R  will not be used elsewhere in this text. 
The crossover between drag-dominated motion at small  R  and inertia-
 dominated motion at large  R  is in the range  R  ~ 10–100. 

Example 2.2. Consider an idealized bacterium swimming in water,
assuming:

the bacterium is a sphere of radius • R = 1 μm,
the fl uid medium is water with • η = 10–3  kg / m  •  s,
the bacterium rotates at a frequency of 10 revolutions per second.    •

 Find the retarding torque from drag experienced by the cell.
First, the frequency of 10 revolutions per second corresponds to an

angular frequency of ω = 20 π  s −1. Next, the prefactor  χ in Eq. (2.21) is χ

χ = 8πηR3 = 8 π • 10 −3  • (1 × 10−6 )3 = 8 π × 10 −21  kg-m2/s,

 so that the magnitude of the drag torque on the cell can then be obtained
from:

TdragTT = χω = 8π × 10 −21  • 20π = 1.6 × 10 −18  N-m.
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 Let’s collect the terms on the right-hand side of Eq. (2.24) into proper-
ties of the fl uid (  ρ  /  η  ) and those of the object ( v  λ ); for water at room tem-
perature,   ρ  /  η   is 10 6  s/m 2 . Common objects like fi sh and boats, with lengths 
and speeds of meters and meters per second, respectively, have  v  λ  in the 
range of 1–1000 m 2 /s. Thus,  R  for everyday objects moving in water is 10 6  or 
more, and such motion is dominated by inertia, even though viscous effects 
are present. This conclusion also applies for cars and planes as they travel 
through air, where   ρ  /  η   is 0.5 × 10 5  s/m 2  under standard conditions. However, 
for the motion of a cell, the product  v  λ  is far smaller: even if   λ  = 4  μ m and 
 v  = 20  μ m/s, then  v  λ  = 8 × 10 −11  m 2 /s, such that  R  is less than 10 −4 . Clearly, 
this value is well below unity so the motion of a typical cell is dominated by 
viscous drag. In the context of the Reynolds number, the reason for this is 
the very small size and speed of cells compared to everyday objects.   

  2.3     Random walks 

   The motion of microscopic plastic spheres as they interact with their fl uid 
environment was displayed in Fig. 2.5. As shown, the trajectories are just 
a coarse representation of the motion, in that the positions of the spheres 
were sampled every fi ve seconds, so that the fi ne details of the motion were 
not captured. However, the behavior of each trajectory over long times is 
correctly represented, permitting the calculation of the ensemble average 
〈  r  2  〉 over the suite of positions { r   k  } as a function of the elapsed time  t , 
where the index  k  is a particle label. In discussing Fig. 2.5, it was pointed 
out that 〈  r  2  〉 does not increase like  t  2 , as it would for motion at constant 
velocity; rather, 〈  r  2  〉  ∝   t , which we now interpret in terms of the behavior 
of random walks. 

 Each step of a walk, random or otherwise, can be represented by a vec-
tor  b   i  , where the index  i  runs over the  N  steps of the walk. The contour 
length of the path  L  is just the scalar sum over the lengths of the individual 
steps: 

   L  =  Σ   i  = 1, N    b   i  .   (2.25)  

 There is no direction dependence to Eq. (2.25) so that no matter how the 
path twists and turns, the contour length is always the same so long as the 
average step size is the same. In contrast, the displacement of the path  r  ee  
from one end to the other is a vector sum: 

   r  ee  = Σ  i  = 1, N    b  i .   (2.26)  

 The situation is illustrated in  Fig. 2.7  for four arbitrary walks of fi xed step 
length, where the magnitude of  r  ee  for each walk is obviously less than the 
contour length  L .    
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 Even though  r  ee  2  may be different for each path, it is easy to calculate the 
average value of  r  ee  2  when taken over many confi gurations. For now, each 
step is assumed to have the same length  b , even though the directions are 
different from step to step. From Eq. (2.26), the general form of the dot 
product of  r  ee  with itself  for a particular walk is 

    r  ee  •  r  ee  = ( Σ   i  = 1, N    b  i ) • ( Σ   j  = 1, N    b  j ) 

      = ( b  1  +  b  2  +  b  3  + ···) • ( b  1  +  b  2  +  b  3  + ···) 

      =  b  1  2  +  b  2  2  +  b  3  2  ··· + 2 b  1  •  b  2  + 2 b  1  •  b  3  + ··· + 2 b  2  •  b  3 .…   (2.27)  

 In this sum, there are  N  terms of the form  b  i  2 , each of which is just  b  2  if  all 
steps have the same length. Thus, for a given walk 

   r  ee  2  =  Nb  2  + 2 b  1  •  b  2  + 2 b  1  •  b  3  + 2 b  1  •  b  4  + ··· + 2 b  2  •  b  3 .…   (2.28)  

 But there may be many walks of  N  steps starting from the same origin, 
again as illustrated in Fig. 2.7. The average value 〈  r  ee  2  〉 is obtained by sum-
ming over all these paths 

  〈  r  ee  2  〉 =  Nb  2  + 2〈  b  1  •  b  2  〉 + 2〈  b  1  •  b  3  〉 + 2〈  b  1  •  b  4  〉 + ··· + 2〈  b  2  •  b  3  〉.…    (2.29)  

 Each dot product  b   i   •  b   j   ( i   ≠   j ) may have a value between − b  2  and + b  2 . In a 
large ensemble of random walks, for every confi guration with a particular 
scalar value  b   i   •  b   j   =  b   ij  , there is another confi guration with  b   i   •  b   j   = − b   ij  , so 
that the average over all available confi gurations becomes 

  〈  b   i   •  b   j   〉  →  0.   (2.30)  

 Combining Eqs. (2.29) and (2.30) yields the elegant result 

  〈  r  ee  2  〉 =  Nb  2 .    random walk   (2.31)    

 Example 2.3.  Each amino acid in a protein contributes 0.36 nm to its 
 contour length. For example, the protein actin, a major part of our 
muscles, is 375 amino acids long, giving an overall length of about 
135 nm. But the amino acid backbone of a protein does not behave like 
a stiff rod; rather, it wiggles and sticks to itself at various locations. The 
random walk gives an approximate value for its size: 

 〈  r  ee  2  〉 =  Nb  2  = 375 (0.36) 2  

 or 

  r  ee,av  ~  √ 375 × 0.36 = 7.0 nm. 

 In other words, the radius of a random ball of actin (< 10 nm) is  much  less 
than its length when fully stretched (135 nm).   

Example 2.3. Each amino acid in a protein contributes 0.36 nm to its
 contour length. For example, the protein actin, a major part of our 
muscles, is 375 amino acids long, giving an overall length of about
135 nm. But the amino acid backbone of a protein does not behave like 
a stiff rod; rather, it wiggles and sticks to itself at various locations. The
random walk gives an approximate value for its size: 

〈 ree
2 〉 = Nb2 = 375 (0.36) 2

 or

ree,av ~ √ 375 × 0.36 = 7.0 nm. 

 In other words, the radius of a random ball of actin (<10 nm) is  much less
than its length when fully stretched (135 nm).

b4

b3

b2

b1
ree

   Fig. 2.7  

   A walk with four steps 

represented by the vectors  b  1  … 

 b  4  has a contour length  L  =  b  1  + 

 b  2  +  b  3  +  b  4  (scalar sum) and an 

end-to-end displacement  r  ee  = 

 b  1  +  b  2  +  b  3  +  b  4  (vector sum). 

Several walks are shown, each 

with the same  L  in this example, 

but diff erent  r  ee .  
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 Random walks were introduced in this section as a description of the ther-
mal motion of microscopic spheres. If  each movement of a sphere in a 
given time step has a fi xed length, then Eq. (2.31) establishes that 〈  r  ee  2  〉 
should grow linearly with time (i.e. linearly with the number of steps). It 
will be shown in Chapter 3 that even when the assumption of fi xed step 
size is dropped, 〈  r  ee  2  〉 still rises linearly with time. Yet random walks have 
greater applicability than just the description of thermal motion. Example 
2.3 illustrates the conceptual importance of random walks in understand-
ing the sizes of fl exible macromolecules. We now probe the characteris-
tics of random walks more deeply by examining the distribution in  r  ee  2  
within an ensemble of walks, in an effort to understand the distribution 
of polymer sizes and, in Chapter 3, the importance of entropy in polymer 
elasticity. 

   Consider the set of  one-dimensional walks with three steps shown in 
 Fig. 2.8 : each walk starts off  at the origin, and each step can point to 
the right or the left. Given that each step has 2 possible orientations, 
there are a total of  2 3  = 8 possible confi gurations for the walk as a whole. 
Using  C ( r  ee ) to denote the number of  confi gurations with a particular 
end-to-end displacement  r  ee , the eight confi gurations are distributed 
according to:    

   C (+3 b ) = 1   C (+1 b ) = 3   C (−1 b ) = 3   C (−3 b ) = 1.   (2.32)  

 The reader will recognize that these values of  C ( r  ee ) are equal to the bino-
mial coeffi cients in the expansion of ( p  +  q ) 3 ; i.e. the values are the same as 
the coeffi cients  N ! /  i !  j ! in the expansion 

  ( p  +  q )  N   =  Σ   i  = 0, N   { N ! /  i !  j !}  p   i   q   j  ,    (2.33)  

 where  j  =  N  –  i . Is this fortuitous? Not at all; the different confi gurations 
in Fig. 2.8 just refl ect the number of ways that the left- and right-pointing 
vectors can be arranged. So, if  there are  i  vectors pointing left, and  j  point-
ing right, such that  N  =  i  +  j , then the total number of ways in which they 
can be arranged is just the binomial coeffi cient 

   C ( i ,  j ) =  N ! /  i !  j !.    (2.34)  

  One can think of the confi gurations in Fig. 2.8 as random walks in 
which each step (or link) along the walk occurs with probability 1/2. Thus, 
the probability  P ( i ,  j ) for there to be a confi guration with ( i ,  j ) steps to the 
(left, right) is equal to the product of the total number of confi gurations 
( C ( i ,  j ) from Eq. (2.34)) with the probability of an individual confi guration, 
which is (1/2)  i   (1/2)  j  : 

   P ( i ,  j ) = { N ! /  i !  j !} (1/2)  i   (1/2)  j  .    (2.35)  

ree = +3b

+1b

+1b
+1b

   Fig. 2.8  

   Confi gurations for a 

one-dimensional walk with 

three segments of equal length 

 b ; the red dot indicates the 

end of the path. Only half of 

the allowed confi gurations 

are shown, namely those with 

displacement  r  ee  > 0.  
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 Note that the probability in Eq. (2.35) is appropriately normalized to unity, 
as can be seen by setting  p  =  q  = 1/2 in Eq.  (2.33):  

    Σ   i  = 0, N    P ( i ,  j ) =  Σ   i  = 0, N   { N ! /  i !  j !} (1/2)  i   (1/2)  j   = (1/2 + 1/2)  N   = 1.   (2.36)  

  What happens to the probability distribution as the number of steps 
increases and the distribution consequently appears more continuous? The 
probability distribution for a one-dimensional walk with  N  = 6 is shown 
in  Fig. 2.9 , where we note that the end-to-end displacement  r  ee  = ( j  –  i ) = 
(2 j  –  N ) changes by 2 for every unit change in  i  or  j . The distribution is 
peaked at  r  ee  = 0, as one would expect, and then falls off  towards zero at 
large values of | r  ee | where  i  = 0 or  N . As becomes ever more obvious for 
large  N , the shape of the curve in  Fig. 2.9  resembles a Gaussian distribu-
tion, which has the form    

  P( x ) = (2 π   σ   2 ) −1/2  exp[−( x −  μ  ) 2  / 2  σ   2 ].   (2.37)  

 Normalized to unity, this expression is a probability density   (i.e. a prob-
ability per unit value of  x ) such that the probability of fi nding a state 
between  x  and  x  + d x  is P( x )d x . The mean value   μ   of  the distribution can 
be obtained from 

    μ   = 〈  x  〉 =  ∫   x  P( x ) d x ,   (2.38)  

 and its variance   σ   2  is 

    σ   2  = 〈( x  –   μ  ) 2  〉 = 〈  x  2  〉 –   μ   2 ,   (2.39)  

 as expected. 
 Equation (2.37) is the general form of the Gaussian distribution, but the 

values of   μ   and   σ   are specifi c to the system of interest. As a trivial example, 
consider a random walk along the  x -axis starting from the origin. First, 
  μ   = 0 because the vectors  r  ee  are equally distributed to the left and right about 
the origin, whence their mean displacement must be zero. Next, 〈  x  2  〉 =  Nb  2  
according to Eq. (2.31), so Eq. (2.39) implies   σ   2  =  Nb  2  when   μ   = 0. Proofs of 
the equivalence of the Gaussian and binomial distributions at large  N  can 
be found in most statistics textbooks. However, the Gaussian distribution 
provides a surprisingly accurate approximation to the binomial distribution 
even for modest values of  N , as can be seen from Fig. 2.9. 

 There is more to random or constrained walks and their relation to the 
properties of polymers than what we have established in this brief  intro-
duction. Other topics include the effects of unequal step size or constraints 
between successive steps, such as the restricted bond angles in a polymeric 
chain. In addition, the scaling behavior 〈  r  ee  2  〉 ~  N  may be modifi ed in the 
presence of attractive interactions between different elements of the walk, 
useful when the walk is viewed as a polymer chain. These and other prop-
erties will be treated in Chapter 3.  

   Fig. 2.9  

   Probability distribution from Eq. 

(2.35) for a one-dimensional 

walk with six segments.  
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  2.4     Diff usion 

   The random walk introduced in  Section 2.3  can be applied to a variety of 
problems and phenomena in physics and biology. In some cases, the trajec-
tory of an object is precisely the linear motion with random forces that we 
have described in obtaining the generic properties of random walks. The 
analogous problem of rotational motion with random torques also is a 
random walk, but in the azimuthal angle of the object about a rotational 
axis. In other cases, the conformations of a system such as a polymer may 
be viewed as random walks even though there is no motion of the polymer 
itself; Example 2.3 illustrates this behavior for the protein actin. In this 
section of Chapter 2, we apply the properties of random walks to diffusive 
systems from two different perspectives:

   (i)     as the translational and rotational motion of a single object in contact 
with its environment,  

  (ii)     as the collective motion of objects at suffi ciently high number dens-
ity that they can be described by continuous variables such as 
concentrations.    

 For the second situation, we will establish how the time evolution of the 
concentration obeys a relationship like Fick’s Law. The inverse problem of 
the capture of a randomly moving object is treated in Chapter 11. 

 The trajectory of an individual molecule diffusing through a medium 
has the form of a random walk, which we characterize by the displacement 
vector  r  ee  from the origin of the walk to its end-point. Suppose that the 
diffusing molecule travels a distance  λ  before it collides with some other 
component of the system. Then the random walk tells us that the average 
end-to-end displacement of the molecule’s motion is 

  〈  r  ee  2  〉 =  λ  2  N ,   (2.40)  

 where 〈 ··· 〉 indicates an average and where  N  is the number of steps. How 
big is  λ ? As illustrated in  Fig. 2.10 ,  λ  might be very large for a gas molecule 
traveling fast in a dilute environment, but  λ  is rather small for a protein 
moving in a crowded cell. If  there is one step per unit time, then  N  =  t  and    

  〈  r  ee  2  〉 =  λ  2  t .   (2.41)  

 Now, the units of Eq. (2.41) aren’t quite correct, in that the left-hand side 
has units of [ length  2 ] while the right-hand side has [ length  2 ] • [ time ]. We 
accommodate this by writing the displacement as 

  〈  r  ee  2  〉  ≡  6 Dt ,    diffusion in three dimensions    (2.42)  

   Fig. 2.10  

   Examples of single-particle 

diff usion at low (upper panel) 

and high (lower panel) densities.  
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 where  D  is defi ned as the diffusion coeffi cient  . A molecule diffusing in a 
liquid of like objects has a diffusion coeffi cient  D  in the range 10 −14  to 
10 −10  m 2 /s, depending on the size of the molecule. 

 The factor of 6 in Eq. (2.42) is dimension-dependent: for each Cartesian 
axis, the mean squared displacement is equal to 2 Dt . That is, if  an object 
diffuses in one dimension only (for example, a molecule moves randomly 
along a track) then 

  〈  r  ee  2  〉 = 2 Dt     diffusion in one dimension    (2.43)  

 and if  it is confi ned to a plane, such as a protein moving in the lipid bilayer 
of the cell’s plasma membrane, then 

 〈  r  ee  2  〉 = 〈  r  ee, x   2  〉 + 〈  r  ee, y   2  〉    diffusion in two dimensions  

 = 2 Dt  + 2 Dt  = 4 Dt .   (2.44)  

 In all of these cases,  D  has units of [ length ] 2  / [ time ].      

 Example 2.4.  How long does it take for a randomly moving protein to 
travel the distance of a cell diameter, say 10 μm, if its diffusion coeffi cient 
is 10 −12  m 2 /s? 
  Inverting Eq. (2.42) yields 

  t  = 〈  r  ee  2  〉 / 6 D , 

 so that 

  t  = (10 −5 ) 2  / 6 • 10 −12  = 16 s. 

 Thus, it takes a protein less than a minute to diffuse across a cell at this 
diffusion coeffi cient; it would take much longer if  the protein were large 
and  D  ~ 10 −14  m 2 /s.  

The diffusion coeffi cient can be determined analytically for a few specifi c 
situations. One case is the random motion of a sphere of radius  R  subject 
to Stokes’ Law for drag, Eq. (2.17):  F  = 6 π   η   Rv , where  v  is the speed of the 
sphere and   η   is the viscosity of the fl uid. The so-called Einstein relation   
that governs the diffusion coeffi cent reads 

   D  =  k  B  T  / 6 π   η   R ,    Einstein relation    (2.45)  

 where  k  B  is Boltzmann’s constant. Now,  k  B  T  is close to the mean kinetic 
energy of a particle in a thermal environment, so the Einstein equation 
tells us that:

   the higher the temperature, the greater is an object’s kinetic energy and • 
the faster it diffuses,  

 Example 2.4. How long does it take for a randomly moving protein to
travel the distance of a cell diameter, say 10 μm, if its diffusion coeffi cient 
is 10−12  m2/s?
  Inverting Eq. (2.42) yields 

t = 〈 ree
2 〉 / 6 D ,

 so that 

t = (10−5 )2 / 6 • 10−12 = 16 s. 

 Thus, it takes a protein less than a minute to diffuse across a cell at this
diffusion coeffi cient; it would take much longer if  the protein were large
and D ~ 10 −14  m 2 /s.  
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 Table 2.3     Examples of diff usion coeffi  cients, showing the range of values from dilute gases 
to proteins in water. All measurements are at 25  o C, except xenon gas at 20  o C. 

System  D  (m 2 /s)

Xenon 5760  ×  10  −   9 
Water 2.1  ×  10  −   9 
Sucrose in water 0.52  ×  10  −   9 
Serum albumin in water 0.059  ×  10  −   9 

  the larger an object’s size, or the more viscous its environment, the slower • 
it diffuses.    

 Equation (2.45) permits us to interpret the data presented at the begin-
ning of  this chapter for plastic spheres diffusing in water; the calculation 
is performed in the end-of-chapter problems. Lastly, Table 2.3 provides 
representative values for the diffusion coeffi cient for various combin-
ations of  solute and solvent. Note that  D  depends on both of  these 
quantities, as can be seen in Eq. (2.45) where the solute dependence 
enters through its molecular radius  R  and the solvent enters through its 
viscosity   η  . 

 Example 2.5.  A biological cell contains internal compartments with radii in 
the range 0.3 to 0.5 μm. Estimate their diffusion coeffi cient. 

 Suppose a cellular object like a vesicle has a radius of 0.3 μm and 
moves in a medium with viscosity  η  = 2 × 10 −3  kg / m • s. At room tempera-
ture, the Einstein relation predicts 

  D  = 4 × 10 −21  / (6 π  • 2 × 10 −3  • 3 × 10 −7 ) = 4 × 10 −13  m 2 /s, 

 which has the order of magnitude that we expect.   

  Although the  translational  motion of  an object is the most com-
mon example of  diffusion, it’s not the only one. For example, a mol-
ecule like a protein can rotate around its axis at the same time as it 
travels. Although this rotation could be driven by an external force with 
a particular angular speed   ω  , it could also just be random, such that   ω   
changes in both magnitude and direction continuously and randomly. 
When we talk about a protein docking onto a substrate or receiving site, 
it may be undergoing rotational diffusion   before the optimal orientation 
is achieved. A random “walk” in angle   θ   as an object rotates around its 
axis can be written as 

  〈   θ    2  〉 = 2 D  r  t ,   (2.46)  

Example 2.5. A biological cell contains internal compartments with radii in 
the range 0.3 to 0.5 μm. Estimate their diffusion coeffi cient. 

Suppose a cellular object like a vesicle has a radius of 0.3 μm and
moves in a medium with viscosity  η = 2 × 10 −3 kg / m • s. At room tempera-
ture, the Einstein relation predicts 

D = 4 × 10 −21 / (6 π • 2 × 10 −3  • 3 × 10−7) = 4 × 10−13  m2/s,

 which has the order of magnitude that we expect.   
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 where  D  r  is the rotational diffusion coeffi cient. Once again, the mean 
change in   θ   from its original value at  t  = 0 grows like the square root of the 
elapsed time. 

 For a sphere rotating in a viscous medium, there is an expression for  D  r  
just like the translational diffusion of Eq. (2.45), namely 

   D  r  =  k  B  T  / 8 π   η   R  3 .    rotational diffusion    (2.47)  

 Note, the units of  D  r  are [ time   −1 ], whereas  D  is [ length  2 ]/[ time ]; hence, there 
is an extra factor of  R  2  in the denominator of Eq. (2.47) compared to Eq. 
(2.45). 

  2.4.1   Densities and fl uxes 

 We have approached the phenomenon of diffusion at the microscopic 
level by considering the trajectories of individual particles, from which 
ensemble averages can be constructed. This tells us the average behavior 
of particles moving in a fl uid. An alternate approach involves the behavior 
of macroscopic quantities such as concentrations and fl uxes, that them-
selves represent ensemble averages over the locations of individual par-
ticles. Within this description based on local averages, quantities such as 
the temperature and concentration of the system’s components need not 
be spatially uniform, and their time evolution can be understood using a 
mathematical formalism that we now develop. 

 To introduce the concepts behind the mathematics, consider the situ-
ation in  Fig. 2.11 , where a small amount of deep red dye has been placed in 
a uniform layer at the bottom of a fl uid-fi lled container. The fi gure shows 
the appearance of the dye at three different times, starting just after the 
dye has been introduced (on the left) to after it has diffused through the 
medium to produce a largely homogenous solution (on the right). We will 
assume that the concentration of the dye depends only on height (which we 
will defi ne as the  x -direction) and is the same at all locations with the same 
height at any given time. The concentration  c ( x , t ) then depends on two 
variables: the location  x  above the bottom of the container, and the time  t  
from when the dye was introduced. At the microscopic level, we know that 
dye molecules are moving through the solvent at speeds dictated by the 
temperature (through  k  B  T ), colliding with solvent molecules and slowly 
moving up through the fl uid. At the macroscopic level, we say that the 
concentration of dye molecules evolves like the schematic representation 
in  Fig. 2.12 : at small  t ,  c ( x , t ) falls rapidly with  x  while at large times  c ( x , t ) 
is asymptotically independent of  x .       

 The change in concentration with time is accompanied by a net migra-
tion of solute molecules, which is characterized macroscopically by a fl ux 
 j ( x , t ). From our microscopic picture, we know that solute molecules are 
moving in all directions, but that, on average, more of them are moving 
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upward in Fig. 2.11 than are moving downward, giving a net upward drift 
of solute. The fl ux is the net number of molecules, per unit area per unit 
time, crossing an imaginary plane in the  yz  directions at location  x . That is, 
if  the plane has area  A  and  Δ  n  is the net number of molecules crossing it in 
time  Δ  t , then the fl ux is  A  −1   Δ  n / Δ  t , where the infi nitesimal limit  A   − 1  d n /d t  is 
clear. At early times, when the concentration gradient d c /d x  is the largest, 
the fl ux will also be large. At late times, when the system is almost uniform 
so that the concentration gradient is very small, the fl ux is also small. In 
other words, what drives the fl ux is the concentration gradient, not the con-
centration itself: at long times in Fig. 2.11, the concentration may still be 
large, but the gradient is tiny because the system has become uniform. 

 Now   let’s express the previous paragraph in mathematical terms by say-
ing that the fl ux is proportional to the (negative) gradient of the concen-
tration, as 

   j   ∝  – d c /d x .    (2.48)  

 The minus sign is required in Eq. (2.48) because the fl ux is positive when 
the gradient is negative: otherwise, molecules would spontaneously move 
from regions of low concentration to regions of high concentration, com-
pletely counter to our expectations from entropy. The proportionality sign 
can be removed by introducing the diffusion coeffi cient    D , 

   j  = − D  d c /d x ,    Fick’s Law     (2.49)  

 an expression known as Fick’s First Law of diffusion  . At this point, we 
have not established that  D  in Eq. (2.49) is the same as the diffusion coef-
fi cient appearing in Eqs. (2.42)–(2.44), but we will do so shortly. 

 Fick’s fi rst law is almost the only result for diffusion that appears in 
the remainder of this book. Nevertheless there are two other important 
results about diffusion that are easily obtained, and so we present them 
here. The fi rst is the equation of continuity, which is a conservation law 
applicable to a variety of situations involving fl uids. We consider the dif-
fusion of fl uid particles in a cylindrical region of constant cross-sectional 

    Fig. 2.11      Diff usion of a deep red dye in a light blue solvent. Examples are shown at early, intermediate and 

late times, from left to right respectively; the  x -axis is drawn vertically in this diagram, so the 

concentration of dye,  c ( x , t ) falls with increasing  x . The concentration is uniform in the horizontal plane.  

x = height

c(
x,

t)

   Fig. 2.12  

   Concentration profi les 

corresponding to the diff usion 

of a dye shown in Fig. 2.11.  
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area  A , as shown in  Fig. 2.13 . The cylinder is not meant to be a physical 
object, just a mathematical surface with a defi ned shape, such that the net 
motion of particles is along the  x -axis. At the left-hand end of the cylinder 
at  x  = 0, there is a fl ow of particles into the cylindrical region if   j  > 0, and at 
the right-hand end at  x  =  Δ  x  there is a fl ow out, again if   j  > 0. If  the fl uxes 
at the two ends are not the same, then the number of fl uid particles in the 
cylinder must increase or decrease, where we have imposed the condition 
that there is no net lateral fl ow. The total increase in the number of parti-
cles  Δ  N  in an elapsed time  Δ  t  is then    

  Δ  N  = {[ fl ux at x  = 0] – [ fl ux at x  =  Δ  x ]}  •
           [ cross-sectional area of cylinder ] • [ elapsed time ]. 

 In symbols, this is 

   Δ  N  = { j (0) –  j ( Δ  x )}  A   Δ  t .   (2.50)  

 The change in the concentration  Δ  c  of  particles in the cylinder arising from 
diffusion is  Δ  N  / ( A   Δ  x ), where  A   Δ  x  is the volume of the cylinder. Thus, 
after some rearrangement 

   Δ  c  /  Δ  t  = { j (0) –  j ( Δ  x )} /  Δ  x .   (2.51)  

 By defi nition, the change in the fl ux across the cylinder  Δ  j  has the opposite 
sign to the fl ux difference in Eq. (2.51):  Δ  j  =  j ( Δ  x ) –  j (0). Thus, rewriting Eq. 
(2.51) in its infi nitesimal limit, 

  d c /d t  = −d j  / d x ,    continuity equation    (2.52)  

 which is the continuity equation  . Note that in Eqs. (2.50)–(2.52), some of 
the functional dependence of  c  and  j  has been suppressed for notational 
simplicity. 

 Lastly, we substitute Eq. (2.49) into the right-hand side of Eq. (2.52) to 
obtain Fick’s second law of diffusion (also known as the diffusion equa-
tion  ), namely 

   ∂  c / ∂  t  =  D   ∂  2  c  /  ∂  x  2 ,    diffusion equation    (2.53)  

    Fig. 2.13      Diff usion of particles along a concentration gradient. The uniform cylinder with cross-sectional area 

 A  and length  Δ  x  is a strictly mathematical surface: we allow particles to enter and leave this surface 

only longitudinally through its ends, not laterally through its sides.  
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 where we have assumed  D  does not depend on  x . We’ve had to be slightly 
less cavalier with our calculus by writing the derivatives as partial derivatives 
like  ∂ / ∂  x , in recognition that  c  depends on both  x  and  t , so that a derivative 
with respect to  x  is taken with  t  fi xed, and vice versa. We can now return to 
the equivalence of the diffusion coeffi cient in Eqs. (2.29) and (2.43). 

 The profi les in Fig. 2.12 schematically represent how the concentration 
 c ( x , t ) of a layer of dye evolves with time. Equation (2.53) provides us with 
the means of identifying the appropriate functional form for  c ( x , t ) from an 
initial confi guration. One such solution for a solute initially concentrated 
at the coordinate origin is 

   c ( x , t ) =  c  o  (4 π  Dt ) −1/2  exp(− x  2  / 4 Dt ),    (2.54)  

 where  c  o  is a parameter. The proof is left as an exercise in the end-of-chapter 
problems. To characterize how the concentration profi le changes with time, 
we evaluate the mean square displacement of the solute particles from the 
origin using Eq. (2.54). Applying the usual rules for the construction of 
ensemble averages, we fi nd 

    

〈 〉 ∫ ∫
∫
∞

〉 = ∫ c∫ dx

D

〉 ∫〉 = ∫
2

0

2 2 4

( )x t

 e= ∫ x2 xp( )x− 2 p(/

∫ c∫ (x

/x2− x2xexp(dxddxdx)Dt4DtDt / t dtt) .dxdd
0

∞

∫
 

 (2.55)

 This equation contains defi nite integrals, whose values are given in the end-
of-chapter problems. Substituting, 

  〈  x  2  〉 = (4 Dt ) • ( √  π  / 4) / ( √  π  / 2) = 2 Dt .   (2.56)  

 This is nothing more than Eq. (2.43), and it shows that we have been using 
the symbol for the diffusion coeffi cient correctly.   

  2.5     Fluctuations and correlations 

 In the simplest random walk (see  Section 2.3 ), the direction of  each step 
in the walk is completely uncorrelated with its neighbors, and this char-
acteristic gives rise to a particularly simple form for the mean squared 
end-to-end displacement, 〈  r  ee  2  〉 =  Nb  2 , where each walk in the ensemble 
has  N  steps of  identically the same length  b . That neighboring steps are 
uncorrelated has the mathematical consequence that the mean value of 
the scalar product of  neighboring bond vectors vanishes when the num-
ber of  walks in the ensemble is large, 〈  b   i   •  b   i ±1  〉  →  0, where the average is 
performed at the same step  i  on all walks in the ensemble. For the same 
reason, it is also true that when steps  i  and  j  are far from each other on a 
given walk, 〈  b   i   •  b   j   〉  →  0. 
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 Suppose now that the directions of neighboring steps are correlated; for 
instance, suppose that neighboring bond vectors cannot change direction 
by more than 90 o . In terms of scalar products, this implies 0  ≤   b   i   •  b   i ±1   ≤   b  2 , 
still assuming that all steps have the same length. For bonds pointing in 
three dimensions, it is straightforward to show that 〈  b   i   •  b   i ±1  〉 =  b  2 /2, which is 
left as an exercise for the interested reader. Going to second-nearest neigh-
bors gives a non-vanishing result for 〈  b   i   •  b   i ±2  〉, which is smaller than  b  2 /2, 
but still larger than zero applicable when the steps are uncorrelated. As the 
distance along the contour of the walk increases, the mean value 〈  b   i   •  b   j   〉 
gradually vanishes towards the same limit as walks with uncorrelated steps, 
as shown schematically in  Fig. 2.14 . This means that 〈  r  ee  2  〉 of  the walk with 
correlated steps still is still proportional to  N  for long walks, 〈  r  ee  2  〉  ∝   N , but 
the proportionality constant for correlated walks is no longer  b  2 ; for the 
particular correlated walk that we have just described, 〈  r  ee  2  〉 >  Nb  2  and the 
effective “size” of the walk is larger than it is for its uncorrelated cousin.    

 In describing the behavior of random walks, the quantity 〈  b   i   •  b   j   〉 may 
play the role of a correlation function, a quantity that portrays the mag-
nitude of the correlations in a system as a function of an independent 
variable, which in the case of random walks or polymers could be the sep-
aration  Δ   ij   = | i − j | along the contour. To illustrate the general behavior of 
correlation functions, let’s start by defi ning 

   C ( Δ   ij  )  ≡  〈  b   i   •  b   j   〉 Δ  ( ij )  /  b  2 .   (2.57)  

 Here,  Δ   ij   may be as small as zero, in which case  C (0) = 1 because the numer-
ator of the right-hand side of Eq. (2.57) is just the mean squared length of 
the steps on the walk,  b  2  by construction. On the other hand, both types of 
walks we have discussed above (unrestricted step-to-step bond directions 
and partly restricted bond directions) display 〈  b   i   •  b   j   〉 Δ   s    →  0 at large separa-
tions. This behavior for  C ( Δ   ij  ) is plotted schematically in Fig. 2.14: the red 
curve is the unrestricted walk where the only non-vanishing value of the 
correlation function is  C (0) = 1, while the green curve is the restricted walk, 
where  C (0) = 1,  C ( Δ   ij   = 1) = 1/2, etc. In the language of correlation func-
tions, it is often conventional to defi ne a quantity to be correlated when  C  
= 1 and uncorrelated when  C  vanishes, and we see that this normalization 
applies to the orientations of the bond directions as expressed in 〈  b   i   •  b   j   〉. 

 The decay of the correlation function   provides a quantitative measure of 
the range of  Δ   ij   where strong correlations are present. In the unrestricted 
walk,  C ( Δ   ij  ) falls to zero at  Δ   ij   = 1, whereas in the restricted case, the fall-off  
is slower because correlations exist to larger values of  Δ   ij   as expected. We 
will establish in Chapter 3 that  C ( x ) for random walks should decay expo-
nentially with  x  as 

   C ( x )  ∝  exp(− x /  ξ  ),   (2.58)  

Δij

C(Δij)

   Fig. 2.14  

   Correlation function  C ( Δ   ij  ) for 

the scalar product of bond 

vectors  b   i    •   b   j   separated by  Δ   ij   

steps on a random walk: the 

green curve is a schematic 

representation of a restricted 

walk while the red curve is for 

an unrestricted walk.  

9780521113762c02_p25-60.indd   489780521113762c02_p25-60.indd   48 11/11/2011   9:45:40 PM11/11/2011   9:45:40 PM



Soft materials and fl uids49

 where   ξ   is a characteristic of the system. For walks and polymers,   ξ   is the 
correlation length  , while in other situations,   ξ   could be a correlation time 
or some other variable. The correlation length is also manifested in the 
physical “size” of the walk, in that 〈  r  ee  2  〉 is linearly proportional to   ξ  : from 
Chapter 3, 〈  r  ee  2  〉 = 2  ξ   L , where  L  =  Nb  is the contour length. For the unre-
stricted random walk,   ξ   =  b /2. 

 In this text, much of the experimental interest in correlation lengths 
includes not just random walks and rotations, but also physical systems 
such as macromolecules and fi lamentous cells whose size and sinuous 
shape obey the same mathematical expressions as the random walk. In 
such cases, it is not always possible to obtain long polymers or fi laments 
that would provide good statistical accuracy for the correlation function at 
separations large compared to the correlation length. That is, it may not be 
possible to follow  C ( x ) out to large enough  x  to see it fall below 1/ e  of  its 
initial value, as in the top panel of  Fig. 2.15 . When this occurs, an alternate 
strategy is to measure  C ( x ) accurately at modest values of  x  by sampling a 
much larger number of confi gurations, as in the bottom panel of Fig. 2.15. 
For this strategy to work, however, the sample must be suffi ciently large to 
yield very accurate values of the correlation function, because the range in 
 x  over which  C ( x ) is to be fi tted by the exponential function is not large.    

 Correlation functions describing the orientation of objects, as expressed 
through tangents to curves or normal vectors to undulating surfaces, have 
widespread application and appear in many chapters of this text, starting 
in Chapter 3. However, correlations in time  , rather than orientation, are 
also important, as we illustrate by considering the process of cell division. 
Consider a species that is capable of forming a robust fi lament starting 
from a single cell. After the fi rst doubling time has elapsed, two daughter 
cells remain attached and form the beginning of a fi lament. Because the 
cleavage plane during division is very close to the center of the cell, the 
daughter cells have almost equal length. These two cells will then grow and 
divide to create a short fi lament, with four almost-identical cells. Over an 
interval of several doubling times, all cells in the fi lament have very similar 
lengths, although the average cell length increases continuously through-
out the division cycle, as one would expect. 

 Not only are there are small variations in the length of the daughter 
cells, there are variations in the growth rates of the cells such that their div-
ision times gradually lose synchronization. Thus, as the fi lament lengthens, 
there will be regions of 2 4  or 2 5  cells all of which have grown in synchrony, 
adjoining other regions of where the cell lengths are slightly different. The 
greatest variation will occur when the cells are near their division point, 
where a string of very long cells that have grown at the same rate lie beside 
a string of short cells whose parent cell divided a little earlier than its neigh-
bors. Some sample data are shown in  Fig. 2.16  from the rod-shaped alga 

   Fig. 2.15  

   Two approaches of obtaining 

a tangent-tangent correlation 

function at modest values of the 

separation  Δ  s  along the curve. 

In the top panel, a long curve is 

sampled at many diff erent pairs 

of locations, each separated 

by the same  Δ  s . In the bottom 

panel, a larger number of short 

paths are sampled to determine 

the correlation function with 

the same accuracy, but at only 

modest values of  Δ  s .  
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 Stichococcus ; the plot shows the length of each cell as a function of its pos-
ition in the linear fi lament. The cell lengths are locally correlated: domains 
of high correlation in length between neighboring cells have grown in syn-
chrony from their common parent.    

 Before closing this chapter, we make a slightly more mathematical pass 
through a concept introduced in Chapter 1 when discussing the shape fl uc-
tuations of soft fi laments in thermal equilibrium. Fluctuations arise in the 
energy of a system owing to the interaction with its environment at fi xed 
temperature. As we described in Chapter 1, the stiffer a fi lament is, the 
smaller will be the variations in its shape arising from thermal fl uctuations. 
This is illustrated in  Fig. 2.17  for two systems with the same mean volume 
 V  av  but differing compression resistance. The red curve represents a stiff  
system with a large compression resistance: as time passes, the volume of 
the system stays fairly close to its mean value. In contrast, the green curve 
has low compression resistance, which refl ects its ability to explore a larger 
range of confi gurations without a large change in its energy.    

 Put mathematically, the statistical variance of a quantity  x  about its 
mean value  x  av , namely 〈 ( x  −  x  av ) 2  〉, is inversely proportional to a system’s 
resistance to change of that quantity. That is, the variance of the volume 
of a system is inversely proportional to its compression modulus; similarly, 
the variance in the energy of a system at fi xed temperature is inversely pro-
portional to its heat capacity. Let’s now make this exact. The compression 
modulus of a material is defi ned as 

   K  V  −1  = − V  −1  ( ∂  V / ∂  P ) T ,   (2.59)  

 where the subscript “T” means that the partial derivative is performed at 
constant temperature. This defi nition implies that the larger the volume 
change ( Δ  V ) in response to a pressure change ( Δ  P ), the  smaller  the com-
pression modulus: a large value for  K  V  means that the system has a large 
resistance to change. The minus sign is needed on the right-hand side of 
the equation because the volume decreases as the pressure increases. Note 
that  K  V  has the units of pressure, or energy per unit volume. 

    Fig. 2.16      Cell lengths (in  μ m) for 100 sequential cells as a function of position on a linear fi lament of the green 

alga  Stichococcus Y .  

time

vo
lu

m
e

   Fig. 2.17  

   Schematic representation of the 

fl uctuations in volume at fi xed 

temperature for a system with 

a large (red) and small (green) 

compression resistance. The 

fl uctuations are recorded as a 

function of time.  
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 Establishing the link between  K  V  and the variance of  V  takes a few more 
concepts from statistical mechanics than we have at our fi ngertips right 
now, so the proof is relegated to Appendix D. The relation is   

   K  V  −1  = 〈 ( V  −  V  o ) 2  〉 / ( k  B  TV  o ),   (2.60)  

 where  V  o  is the mean value of the volume at the fi xed temperature and 
pressure of interest. As required, this equation provides  K  V  with units of 
energy (through  k  B  T ) per unit volume and it demonstrates the inverse rela-
tion between  K  V  and the variance of the volume. Similar expressions can be 
obtained for other elastic moduli such as the shear modulus and Young’s 
modulus.  

  Summary 

 The softness of the cell’s mechanical components means that their shapes 
may fl uctuate as the component exchanges energy with its thermal envir-
onment. This is particularly true at the molecular level, but may also be 
seen at larger length scales for biofi laments like actin or membranes like 
the lipid bilayer. In this chapter, we provide some of the mathematical for-
malism needed for the description of fl uctuating systems, and apply this 
formalism to linear polymers and diffusion in a viscous medium. 

 The distribution of values of an observable   Λ   is described by the prob-
ability density P(  Λ  ), which is obtained from the number of times d n   Λ   that 
the observable is found in the range   Λ   to   Λ   + d  Λ  , in a sample of  N  tri-
als; namely, P(  Λ  ) d  Λ   = d n   Λ   /  N . Having units of   Λ   −1 , P(  Λ  ) is normalized to 
unity via  ∫  P(  Λ  ) d  Λ   = 1, permitting the calculation of ensemble averages 
via expressions such as 〈   Λ    n   〉  ≡   ∫    Λ    n   P(  Λ  ) d  Λ  . Although the mean value of 
an observable 〈   Λ   〉 is useful for characterizing the properties of a system, 
it is often important to understand the behavior of the underlying distri-
bution P(  Λ  ) itself. As an example, the probability of a random walk in 
one dimension, consisting of  i  steps to the left and  j  steps to the right, is 
 P ( i ,  j ) = { N ! /  i !  j !} (1/2)  i   (1/2)  j  , where the probability of stepping in either 
direction is equal to 1/2 and the total number of steps is  N . When  N  is 
large, the end-to-end distance of the walk satisfi es 〈  r  ee  2  〉 =  Nb  2 , where each 
step in the walk has identically the same length  b . The important feature 
of this result is that the mean value of  r  ee  2  is proportional to  N , rather than 
 N  2 ; equivalently, 〈  r  ee  2  〉 is proportional to the contour length  L  =  Nb , rather 
than the square of the contour length as it would be for a straight line. As 
 N  becomes large, the probability distribution  P ( i ,  j ) looks increasingly like 
a smooth Gaussian distribution, with a probability density of the form 
P( x ) = (2 π   σ   2 ) −1/2  exp[−( x −  μ  ) 2  / 2  σ   2 ], where the parameters are given by   μ   = 
〈  x  〉 and   σ   2  = 〈  x  2  〉 –   μ   2 . 
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 By means of the fl uctuation-dissipation theorem, probability distribu-
tions such as P(  Λ  ) permit one to determine material characteristics such 
as elastic moduli or the specifi c heat. In thermal equilibrium, the energy 
and other characteristics of a system fl uctuate about some mean value, 
say   Λ   o . The variance of the fl uctuations of this characteristic, 〈 (  Λ   –   Λ   o ) 2  〉, 
is inversely proportional to the system’s resistance to change of that quan-
tity. For example, the compression modulus  K  V  at constant temperature is 
related to the change in volume  V  with pressure via  K  V  −1  = − V  −1 ( ∂  V / ∂  P ) T : 
the more rapidly the volume changes with pressure, the lower the compres-
sion modulus. In terms of fl uctuations, the compression modulus is given 
by  K  V  −1  = 〈 ( V − V  o ) 2  〉 / ( k  B  TV  o ), where  V  o  is the equilibrium value of the 
volume at fi xed  T  and  P . 

 Probability distributions P(  Λ  ) are functions of a single variable,   Λ  . Yet 
within a sequence of measurements, there may be correlations among the 
values of   Λ   as measured at different locations within the system or at the 
same location but at different times. An example is the local orientation of 
a unit tangent vector  t ( s ) measured at location  s  along a wiggling biofi la-
ment. The mean value of  t  measured over all locations at the same time, or 
a specifi c location as a function of time, vanishes if  the fi lament executes 
random motion: 〈  t  •  t  o  〉 = 0, where  t  o  is a fi xed reference direction, although 
〈  t  2  〉 = 1 because the vector has unit length. However, the directions of  t  
at nearby locations  s   i   and  s   j   may be correlated such that 〈  t   i   •  t   j   〉  ≠  0 when 
averaged over all pairs of locations separated by the same  Δ  s  = | s   i   –  s   j  |. 
If  the local orientations of the fi lament are uncorrelated at large separa-
tions, then 〈  t   i   •  t   j   〉  →  0 as  Δ  s   →   ∞ . This suggests that a correlation length 
  ξ   characterizes the decay of the correlations with increasing distance. For 
many systems, the decay is exponential, and the correlation function  C ( Δ  s ) 
 ≡  〈  t   i   •  t   j   〉 Δ   s   can be parametrized as  C ( Δ  s ) = exp(− Δ  s /   ξ  ). As will be established 
later, the mean square end-to-end displacement of a random walk can be 
written as 〈  r  ee  2  〉 = 2  ξ   L , where  L  is the contour length of the walk as defi ned 
above. 

 The diffusion of the cell’s molecular components, and perhaps the ran-
dom motion of the cell itself  in a fl uid environment, are formally similar 
to random walks. In a viscous environment, the motion of an object is 
affected by the presence of drag forces that depend upon the instantaneous 
speed of the object: the higher the speed, the larger the force. For slowly 
moving objects, viscous drag exerts a force  F   ∝  − v  for linear motion and 
a torque of   T    ∝  −  ω   for rotational motion, where   ω   is the angular speed 
and the minus sign indicates that drag opposes the motion of the object. 
Given that force is proportional to the rate of change of velocity accord-
ing to Newton’s Second Law of mechanics, the speed of an object initially 
moving a low speeds in a viscous environment obeys d v /d t   ∝  − v , which 
means that  v ( t ) must decay exponentially with time (similarly for torque 
and the rate of change of the angular velocity). The form of the drag force 
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is known analytically for a few simple shapes like a sphere of radius  R : 
 F  = −6 π   η   Rv  (Stokes’ Law) and T = −8 π   η   R  3   ω  , where   η   is the viscosity of the 
medium. In fl uid mechanics, a useful benchmark for assessing the import-
ance of drag is provided by a dimensionless quantity called the Reynolds 
number  R   ≡    ρ   v  λ /  η  , where   ρ   is the density of the fl uid and  λ  is the length of 
the object along the direction of motion. When  R  is large, the motion is 
dominated by inertia, while at small values of  R , the motion is dominated 
by drag; the transition between these two domains occurs for  R  around 
10–100. A bacterium swimming in water has  R  < 10 −4 , meaning that its 
motion is overwhelmingly dominated by drag. 

 Strong as the drag forces on a cell may be, this does not mean that 
cells or their molecular components are motionless unless they have some 
means of  generating movement. The energy provided through the inter-
action of  the cell with its thermal environment causes the cell to move 
randomly, even if  slowly. This is an example of  diffusive motion, which is 
formally equivalent to a random walk in that the end-to-end displacement 
of  the trajectory of  a diffusing particle obeys 〈  r  ee  2  〉 = 2 Dt , 4 Dt  or 6 Dt  in 
one, two or three dimensions, respectively, where  D  is called the diffusion 
coeffi cient; in these expressions, the elapsed time  t  takes the place of  the 
number of  steps  N  in a random walk. Einstein analyzed the diffusion of  a 
sphere in a thermal environment, and was able to establish that  D  =  k  B  T  / 
6 π   η   R , where   η   is the viscosity of  the medium, as usual. Objects can also 
rotate diffusively, with their angular change obeying 〈   θ   2  〉 = 2 D  r  t , where 
the rotational diffusion coeffi cient of  a sphere has the form  D  r  =  k  B  T  / 
8 π   η   R  3 . 

 We have introduced diffusion in terms of the motion of a single object 
or particle, both its translational motion through its environment or its 
rotational motion about an axis. Another approach to diffusion involves 
quantities that represent averages over many objects, assumed to have high 
enough numerical density that the averages apply to a local region of the 
system. That is, we assume that the concentration of particles,  c ( x , t ) can be 
determined within a suffi ciently small volume that  c ( x , t ) can be assigned 
a meaningful and accurate value for each location  x  and time  t . For our 
purposes, we take the concentration to vary only along the  x -axis of the 
system. Changes in the concentration with time usually result from a fl ux 
 j ( x , t ), which is the net number of particles per unit area per unit time cross-
ing an imaginary plane in the  yz  directions at a location  x . Fick’s fi rst law 
relates the fl ux to the gradient of the concentration through  j  = − D  d c /
d x . where  D  is the diffusion coeffi cient introduced previously. As parti-
cles diffuse through the system, the concentration at a specifi c location 
changes with time according to the equation of continuity d c /d t  = −d j /d x . 
These two equations for fl ux can be combined to yield the diffusion equa-
tion  ∂  c / ∂  t  =  D   ∂  2  c / ∂  x  2 , where partial derivatives are required because  c ( x , t ) 
depends on both  x  and  t . 
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 Having made a fi rst pass through the mathematical machinery for 
describing fl uctuating systems, the next two chapters deal with the prop-
erties of fl exible polymers in greater detail. If  much of the material in the 
current chapter is new to the reader, it is probably advisable to solve a selec-
tion of the problems in the next section to build a working knowledge of 
applying the formalism to physical systems.  

  Problems 

  Applications 

  2.1.   In a series of experiments, a parameter   Λ   is found to have values 
between 0 and 1 (  Λ   is measured in fi ctitious units we will call dils) 
according to the following distribution.    

 Determine the probability density P(  Λ  ) for the distribution (includ-
ing units), and evaluate 〈   Λ   〉 and 〈   Λ   2  〉. 

  2.2.   Calculate the mass of a plastic bead with a diameter of 1  μ m and a 
density of 1.0 × 10 3  kg/m 3 . Find its root mean square speed at room 
temperature if  its mean kinetic energy is equal to 3 k  B  T /2. 

  2.3.   The magnitude of the viscous drag force exerted by a stationary fl uid 
on a spherical object of radius  R  is  F  = 6 π   η   Rv  at low speeds and 
 F  = (  ρ  /2) AC  D  v  2  at high speeds. Apply this to a spherical cell 1  μ m in 
radius, moving in water with   η   = 10 −3  kg/m • s and   ρ   = 10 3  kg/m 3 . Take 
the cell to have the same density as water, and let its drag coeffi cient 
 C  D  be 0.5.

   (a)     Plot the two forms of the drag force as a function of cell speed up 
to 100  μ m/s.  

  (b)     Find the speed at which the linear and quadratic drag terms are 
the same.    

  2.4.   What is the drag force that a molecular motor must overcome to 
transport a vesicle in a cell? Assume that the vesicle has a radius of 

Range of   Λ   (dils) Number

0.0 – 0.2 15
0.2 – 0.4 65
0.4 – 0.6 55
0.6 – 0.8 30
0.8 – 1.0 10
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100 nm and travels at 0.5  μ m/s. Take the viscosity of the cytoplasm 
to be one hundred times that of water. What power must the motor 
generate as it transports the vesicle? 

  2.5.   Some bacteria have the approximate shapes of spherocylinders – a 
uniform cylinder (length  L , radius  R ) which is capped at each end by 
hemispheres. Take  E. coli  to have such a shape, with a diameter of 
1  μ m and an overall length of 4  μ m. Find the drag force experienced 
by a cell of this shape if  the drag force is in the turbulent regime 
where  F  drag  ~  v  2 . Take the density of the fl uid medium to be 10 3  kg/m 3 , 
the drag coeffi cient to be 0.5 and the cell to be traveling at 20  μ m/s.

   (a)     Evaluate the force for two different orientations of the cell – 
motion along its symmetry axis and motion transverse to its axis. 
Quote your answer in pN.  

  (b)     Show that the ratio of the drag forces in these orientations 
( transverse : longitudinal) is equal to 1 + 12/ π .    

  2.6.   Calculate the power required to maintain a spherical bacterium 
(diameter of 1 μm) rotating at a frequency of 10 Hz when it is 
immersed in a fl uid of viscosity 10– 3  kg/m • s. If  the energy released 
per ATP hydrolysis is 8 × 10 −20  J, how many ATP molecules must be 
hydrolyzed per second to support this motion? 

  2.7.   The Reynolds number for the motion of cells in water is in the 10 −5  
range. To put this number into everyday context, consider a person 
swimming in a fl uid of viscosity   η  . Making reasonable assumptions 
for the length and speed of the swimmer, what value of   η   corresponds 
to a Reynolds number of 10 −5 ? Compare your result with the fl uids in 
Table 2.1. 

  2.8.   The sources of household dust include dead skin cells, which we will 
model as cubes 5  μ m to the side having a density of 10 3  kg/m 3 .

   (a)     What is the root mean square speed of this hypothetical dust par-
ticle at  T  = 20  o C due to thermal motion alone?  

  (b)     To what height  h  above the ground could this particle rise at room 
temperature before its thermal energy is lost to gravitational 
potential energy? Assume that the gravitational acceleration  g  is 
10 m/s 2 .    

 2.9     (a)      A particular insect fl ies at a constant speed of 1 m/s, and ran-
domly changes direction every 3 s. How long would it take for the 
end-to-end displacement of its random motion to equal 10 m on 
average?  

  (b)     Suppose the insect emitted a scent that was detectable by another 
of its species even at very low concentrations. The molecule of the 
scent travels at 300 m/s, but changes direction through collisions 
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every 10 −11  s. Once the molecule has been released by the insect, 
how long would it take for the end-to-end displacement of its 
trajectory to equal 10 m on average?  

  (c)     From your results in parts (a) and (b), what is the better strategy 
for an insect looking for a mate, which it can detect through an 
emitted pheromone: (i) be motionless and wait for a scent, or (ii) 
actively search for a mate by fl ying?    

  2.10.  An experiment was described in  Section 2.1  in which the two-
 dimensional trajectories of plastic beads in water were found to obey 
〈  r  ee  2  〉 = (1.1 ± 0.3  μ m 2 /s) t . What diffusion coeffi cient  D  describes these 
data? Using the Einstein relation, calculate  D  expected for spheres 
of diameter 1  μ m moving in water, and compare with the measured 
value. 

  2.11.   A spherical bacterium with a radius of 1  μ m moves freely in water at 
20  o C.

   (a)     What is its rotational diffusion coeffi cient?  
  (b)     What is the root mean square change in angle around a rotational 

axis over an interval of 1 minute arising from thermal motion?    

 Be sure to quote your units for parts (a) and (b). 
  2.12.   The plasma membrane plays a pivotal role in maintaining and con-

trolling the cell’s contents, as can be seen in the following simplifi ed 
example. Suppose that the number density of a particular small mol-
ecule, which we’ll call molly, is 10 25  m −3  higher in the cytoplasm than 
the medium surrounding the cell. Let molly have a diffusion coeffi -
cient in the cytoplasm of 5 × 10 −10  m 2 /s.

   (a)     If  the drop in concentration of molly from the inside to the out-
side of the cell occurred over a distance of 5 nm, the thickness of 
the lipid bilayer, with what fl ux would molly pass out of the cell?  

  (b)     If  the cells in question are spherical with a diameter of 4  μ m, how 
many copies of molly are there per cell?  

  (c)     If  molly continued to diffuse out of the cell at the rate found in 
(a), ignoring the drop in the internal concentration of molly with 
time, how long would it take for the concentration of molly to be 
the same on both sides of the membrane?    

  2.13.   Consider three different power-law forms of the drag force with 
magnitudes:

 F  1/2  =  a v  1/2  (square root) 

  F  1  =  b v  1  (linear) 

  F  3/2  =  c v  3/2  (3/2 power). 
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 Traveling horizontally from an initial speed  v  o , an object experiencing 
one of these drag forces would come to rest at 

  x  max  = (2 m  /3 a ) v  o  3/2  (square root) 

  x  max  =  mv  o  /  b  (linear) 

  x  max  = 2 m v  o  1/2 / c  (3/2 power).  

   (a)     Determine the coeffi cients  a ,  b  and  c  (quote your units) for a cell 
of mass 1 × 10 −14  kg whose drag force is measured to be 5 pN 
when traveling at 10  μ m/s.  

  (b)     Find the maximum displacement that the cell could reach for 
each force if   v  o  = 1  μ m/s.    

  2.14.   In a particularly mountainous, and imaginary, region of the world, 
the only way to get from A to B is by one of several meandering roads. 
A group of unsuspecting tourists set out from town A one morning 
with enough gas in each of their cars to travel 100 km, which is 10 km 
more than the displacement from A to B. They take different routes, 
but each car runs out of gas before the reaching the destination, at 
displacements of 60, 64, 75 and 83 km from town A as the proverb-
ial crow fl ies. Treating them as an ensemble, what is the persistence 
length of the roads? 

  2.15.   The persistence length of DNA is measured to be 53 nm.

   (a)     Over what distance along the contour has its tangent correlation 
function dropped to 1/10?  

  (b)     Using the result from Chapter 3 that 〈  r  ee  2  〉 = 2  ξ   p  L , fi nd the root 
mean square end-to-end length of a strand of DNA from  E. 
coli  with a contour length of 1.6 mm. Quote your answer in 
microns.     

  Formal development and extensions 

 Some of the following problems require defi nite integrals for their 
solution.  
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  2.16.   The probability density for a particular distribution has the form 
P(  Λ  ) =  A   Λ    n  , where  n  is a parameter and   Λ   has a range 0  ≤    Λ    ≤  1. 
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Determine the normalization constant  A  for this power-law function 
and calculate 〈   Λ   〉 and 〈   Λ   2  〉. 

  2.17.   At a temperature  T , the distribution of speeds  v  for an ideal gas of 
particles has the form P( v ) =  Av  2 exp(− mv  2 /2 k  B  T ), where  m  is the mass 
of each particle.

   (a)     Determine  A  such that  ∫  o  
∞
  P( v ) d v  = 1.  

  (b)     Show that the mean kinetic energy is 〈  K  〉 = (3/2) k  B  T .  
  (c)     Show that the most probable kinetic energy of the particles is 

 k  B  T .    

  2.18.  (a)  In  Section 2.2 , we stated that the position  x ( t ) of an object of 
mass  m , subject to the drag force  F  =  c  1  v , is described by 

  x ( t ) = ( mv  o / c  1 ) • [1 – exp(− c  1  t  / m )]. 

 Differentiate this to establish that the corresponding velocity is 

  v ( t ) =  v  o  exp(− t  / t  visc ), 

 with a characteristic time  t  visc  =  m  / c  1 . 
 (b)  The quadratic drag force is parametrized by  F  =  c  2  v   2 , resulting 

in 

  x ( t ) = ( v  o / k ) • ln(1 +  kt ), 

 where 

  k  =  c  2  v  o / m . 

 Establish that the corresponding velocity is 

  v ( t ) =  v  o  / (1 +  c  2  v  o  t  / m ). 

 Does  x  reach a limiting value for quadratic drag? 
  2.19.   Calculate the ratio of the drag force at low speeds for an ellipsoid 

compared to a sphere; the direction of motion is along the semi-
 major axis of the ellipsoid. Take the semi-minor axis of the ellipsoid 
to be  R , and plot your results as a function of   α    ≡   a / R  for 2  ≤    α    ≤  
5. Comment on how fast the drag force rises with the length of the 
ellipsoid. 

  2.20.   Consider a power-law form of the drag force with magnitude: 

  F  1/2  =  a v  1/2   (square root). 

 Establish that an object traveling horizontally from an initial speed 
 v  o , would come to rest at  x  max  = (2 m  /3 a ) v  o  3/2  for such a force. 

  2.21.   Consider a power-law form of the drag force with magnitude: 

  F  3/2  =  c v  3/2   (3/2 power). 
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 Establish that an object traveling horizontally from an initial speed 
 v  o , would come to rest at  x  max  = 2 m v  o  1/2 / c  for this force. 

  2.22.   Consider a rotational drag torque of the form T = −  χ    ω  , where   χ   = 
8 π   η   R  3 .

   (a)     Find   ω  ( t ) and   θ  ( t ) for an object rotating at an initial angular fre-
quency   ω   o , experiencing no force other than drag. Take the initial 
angle to be zero.  

  (b)     Show that the characteristic time scale for the decay of the angu-
lar speed is  I  /  χ  , where  I  is the moment of inertia about the axis 
of rotation. Show that this time scale is  m  / (20 π   η   R ) for a sphere 
of mass  m  and radius  R .  

  (c)     Find the value of   θ   as  t   →   ∞  if  the initial frequency is 10 revolu-
tions per second; assume  R  = 1  μ m,   η   = 10 −3  kg/m • s, and the mass 
of the object is 4 × 10 −15  kg.    

  2.23.   It is established in Problem 2.22 that the time scale for the decay of 
rotational speed of a sphere subject to rotational drag is  m /(20 π   η   R ) 
where  m  and  R  are the mass and radius of the sphere.

   (a)     For a cell with mass 4 × 10 −15  kg and radius 1  μ m, calculate the 
time scales for the decay of translational and rotational motion 
when the cell is immersed in a fl uid of viscosity 10 −3  kg/m • s.  

  (b)     Show analytically that the ratio of the times (rotational: 
 translational) is 3/10.    

  2.24.   Consider a one-dimensional random walk centered on  x  = 0, where 
the probabilities of stepping to the left or to the right are both equal 
to 1/2. Find the probability  P ( i ,  j ) of the discrete walk at  x  = 0 for 
walks with  N  = 4, 8 and 12 steps. Compare this result with the con-
tinuous probability density P( x ) Δ  x . [ Hint :  you must determine what 
value of   Δ  x corresponds to the change in end-to-end length of the walk 
when i and j change by one unit each at fi xed N .] For simplicity, make 
the step length  b  equal unity. 

  2.25.   By explicit substitution, show that the following expression for the 
concentration satisfi es Fick’s second law of diffusion: 

  c ( x , t ) =  c  o  (4 π  Dt ) −1/2  exp(− x  2 /4 Dt ). 

  2.26.   In three dimensions, the concentration of a mobile species spreading 
from a point at the coordinate origin is given by 

  c ( r , t ) =  c  o  (4 π  Dt ) −3/2  exp(− r   2 /4 Dt ). 

 For this profi le, calculate the time dependence of 〈  r  2  〉, just as we 
calculated 〈  x  2  〉 in  Section 2.4 . Comment on the factor of 6 in your 
result. As a three-dimensional average, the volume element in 〈 ··· 〉 in 
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polar coordinates is d ϕ  sin  θ   d  θ    r  2 d r , where 0  ≤    θ    ≤   π  and 0  ≤   ϕ   ≤  2 π  
as usual. 

  2.27.   Consider a restricted random walk in which neighboring bond vec-
tors, each with length  b , have directions that are different by 90 o  at 
the most.

   (a)     Show that 〈  b   i   •  b   i ±1  〉 /  b  2  = 1/2 for walks in three dimensions.  
  (b)     Find 〈  b   i   •  b   i ±1  〉 /  b  2  for walks in two dimensions. Explain in words 

why 〈  b   i   •  b   i ±1  〉 in two dimensions should be larger or smaller than 
in three dimensions.  

  (c)     What is the minimum value of  b   i   •  b   i ±2 / b  2 ?    

  2.28.   A variable  x  fl uctuates around its mean value  x  av . For an ensemble of 
measurements, show that 〈  Δ  x  2  〉 = 〈  x  2  〉 –  x  av  2 , where  Δ  x  =  x  –  x  av . 

  2.29.   The exponential is not the only function that decays smoothly to zero 
with time: there are other algebraic forms that might appear as cor-
relation functions. Suppose that the correlation function  C ( x ) has the 
form 1/(1 +  x / a ). Equate the derivative of  C ( x ) with that of the expo-
nential exp(− x /  ξ  ) at small values of  x  in order to relate the parameter 
 a  to the persistence length   ξ  . With this identifi cation, calculate the 
ratio of the two functions at  x  =   ξ  . 

  2.30.   In the  NPT  ensemble, the temperature  T , pressure  P  and number of 
particles  N  are all fi xed, but the volume  V  fl uctuates about a mean 
value determined by the choice of  NPT . Consider an ideal gas obey-
ing  PV  =  Nk  B  T  (where  V  is really the mean value of  V ).

   (a)     Show that the compression modulus  K  V  is equal to the pressure.  
  (b)     Find how the volume fl uctuations  Δ  V  2  /  V  av  2  depends on  N , where 

 Δ  V  =  V  –  V  av .      
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