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63

    The structural elements of the cell can be broadly classifi ed as fi laments or 
sheets, where by the term fi lament, we mean a string-like object whose length is 
much greater than its width. Some fi laments, such as DNA, function as mech-
anically independent units, but most structural fi laments in the cell are linked 
to form two- or three-dimensional networks. As seen on the cellular length 
scale of a micron, individual fi laments may be relatively straight or highly 
convoluted, refl ecting, in part, their resistance to bending. Part I of this book 
concentrates on the mechanical properties of biofi laments: Chapter 3 covers 
the bending and stretching of simple fi laments while Chapter 4 explores the 
structure and torsion resistance of complex fi laments. The two chapters mak-
ing up the remainder of Part I consider how fi laments are knitted together to 
form networks, perhaps closely associated with a membrane as a two-dimen-
sional web (Chapter 5) or perhaps extending though the three-dimensional 
volume of the cell (Chapter 6).   

  3.1     Polymers and simple biofi laments 

 At the molecular level, the cell’s ropes and rods are composed of lin-
ear polymers, individual monomeric units that are linked together as an 
unbranched chain. The monomers need not be identical, and may them-
selves be constructed of more elementary chemical units. For example, the 
monomeric unit of DNA and RNA is a troika of phosphate, sugar and 
organic base, with the phosphate and sugar units alternating along the 
backbone of the polymer (see Chapter 4 and Appendix B). However, the 
monomers are not completely identical because the base may vary from 
one monomer to the next. The double helix of DNA contains two such 
sugar–base–phosphate strands, with a length along the helix of 0.34 nm 
per pair of organic bases, and a corresponding molecular mass per unit 
length of about 1.9 kDa/nm (Saenger,  1984 ). 

 The principal components of the cytoskeleton – actin, intermediate fi la-
ments and microtubules – are themselves composite structures made from 
protein subunits, each of which is a linear chain hundreds of amino acids 
long. In addition, some cells contain fi ne strings of the protein spectrin, 

 Polymers     3 
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whose structure we discuss fi rst before considering the thicker fi laments 
of the cytoskeleton. As organized in the human erythrocyte, two pairs of 
chains, each pair containing two intertwined and inequivalent strings of 
spectrin (called   α   and   β  ), are joined end-to-end to form a fi lament about 
200 nm in contour length. The   α   and   β   chains have molecular masses of 
230 and 220 kDa  , respectively, giving a mass per unit length along the 
tetramer of 4.5 kDa/nm. An individual chain folds back on itself  repeat-
edly like a Z, so that each monomer is a series of 19 or 20 relatively rigid 
barrels 106 amino acid residues long, as illustrated   in Fig. 3.1(a).    

 Forming somewhat thicker fi laments than spectrin, the protein actin is 
present in many different cell types and plays a variety of roles in the cyto-
skeleton. The elementary actin building block is the protein G-actin (“G” 
for globular), a single chain of approximately 375 amino acids having a 
molecular mass   of 42 kDa. G-actin units can assemble into a long string 
called F-actin (“F” for fi lamentous), which, as illustrated   in Fig. 3.1(b), 
has the superfi cial appearance of two strands forming a coil, although the 
strands are not, in fact, independently stable. The fi lament has a width of 
about 8 nm and a mass per unit length of 16 kDa/nm. Typical actin mono-
mer concentrations in the cell are 1–5 mg/ml; as a benchmark, a concentra-
tion of 1 mg/ml is 24  μ  M  for a molecular mass of 42 kDa. 

 The thickest individual fi laments are composed of the protein tubulin  , 
present as a heterodimer of   α  -tubulin and   β  -tubulin, each with a molecu-
lar mass of about 50 kDa. Pairs of   α  - and   β  -tubulin form a unit 8 nm 
in length, and these units can assemble   α   to   β   successively into a hollow 

8 nm

actin filament

= G-actin monomers
(b)100 nm(a)

(c)

α β

8 nm

side

end25 nm

    Fig. 3.1      (a) Two spectrin chains intertwine in a fi lament, where the boxes represent regions in which the 

protein chain has folded back on itself (as in the inset). The two strings are stretched and separated for 

clarity. (b) Monomers of G-actin associate to form a fi lament of F-actin, which superfi cially appears 

like two intertwined strands. (c) Microtubules usually contain 13 protofi laments, whose elementary 

unit is an 8 nm long dimer of the proteins   α   and   β   tubulin. Both side and end views of the cylinder are 

shown.  
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microtubule consisting of 13 linear protofi laments (in almost all cells), 
as shown in Fig. 3.1(c). The overall molecular mass per unit length of a 
microtubule is about 160 kDa/nm, ten times that of actin. Tubulin is pre-
sent at concentrations of a few milligrams per milliliter in a common cell  ; 
given a molecular mass of 100 kDa for a tubulin dimer, a concentration of 
1 mg/ml corresponds to 10  μ  M . 

 Intermediate fi laments lie in diameter between microtubules and F-actin. 
As will be described further in Chapter 4, intermediate fi laments   are com-
posed of individual strands with helical shapes that are bundled together 
to form a composite structure with 32 strands. Depending on the type, an 
intermediate fi lament has a roughly cylindrical shape about 10 nm in diam-
eter and a mass per unit length of about 35 kDa/nm, with some variation. 
Desmin   and vimentin   are somewhat higher at 40–60 kDa/nm (Herrmann 
 et al .,  1999 ); neurofi laments   are also observed to lie in the 50 kDa/nm range 
(Heins  et al .,  1993 ). Further examples of composite fi laments are collagen 
and cellulose, both of which form strong tension-bearing fi bers with much 
larger diameters than microtubules. In the case of collagen, the primary 
structural element is tropocollagen  , a triple helix (of linear polymers) which 
is about 300 nm long, 1.5 nm in diameter with a mass per unit length of 
about 1000 Da/nm. In turn, threads of tropocollagen form collagen fi brils, 
and these fi brils assemble in parallel to form collagen fi bers. 

 The design of cellular fi laments has been presented in some detail in 
order to illustrate both their similarities and differences. Most of the fi la-
ments possess a hierarchical organization of threads wound into strings, 
which then may be wound into ropes. The fi laments within a cell are, to an 
order of magnitude, about 10 nm across, which is less than 1% of the diam-
eters of the cells themselves. As one might expect, the visual appearance of 
the cytoskeletal fi laments on cellular length scales varies with their thick-
ness. The thickest fi laments, microtubules, are stiff  on the length scale of 
a micron, such that isolated fi laments are only gently curved. In contrast, 
intertwined strings of spectrin are relatively fl exible: at ambient tempera-
tures, a 200 nm fi lament of spectrin adopts such convoluted shapes that 
the distance between its end-points is only 75 nm on average (for spectrin 
fi laments that are part of a network). 

 The biological rods and ropes of  a cell may undergo a variety of 
deformations, depending upon the nature of  the applied forces and the 
mechanical properties of  the fi lament. Analogous to the tension and 
compression experienced by the rigging and masts of  a sailing ship, some 
forces lie along the length of  the fi lament, causing it to stretch, shorten or 
perhaps buckle. In other cases, the forces are transverse to the fi lament, 
causing it to bend or twist. Whatever the deformation mode, energy may 
be required to distort the fi lament from its “natural” shape, by which 
we mean its shape at zero temperature and zero stress. Consider, for 
example, a uniform straight rod of  length  L  bent into an arc of  a circle of 
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radius  R , as illustrated in Fig. 3.2(a). Within a simple model introduced 
in  Section 3.2  for the bending of  rods, the energy  E  arc  required to perform 
this deformation is given by    

   E  arc  =   κ   f  L  / 2 R  2 ,   (3.1)  

 where   κ   f  is called the fl exural rigidity   of the rod: large   κ   f  corresponds to 
stiff  rods. Figure 3.2(b) displays how the bending energy   behaves accord-
ing to Eq. (3.1): a straight rod has  R  =  ∞  (an infi nite radius of curvature 
means that the rod is straight) and hence  E  arc  = 0, while a strongly curved 
rod might have  L / R  near unity, and hence  E  arc  >> 0, depending on the mag-
nitude of   κ   f . 

 The fl exural rigidity   of a uniform rod can be written as the product of its 
Young’s modulus    Y  and the moment of inertia of its cross section    I , 

    κ   f  =  I Y,   (3.2)  

 where  Y  and  I  refl ect the composition and geometry of the rod, respect-
ively. Stiff  materials, such as steel, have  Y  ~ 2 × 10 11  J/m 3 , while softer mate-
rials, such as plastics, have  Y  ~ 10 9  J/m 3 . The moment of inertia of the cross 
section,  I  (not to be confused with the moment of inertia of the mass, 
familiar from rotational motion), depends upon the shape of the rod; for 
instance, a cylindrical rod of constant density has  I  =  π  R  4 /4. Owing to its 
power-law dependence on fi lament radius, the fl exural rigidity of fi laments 
in the cell spans nearly fi ve orders of magnitude. 

 We know from Chapters 1 and 2 that the energy of an object in thermal 
equilibrium fl uctuates with time with an energy scale set by  k  B  T , such that 
an otherwise straight rod bends as it exchanges energy with its environ-
ment (see Fig. 3.3). The fl uctuations in the local orientation of a sinuous 
fi lament can be characterized by the persistence length     ξ   p  that appears in 
the tangent correlation function introduced in  Section 2.5 : the larger the 
persistence length, the straighter a section of a rod will appear at a fi xed 

(a)

L

R

(b)

1/R

Earc/L stiff
soft

   Fig. 3.2  

   Bending a rod of length  L  into 

the shape of an arc of radius  R  

(in part (a)) requires an input 

of energy  E  arc  whose magnitude 

depends upon the severity of the 

deformation and the stiff ness of 

the rod (b).  

    Fig. 3.3      Sample confi gurations of a very fl exible rod at non-zero temperature as it exchanges energy with its 

surroundings. The base of the fi lament in the diagram is fi xed. The confi guration at the far left is an arc 

of a circle subtending an angle of  L/R  radians.  
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viewing distance. Intuitively, we expect that   ξ   p  should be directly propor-
tional to the fl exural rigidity   κ   f  (stiffer fi laments are straighter) and inversely 
proportional to temperature  k  B  T  (colder fi laments are straighter). A mech-
anical analysis shows that the combination   κ   f  /  k  B  T  is in fact the   persistence 
length   ξ   p  of  the fi lament    

    ξ   p  =   κ   f  /  k  B  T  =  Y  I  /  k  B  T ,   (3.3)  

 as established in the treatment of shape fl uctuations in  Section 3.3 . 
 If  its persistence length is large compared to its contour length, i.e. 

  ξ   p  >>  L , a fi lament appears relatively straight and recognizable as a rod. 
However, if    ξ   p  <<  L , the fi lament adopts more convoluted shapes, such as 
that in Fig. 3.4(a). What is the likelihood that a particular fi lament will 
be observed in one of its contorted shapes, as opposed to a rod-like one? 
Using the end-to-end displacement  r  ee  as a measure, there are many con-
torted shapes with  r  ee  close to zero, but very few extended ones with  r  ee  
~  L , as illustrated in Fig. 1.13 and Fig. 2.8. If  there is little or no energy 
difference between these shapes compared to  k  B  T , then any specifi c confi g-
uration is as likely as any other and the fi lament will adopt a convoluted 
shape more frequently than a straight one. We can also view this conclusion 
in terms of entropy, which is proportional to the logarithm of the number 
of confi gurations available to a system (see Appendix C). The large family 
of shapes with  r  ee / L   ≈  0 contributes signifi cantly to the system’s entropy, 
while  r  ee / L   ≈  1 contributes much less.    

 Now consider what happens as we stretch a fl exible fi lament by pulling 
on its ends, as in Fig. 3.4(b). Stretching the fi lament reduces the number of 
confi gurations available to it, thus lowering its entropy; thermodynamics 
tells us that this is not a desirable situation – systems do not spontan-
eously lower their entropy, all other things being equal. Because of this, 
a force must be applied to the ends of the fi lament to pull it straight and 
the fi lament is elastic by virtue of its entropy, as explained in  Section 1.3 . 

    Fig. 3.4      Two samples from the set of confi gurations available to a highly fl exible fi lament. The end-to-end 

displacement vector  r  ee  is indicated by the arrow in part (a). The number of confi gurations available 

at a given end-to-end distance is reduced as a force  F  is applied to the ends of the fi lament in (a) to 

stretch it out like that in (b).  
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For small extensions, this force is proportional to the change in  r  ee  from 
its equilibrium value, just like Hooke’s Law for springs. In fact, the elastic 
behavior of convoluted fi laments can be represented by an effective spring 
constant    k  sp  given by 

   k  sp  = 3 k  B  T  / 2 L   ξ   p ,   (3.4)  

 which is valid for a fi lament in three dimensions near equilibrium (see 
 Section 3.4 ). 

 We have emphasized the role of entropy in the structure and elastic 
properties of the cell’s mechanical components simply because soft materi-
als are so common. However, deformations of the relatively stiff  compo-
nents of the cell are dominated by energetic considerations familiar from 
continuum mechanics. Under a tensile force  F , rods of length  L , cross-
sectional area  A  and uniform composition, stretch according to Hooke’s 
Law  F  =  k  sp   Δ  L , where the spring constant  k  sp  is given by  k  sp  =  YA  /  L . 
Under a compressive force, a rod fi rst compresses according to Hooke’s 
Law, but then buckles once a particular threshold    F  buckle  has been reached: 
 F  buckle  =  π  2   κ   f  /  L  2 . Microtubules may exhibit buckling during the cell division 
process of eukaryotic cells. 

 Thus, we see that fi laments exhibit elastic behavior with differing 
microscopic origins. At low temperatures, a fi lament may resist stretch-
ing and bending for purely energetic reasons associated with displacing 
atoms from their most energetically favored positions. On the other hand, 
at high temperatures, the shape of  a very fl exible fi lament may fl uctuate 
strongly, and entropy discourages such fi laments from straightening out. 
In  Sections 3.3  and  3.4 , we investigate these situations using the formal-
ism of statistical mechanics, but not until the bending of  rods is expressed 
mathematically in  Section 3.2 . The buckling of  rods under a compres-
sive load is studied in  Section 3.5 , following which our formal results are 
applied to the analysis of  biological polymers in  Section 3.6 . More details 
on the structure of  fi laments in the cytoskeleton can be found in Chapters 
7–9 of  Howard (2001).  

  3.2     Mathematical description of fl exible rods 

 The various polymers and fi laments in the cell display bending resistances 
whose numerical values span six orders of magnitude, from highly fl ex-
ible alkanes through somewhat stiffer protein polymers such as F-actin, 
to moderately rigid microtubules. Viewed on micron length scales, these 
fi laments may appear to be erratic, rambunctious chains or gently curved 
rods, and their elastic properties may be dominated by entropic or energetic 
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effects. In selecting a framework for interpreting the characteristics of cel-
lular fi laments, one can choose among several simple pictures of linear 
polymers, each picture emphasizing different aspects of the polymer. In 
this section, we view the fi lament as a smoothly curving rod in contrast to 
the wiggly segmented chain represented by a random walk (introduced in 
 Section 2.3 ). These two pictures of linear polymers overlap, of course, and 
there are links between their parametrizations. 

  3.2.1     Arc length and curvature 

 Our primary interest at cellular length scales are fi laments whose local 
orientation changes smoothly along their length. For the moment, the 
cross-sectional shape and material composition of the fi lament will be 
ignored so that it can be described as a continuous curve with no kinks or 
discontinuities. As displayed in Fig. 3.5(a), each point on the curve corres-
ponds to a position vector  r , represented by the familiar Cartesian triplet 
( x ,  y ,  z ). In Newtonian mechanics, we’re already familiar with the idea 
of describing the trajectory of a projectile by writing its coordinates as 
a function of time,  r ( t ), where  t  appears as a parameter. For the curve 
that represents a fi lament, we do something similar except  r  is written as 
a function of the arc length  s  [ r ( s ) or the triplet  x ( s ),  y ( s ),  z ( s )], where  s  
follows along the contour of the curve, running from 0 at one end to the 
full contour length  L  c  at the other. To illustrate how this works, consider 
a circle of radius  R  lying in the  xy  plane; the  x  and  y  coordinates of the 
circle are related to each other through the familiar equation  x  2  +  y  2  =  R  2 . 
In a parametric approach where the arc length  s  is used as a parameter, the 
coordinates are written as  x ( s ) =  R  cos( s / R ) and  y ( s ) =  R  sin( s / R ), where  s  
is zero at ( x , y ) = ( R ,0) and increases in a counter-clockwise fashion along 
the perimeter of the circle.    

 The function  r ( s ) contains all the information needed to describe a sinu-
ous curve, so that  r ( s ) can be used to generate other characteristics of the 

t(s) = unit tangent
vector

s = arc
length

1

2

r(s) = position

t1

t2

n1

n2Δs

ΔθRc

(a) (b)

    Fig. 3.5      (a) A point on the curve at arc length  s  is described by a position vector  r ( s ) and a unit tangent vector 

 t ( s ) =  ∂  r / ∂  s . (b) Two locations are separated by an arc length  Δ  s  subtending an angle  Δ   θ   at a vertex 

formed by extensions of the unit normals  n  1  and  n  2 . Extensions of  n  1  and  n  2  intersect at a distance  R  c  

from the curve.  
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curve such as its local orientation. One of these is the unit tangent vector    t  
that follows the direction of the curve as it winds its way through space, as 
shown in Fig. 3.5. In two dimensions, the ( x , y ) components of  t  are (cos  θ  , 
sin  θ  ), where   θ   is the angle between  t  and the  x -axis. For a short section of 
arc  Δ  s , over which the curve appears straight, the pair (cos  θ  , sin  θ  ) can be 
replaced by ( Δ  r  x / Δ  s ,  Δ  r   y  / Δ  s ), which becomes ( ∂  r  x / ∂  s ,  ∂  r  y / ∂  s ) in the infi nitesi-
mal limit, or 

   t ( s ) =  ∂  r / ∂  s .   (3.5)  

 Although Eq. (3.5) was derived as a two-dimensional example, it is valid in 
three dimensions as well. 

 How sinuous a curve appears depends on how rapidly  t  changes with  s . 
Consider two nearby positions on a curve, which are labeled 1 and 2 on 
the curve illustrated in Fig. 3.5(b). If  the curve were a straight line, the 
unit tangent vectors  t  1  and  t  2  at points 1 and 2 would be parallel; in other 
words, the orientations of the unit tangent vectors to a straight line are 
independent of position. However, such is not the case with curved lines. 
As we recall from introductory mechanics, the vector  Δ  t  =  t  2  –  t  1  is perpen-
dicular to the curve in the limit where positions 1 and 2 are infi nitesimally 
close. Thus, the rate of change of  t  with  s  is proportional to the unit nor-
mal vector to the curve  n , and we defi ne the proportionality constant to be 
the curvature    C  

   ∂  t / ∂  s  =  C  n ,   (3.6)  

 where  C  has units of inverse length. We can substitute Eq. (3.5) into (3.6) 
to obtain 

   C  n  =  ∂  2  r / ∂  s  2 .   (3.7)  

 Some care must be taken about the direction of  n . For example, consider 
the arc drawn in Fig. 3.5(b). Proceeding along the arc, one can see that  Δ  t  
from location to location points to the “inside” or concave side of the arc, 
not the convex side. 

 The reciprocal of   C  is the local radius of  curvature   of  the arc, as can 
be proven by extrapolating nearby unit normal vectors  n  1  and  n  2  to their 
point of  intersection. In Fig. 3.5(b), positions 1 and 2 are close by on 
the contour and they defi ne a segment that is approximately an arc of  a 
circle with radius  R  c . The segment has length  Δ  s  along the contour and 
subtends an angle  Δ   θ   =  Δ  s  / R  c  with respect to the location where  n  1  and 
 n  2  intersect. However,  Δ   θ   is also the angle between  t  1  and  t  2 ; that is,  Δ   θ   = 
| Δ  t | / t  = | Δ  t |, the second equality following from | t | =  t  = 1. Equating these 
two expressions for  Δ   θ   yields | Δ  t | / Δ  s  = 1/ R  c , which can be compared with 
Eq. (3.6) to give 

   C  = 1/ R  c .   (3.8)  
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 Lastly, the unit normal vector    n , which is  Δ  t  /| Δ  t |, can itself  be rewritten 
using | Δ  t | =  Δ   θ   

   n  =  ∂  t / ∂   θ  ,   (3.9)  

 in the limit where  Δ   θ    →  0.  

  3.2.2     Bending energy of a thin rod 

 The quantities  t ( s ),  n ( s ) and the local curvature  C  describe the shape of 
a fl exible rod or rope, but they do not tell us the fi lament’s dynamics. To 
understand the latter, we must fi nd the forces or energies involved in deform-
ing a fi lament by bending or twisting it. Suppose that we take a straight rod 
of length  L  c  with uniform density and cross section, and bend it into an arc 
with radius of curvature  R  c , as in Fig. 3.3. The   energy  E  arc  associated with 
this deformation is determined in many texts on continuum mechanics, 
and has the form (Landau and Lifshitz,  1986 ) 

   E  arc  / L  c  =   κ   f  / 2 R  c  2  =  Y  I  / 2 R  c  2 .   (3.10)  

 Recalling Eq. (3.2), the fl exural rigidity     κ   f  is equal to the product  Y  I , 
where  Y  is Young’s modulus   of  the material, and  I  is the moment of 
inertia of  the cross section (see Fig. 3.6). Young’s modulus appears in 
expressions of  the form [ stress ] =  Y  [ strain ], and has the same units as 
stress, since strain is dimensionless (see Appendix D for a review of  elas-
ticity theory). For three-dimensional materials,  Y  has units of  energy 
density, and typically ranges from 10 9  J/m 3  for plastics to 10 11  J/m 3  for 
metals.    

 The moment of inertia of the cross section    I  is defi ned somewhat simi-
larly to the moment of inertia of the mass: it is an area-weighted integral 
of the squared distance from an axis 

   I y =  ∫  x  2  d A ,   (3.11)  

 where the  xy  plane defi ned by the integration axes is a cross section per-
pendicular to the length of the rod, and d A  is an element of surface area 
in that plane. The subscript  y  on the moment  I  indicates that the bending 
deformation occurs around the  y -axis. It is generally advantageous to per-
form the integration in strips parallel to the  y -axis so that the strips have 
constant values of  x . For example, if  the rod is a cylinder of radius  R , 
the cross section has the shape of a solid disk with an area element d A  at 
position  x  given by d A  = 2( R  2  –  x  2 ) 1/2 d x , as shown in Fig. 3.6. Hence, for 
a   solid cylinder  

   

Iy

 
= ( )∫4 4.2 ( 1 2 4

0

x (2 (
R

/) d =1 2) d
/ π

   

solid cylinder (3.12)   

   Fig. 3.6  

   Section through a cylindrical 

rod showing the  xy  axes used to 

evaluate the moment of inertia 

of the cross section  I y in Eq. 

(3.11).  
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 Should the rod have a hollow core of radius  R  i , like a microtubule, then 
the moment of inertia  π  R  4 /4 of a solid cylinder would be reduced by the 
moment of inertia  π  R  i  4 /4 of the core: 

   I y =  π ( R  4  –  R  i  4 )/4.    hollow cylinder    (3.13)  

 Other rods of varying cross-sectional shape are treated in the end-of-chap-
ter problems. 

 The deformation energy per unit length of the arc in Eq. (3.10) is inversely 
proportional to the square of the radius of curvature, or, equivalently, is 
proportional to the square of the curvature  C  from Eq. (3.8). In fact, one 
would expect on general grounds that the leading order contribution to the 
energy per unit length must be  C  2 , just as the potential energy of an ideal 
spring is proportional to the square of the displacement from equilibrium. 
Alternatively, then, the energy per unit length could be written as  E  arc / L  = 
  κ   f  ( ∂  t / ∂  s ) 2 /2 by using Eq. (3.6), an expression that is slightly closer mathem-
atically to the functions representing the shape of the curve. For example, 
a straight line obeys  ∂  t / ∂  s  = 0, for which the bending energy   obviously van-
ishes. Further, there is no need for the curvature to be constant along the 
length of the fi lament, and the general expression for the total energy of 
deformation  E  bend  is, to lowest order,  

  
E s

Lc

bend f
2 d2s( ) ∂ ∂( )∫

c
/ 2) ∂(∫ ,

0∫∫   (3.14)   

 where the integral runs along the length of the fi lament. This form for  E  bend  
is called the Kratky–Porod model  ; it can be trivially modifi ed to represent 
a rod that is intrinsically curved even when it is not under stress.  

  3.2.3     Directional fl uctuations and persistence length 

 At zero temperature, a fi lament adopts a shape that minimizes its energy, 
which corresponds to a straight rod if  the energy is governed by Eq. (3.14). 
At non-zero temperature, the fi lament exchanges energy with its envir-
onment, permitting the shape to fl uctuate, as illustrated in Fig. 3.7(a). 
According to Eq. (3.14), the bending energy of a fi lament rises as its shape 
becomes more contorted and the local curvature along the fi lament grows; 
hence, the bending energy of the confi gurations increases from left to right 
in Fig. 3.7(a). Now, the probability  P ( E ) of the fi lament being found in a 
specifi c confi guration with energy  E  is proportional to the Boltzmann fac-
tor exp(−  β   E ), where   β   is the inverse temperature   β   = 1/  k  B  T  (see Appendix 
C for a review). The Boltzmann factor tells us that the larger the energy 
required to deform the fi lament into a specifi c shape, the lower the prob-
ability that the fi lament will have that shape, all other things being equal. 
Thus, a fi lament will adopt confi gurations with small average curvature if  
its fl exural rigidity is high or the temperature is low; the shapes will resem-
ble sections of circles, becoming contorted only at high temperatures.    
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 Let’s now examine the bending energy of a   specifi c fi lament that can 
sustain only gentle curves; its contour length is suffi ciently short that the 
curvature of the bend is constant. The shape can then be uniquely para-
metrized by the angle   θ   between the unit tangent vectors  t (0) and  t ( L  c ) at 
the two ends of the fi lament as in Fig. 3.7(b). This angle is the same as that 
subtended by the contour length (i.e.   θ   =  L  c / R  c ) because we have taken the 
shape to be an arc of a circle with a radius  R  c . Thus, each confi guration has 
a bending energy determined by the value of   θ   

   E  arc  =   κ   f   θ    2  / 2 L  c ,   (3.15)  

 where we have removed  R  c  from Eq. (3.10) in favor of    θ   by using  R  c  = 
 L  c /  θ  . 

 At non-zero temperature, the angle   θ   changes as the fi lament waves 
back and forth exchanging energy with its thermal environment: at 
higher temperatures, the oscillations have a larger amplitude and the 
fi lament samples larger values of    θ   than at lower temperatures. To char-
acterize the magnitude of  the oscillations  , we evaluate the mean value of 
  θ   2 , denoted by the conventional 〈   θ   2  〉. If  the fi lament has a fi xed length, 
〈   θ   2  〉 involves a weighted average of  the three-dimensional position sam-
pled by the end of  the fi lament. That is, with one end of  the fi lament 
defi ning the direction of  a coordinate axis (say the  z -axis), the other end 
is described by the polar angle   θ   and the azimuthal angle  φ , such that 
the ensemble average is 

  〈   θ    2  〉 =  ∫   θ    2   P ( E  arc )d  Ω   /  ∫   P ( E  arc )d  Ω  ,   (3.16)  

 where  E  arc  is given by Eq. (3.15) and where the integral must be performed 
over the solid angle d  Ω   = sin  θ    d   θ   d φ . The bending energy  E  arc  is independ-
ent of  φ , allowing the azimuthal angle to be integrated out, leaving 

increasing energy

t(Lc)

t(0)

Lc

Rc

θ

θ

(b)(a)

    Fig. 3.7      (a) Sample of confi gurations available to a fi lament; for a given   κ   f  the bending energy of the fi lament 

rises as its shape becomes more contorted. (b) If the fi lament is a section of a circle, the angle 

subtended by the contour length  L  c  is the same as the change in the direction of the unit tangent 

vector  t  along the arc.  
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  〈   θ    2  〉 =  ∫   θ   2   P ( E  arc ) sin  θ   d  θ   /  ∫   P ( E  arc ) sin  θ   d  θ  ,   (3.17)  

 where the range of   θ   in the integrals is 0 to 2 π . 
 In thermal equilibrium, the probability  P ( E  arc ) of fi nding a confi gur-

ation with a given bending energy  E  arc  is given by the Boltzmann factor 
exp(−  β   E  arc ), so that Eq. (3.17) becomes 

  〈   θ    2  〉 =  ∫    θ    2  exp(−  β   E  arc ) sin  θ   d  θ   /  ∫  exp(−  β   E  arc ) sin  θ   d  θ  .   (3.18)  

 According to Eq. (3.15), the bending energy  E  arc  rises quadratically 
with   θ  , with the result that the Boltzmann factor decays rapidly with   θ  . 
Conseqently, the sin  θ   factors in Eq. (3.18) are sampled only at small   θ  , 
and can be replaced by the small angle approximation sin  θ   ~   θ  . Hence, Eq. 
(3.18) becomes 

  〈   θ    2  〉 = (2 L  c  /   β    κ   f )  ∫   x  3  exp(− x   2 ) d x  /  ∫   x  exp(− x  2 ) d x ,   (3.19)  

 after substituting Eq. (3.15) for  E  arc  and changing variables to  x  = (  β    κ   f  / 
2 L  c ) 1/2   θ  . In the small oscillation approximation, the upper limits of the 
integrals in Eq. (3.19) can be extended to infi nity with little error, whence 
both integrals are equal to 1/2 and cancel out. Thus, the expression for the 
mean square value of   θ   is 

  〈   θ    2  〉  ≅  2 s  /   β    κ   f ,    small oscillations    (3.20)  

 where we have replaced  L  c  by the arc length  s  in anticipation of making the 
contour length a variable. The combination   β    κ   f  has the units of length, and 
is defi ned as the persistence length     ξ   p  of  the fi lament: 

    ξ   p   ≡    β    κ   f .   (3.21)  

 Note that, for thermal systems,   ξ   p  decreases with increasing temperature. 
 A directional persistence length   ξ   was introduced in  Section 2.5  by means 

of the tangent correlation function 〈  t (0) •  t ( s ) 〉, and we will now show that 
  ξ   and   ξ   p  are one and the same. Still assuming that the shapes of the fi la-
ment are arcs of circles, the ensemble average 〈  t (0) •  t ( s ) 〉 = 〈 cos  θ   〉, which 
has a maximum absolute value of unity because | t | = 1. At low tempera-
tures where   θ   is usually small, we again invoke the small approximation 
that leads from Eq. (3.18) to Eq. (3.19): cos  θ   ~ 1 –   θ    2 /2, permitting the 
correlation function to be written as 

  〈  t (0) •  t ( s ) 〉 ~ 1 – 〈   θ    2  〉/2.   (3.22)  

 The variance in   θ   in this small oscillation limit is given by Eq. (3.20), so 
that 

  〈  t (0) •  t ( s ) 〉 ~ 1 –  s /  ξ   p    ( s /  ξ   p  << 1),   (3.23)  

 where the arc length  s  now appears as a parameter: the equation is valid 
for fi laments of varying length. Equation (3.23) can be used to obtain the 
mean squared difference in the tangent vectors 

9780521113762c03_p61-104.indd   749780521113762c03_p61-104.indd   74 11/11/2011   7:20:40 PM11/11/2011   7:20:40 PM



Polymers75

  〈 [ t ( s ) –  t (0)] 2  〉 = 2 – 2〈  t (0) •  t ( s ) 〉 ~ 2 s /  ξ   p    ( s /  ξ   p  << 1).   (3.24)  

 When a fi lament’s contour length is short compared with   ξ   p , Eq. (3.23) 
correctly predicts that 〈  t (0) •  t ( L  c ) 〉 initially dies off  linearly as  L  c  grows. 
However, if   L  c  >>   ξ   p , the fi lament appears fl oppy and 〈  t (0) •  t ( L  c ) 〉 should 
vanish as the tangent vectors at the ends of  the fi lament become uncor-
related, a regime not included in Eq. (3.23) because it was derived in the 
limit of  small oscillations. Rather, the correct expression for the   tangent 
correlation function applicable at short and long distances is 

  〈  t (0) •  t ( s ) 〉 = exp(− s  /  ξ   p ),   (3.25)  

 from which we see that Eq. (3.23) is the leading order approximation 
via exp(− x ) ~ 1 −  x  at small  x . Intuitively, one would expect to obtain an 
expression like Eq. (3.25) by applying Eq. (3.23) repeatedly to successive 
sections of the fi lament; a more detailed derivation can be found in Doi 
and Edwards (1986).   

  3.3     Sizes of polymer chains 

 A function of both temperature and bending resistance, the persistence 
length of a fi lament sets the length scale of its thermal undulations. If  the 
contour length of the fi lament is much smaller than its persistence length, 
the fi lament can be viewed as a relatively stiff  rod undergoing only limited 
excursions from its equilibrium shape. In contrast, a very fl exible polymer 
samples an extensive collection of contorted shapes with erratically chan-
ging directions. Do the confi gurations in this collection have any large scale 
characteristics, or are they just an unruly mob of rapidly changing tan-
gents and curvatures? If  the ensemble of confi gurations do have common 
or universal features, upon what properties of the fi lament do they depend? 
Here, we study several polymer families, characterized by their connectiv-
ity and interactions, to answer these questions. 

  3.3.1     Ideal chains and fi laments 

 In  Section 2.3 , we derive several properties of ideal random walks, and 
establish that the mean square value of the end-to-end displacement vec-
tor  r  ee  obeys 〈  r  ee  2  〉 =  Nb  2 , where  N  is the number of steps in the walk and 
 b  is the length of each step (assumed identical for all steps). We argue 
that fl exible polymers might be described by such walks, and apply the 
expression for 〈  r  ee  2  〉 to fl oppy proteins to demonstrate how the radius of 
its folded state should be much less than its contour length. We now per-
form the same kind of analysis to the continuous representation of fl exible 
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fi laments introduced in  Section 3.2 , rather than the segmented confi gura-
tions of  Section 2.3 . 

 We start with the conventional end-to-end displacement   vector  r  ee   ≡  
 r ( L  c ) –  r (0), where  r ( s ) is the continuous function that denotes the position 
of the fi lament at arc length  s . The mean square value of  r  ee  is then 

  〈  r  ee  2  〉 = 〈 [ r ( L  c ) –  r (0)] 2  〉.    (3.26)  

 The unit tangent vector  t ( s ) was introduced in Eq. (3.5) as a derivative of 
the position  r ( s ), which means that  r ( s ) at any location can be found by 
integrating  t ( s ), as in  

  
r r ts r u

s

( ) ( ) + ( )∫0
0

d  u .
  

 (3.27)   

 The representation of  r ( s ) in Eq. (3.27) can be substituted into Eq. (3.26) 
to yield  

  
〈 〉 = 〈 ( ) ( )〉∫ ∫∫ ∫ t〈〉 = tee

c c

u)
L Lc cc c

0 0

• ,( )〉t v(t
   

(3.28)   

 after moving the ensemble average inside the integral. According to 
Eq. (3.25), the correlation function 〈  t ( s ) •  t (0) 〉 decays exponentially as 
exp(− s /  ξ   p ), which means that Eq. (3.28) can be rewritten as  

  
〈 〉 = −( )∫ ∫ee pd∫ exp

c c

vd∫ u v−
L Lc cc c

0 0

.)p/ ξ
   

(3.29)
   

 The absolute value operation in the exponential looks slightly awkward, 
but it can be handled by breaking the integral into two identical pieces 
where one integration variable is forced to have a value less than the other 
during integration:

  
〈 〉 = −[ ]( )∫ ∫ee p2 ∫ d∫ d∫ exp

c

vd∫ −
Lcc u

0 0

/ .)pξ
   

(3.30)   

 It is straightforward to solve this integral using a few changes of variables    

 

2

2 d exp  

p

0

p

c

c

(( )

d= 2 (( )

∫ ∫exp p( ))

∫ expexpexp

Lcc u

Lcc

/

ξp (∫p ) /d expd e p ( dd) d d vv expexp (

ξ

0

0

ξ ξξξ

ξ
ξ

p pξ ξξ

p
2

/

1

2 d  1 exp
c

−

w 1 exp
Lcc p

.

( )⎡⎣ ⎤⎦⎤⎤

1d= ξ 22 ( )⎡⎣⎡⎡⎡⎡ ⎤⎦⎤⎤∫
0   

(3.31)   
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 Evaluating the last integral gives 

   〈  r  ee  2  〉 = 2  ξ   p  L  c  – 2  ξ   p  2  [1 – exp(− L  c  /  ξ   p )].   continuous curve    (3.32)  

 This result simplifi es in two limits. If    ξ   p  >>  L  c , Eq. (3.32) reduces to 〈  r  ee  2  〉 1/2  = 
 L  c  using the approximation exp(− x ) ~ 1 –  x  +  x  2 /2… valid at small  x ; in this 
limit, the fi lament appears rather rod-like with an end-to-end displacement 
close to its contour length. At the other extreme where   ξ   p  <<  L  c , Eq. (3.32) 
is approximately 

  〈  r  ee  2  〉  ≅  2  ξ   p   L  c   (if   L  c  >>   ξ   p ),    (3.33)  

 implying that, over long distances compared to the persistence length, 〈  r  ee  2  〉 1/2  
grows like the square root of the contour length, not as the contour length 
itself. In other words, long polymers appear convoluted, and their average 
linear dimension increases much more slowly than their contour length. 

 The behavior of 〈  r  ee  2  〉 for continuous fi laments with   ξ   p  <<  L  c  is the same 
as that of ideal   segmented chains 〈  r  ee  2  〉 =  Nb  2  once  Nb  is replaced by the 
contour length  L  c  and the step size is identifi ed with 2  ξ   p  in Eq. (3.33) such 
that 

    ξ   p  =  b /2.   ideal chains     (3.34)  

 In other words, both descriptions show that the linear dimension of very 
fl exible fi laments increases as the square root of the contour length. The 
scaling behavior 〈  r  ee  2  〉 1/2  ~  N  1/2  or  L  c  1/2  in Eqs. (2.31) and (3.33) is referred to 
as  ideal  scaling. Note that our determination of the ideal scaling exponent 
does not depend on the dimension of the space in which the chain resides: 
random chains in two dimensions (i.e. confi ned to a plane) or three dimen-
sions both exhibit the same scaling behavior. 

 Ideal scaling of polymer chains can appear even if the orientations of 
neighboring segments are not completely random, although the persistence 
length of the polymer will not be  b /2. As an example, consider the usual set 
of bond vectors { b   i  } from which the end-to-end displacement vector is con-
structed via  r  ee  =  Σ   i  = 1, N    b   i  . In the freely rotating chain model, successive chain 
elements  b   i   and  b   i  + 1  are forced to have the same polar angle   α  , although the 
bonds may swivel around each other and each bond has the same length  b . 
As usual, the ensemble average 〈  r  ee  2  〉 has the formal representation 

 〈  r  ee  2  〉 = ∑  i   ∑  j   〈  b   i   •  b   j   〉, 

 but there are now restrictions present within 〈 ··· 〉. This model is solved in 
the end-of-chapter problems (see also Flory (1953), p. 414), and yields 

  〈  r  ee  2  〉 =  Nb  2  (1 – cos  α  ) / (1 + cos  α  ),    (3.35)  

 in the large  N  limit. 
 Now, 〈  r  ee  2  〉 1/2  in Eq. (3.35) obeys the scaling exponent  N  1/2 , demonstrat-

ing that self-intersecting freely rotating chains are ideal. Further, Eq. (3.35) 
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reduces to the form  Nb  2  if  the length scale is changed to  b  [(1 − cos  α  ) / 
(1 + cos  α  )] 1/2 , suggesting that an  effective bond length B  eff  can be defi ned for 
freely rotating chains via 

   B  eff  =  b  [(1 – cos  α  ) / (1 + cos  α  )] 1/2 ,    (3.36)  

 and 〈  r  ee  2  〉 is expressed as  NB  eff  2 . The effective bond length   is only one of the 
parametrizations commonly employed for ideal chains with  N  segments  : 

         NB  eff  2   

  〈  r  ee  2  〉 =     L c L K    (3.37)  

        2 L  c   ξ   p . 
 Another parametrization is the Kuhn length  ,  L K, defi ned in analogy with 
the monomer length: 〈  r  ee  2  〉 =  N K L K2 and  L  c  =  N K L K, with  N  K  the number of 
Kuhn lengths in the contour length.  

  3.3.2     Self-avoiding linear chains 

 Our treatment of random chains places no restriction on the interaction 
between chain segments: nothing in the mathematical representation of 
the chains prevents the displacement vectors from crossing one another. 
However, physical systems have an excluded volume that enforces self-
avoidance of the chain, as illustrated in Fig. 3.8 for two-dimensional chains. 
This steric interaction among the chain elements is important for chains 
in one-, two- and three-dimensional systems. As an illustration, consider 
the simple situation in which a chain lies along the  x -axis. Self-avoidance 
forbids the chain from reversing on itself  from one step to the next, so that 
the end-to-end distance must be just the contour length  Nb : i.e. 〈  r  ee  2  〉 1/2  ~ 
 N  1  for a straight chain in one dimension. But Eq. (2.31) shows that 〈  r  ee  2  〉 1/2  
for ideal chains scales like  N  1/2 ,  independent of embedding dimension . Thus, 
we conclude that in one dimension, self-avoidance of a chain dramatic-
ally affects its scaling properties:  N  1  for self-avoiding chains and  N  1/2  for 
ideal chains. Similar conclusions can be drawn for chains in two and three 
dimensions, although the scaling exponents are different. As shown by 
Flory, rather general arguments lead to the prediction that the scaling 
exponents   of self-avoiding linear chains should obey (see  Section 8.4 )       

    ν   FL  = 3 / (2 +  d ),    (3.38)  

 where  d  is the embedding dimension. Equation (3.38) gives   ν   FL  = 1, 3/4, 3/5 
and 1/2, in one to four dimensions, respectively, predictions which have 
been shown to be exact or nearly so. As the ideal scaling exponent can-
not be less than 1/2, Eq. (3.38) is not valid in more than four dimensions; 
hence, the effects of self-avoidance are irrelevant in four or more dimen-
sions and the scaling is always ideal.  

   Fig. 3.8  

   Self-avoidance changes the 

scaling properties of chains 

in one-, two- and three-

dimensional systems. In the 

two-dimensional confi gurations 

displayed here, (a) is a random 

chain and (b) is a self-avoiding 

chain.  

   Fig. 3.9  

   Sample confi gurations of a 

branched polymer (a) and 

a dense chain (b) in two 

dimensions. To aid the argument 

in the text, the chain in (b) 

consists of linked squares, which, 

when packed tightly together, 

cover an area ~ r  2  in two 

dimensions.  

⎧
⎨
⎩
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  3.3.3     Branched polymers 

 The polymers discussed in most of this text are linear chains; however, 
there are many examples of polymers with extensive side branches. The 
scaling behavior of such  branched polymers  should not be the same as sin-
gle chains, since branching adds more monomers along the chain length 
as illustrated in Fig. 3.9(a). Because a branched polymer has more than 
two ends, the end-to-end displacement has to be replaced by a different 
measure of the polymer size, such as the radius of gyration,  R  g  (see end-of-
chapter problems). The radius of gyration for branched polymers is found 
to have a scaling form 

  〈  R  g  2  〉 1/2  ~  N    ν   ,    (3.39)  

 where  N  is the number of polymer segments and   ν   = 0.64 and 0.5 in two 
and three dimensions, respectively (see  Section 8.4 ). In comparison, self-
avoiding linear chains have scaling exponents   of 3/4 and 0.59, respectively 
(see Eq. (3.38)), meaning that the spatial region occupied by branched 
polymers grows more slowly with  N  than does that of linear chains; i.e. 
linear chains are less dense than branched polymers. Fluid membranes also 
behave like branched polymers at large length scales (see  Section 8.4 ).  

  3.3.4     Collapsed chains 

 None of  the chain confi gurations described so far in this section is as 
compact as it could be. Consider a system of  identical objects, say squares 
in two dimensions or cubes in three dimensions, having a length  b  to the 
side such that each object has a “volume” of   b   d   in  d  dimensions, and  N  
of  these objects have a volume  Nb   d  . The confi guration of  the  N  objects 
with the smallest surface area is the most compact or the most  dense  
confi guration, as illustrated in Fig. 3.9(b), and we denote by  r  the linear 
dimension of  this confi guration. Ignoring factors of   π  and the like, the 
total volume  Nb   d   of  the most compact confi guration is proportional to  r   d  , 
so that  r  itself  scales   like 

   r  ~  N  1/ d   (dense).    (3.40)  

 Polymers can be made to collapse into their most dense confi gurations by 
a variety of experimental means, including changes in the solvent, and it 
is observed that the collapse of the chains occurs at a well-defi ned phase 
transition. 

 The scaling exponents of all the systems that we have considered in this 
section are summarized in Table 3.1. If  the chains are self-avoiding, 1/ d  rep-
resents the lower bound on the possible values of the scaling exponents for 
the “size” of the confi gurations, and the straight rod scaling of 〈  R  g  2  〉 1/2  ~  N  1  
represents the upper bound. One can see from the table that random or 
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self-avoiding chains, as well as branched polymers, exhibit scaling behavior 
that lies between these extremes.      

  3.4     Entropic elasticity 

 The distribution of  end-to-end displacements  r  ee  for random walks in 
one dimension was derived in  Section 2.3 ; viewing the walks as one-di-
mensional linear polymers, it was argued that entropy favored polymer 
confi gurations that were convoluted rather than straight. In this section, 
the analysis is extended to walks or polymer chains in three dimensions, 
which allows for a larger variety of  confi gurations. The three-dimen-
sional distributions confi rm that it is highly unlikely for a random chain 
to be found in a fully stretched confi guration: the most likely value of 
 r  ee  2  for a freely jointed chain is not far from its mean value of   Nb  2 , for 
chains with  N  links of  length  b . Consequently, as a polymer chain is 
made to straighten out by an external force, its entropy decreases and 
work must be done on the chain to stretch it: in other words, the polymer 
behaves elastically because of  its entropy  . Here, we will establish that the 
Hooke’s law spring constant associated with a polymer’s entropic resist-
ance to stretching increases with temperature as 3 k  B  T  /  Nb  2  for three-
dimensional chains. 

  3.4.1     Random chain in three dimensions 

 Let us briefl y revisit the results from  Section 2.3  for ideal random walks: 
the mean squared end-to-end displacement obeys 〈  r  ee  2  〉 =  Nb  2  in any 
dimension, while the probability distribution for  r  ee, x   in one dimension 
obeys  P ( x )  ∝  exp(− r  ee, x   2  / 2  σ   2 ), where   σ   2   ≡   Nb  2 . How does the probability 
change in three dimensions? By projecting their confi gurations onto a set 
of  Cartesian axes, as illustrated in Fig. 3.10, three-dimensional random 

 Table 3.1      Exponents for the scaling law 〈 R  g   2    〉   1/2    ~ N   ν    for ideal (or random) chains, self-
avoiding chains and branched polymers, as a function of embedding dimension d. Collapsed 

chains have the highest density and obey 〈 R  g   2   〉   1/2   ~ N1/d . 

Confi guration  d  = 2  d  = 3  d  = 4

Ideal chains 1/2 1/2 1/2
Self-avoiding chains 3/4 0.59 1/2
Branched polymers 0.64 1/2
Collapsed chains 1/2 1/3 1/4
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chains can be treated as three separate one-dimensional systems. For 
example, the  x -component of  the end-to-end displacement vector,  r  ee, x  , 
is just the sum of  the individual monomer vectors as projected onto the 
 x -axis:    

   r  ee, x   = ∑  i    b   i , x  ,    (3.41)  

 where  b   i , x   is the  x -projection of the monomer vector  b   i  . For freely jointed 
chains, the component  b   i , x   is independent of the component  b   i  + 1, x  , so the 
projections form a random walk in one dimension, although the  x -axis 
projections are of variable length even if  all monomers have the same  b  in 
three dimensions. If  the number of segments is large, the probability distri-
bution with variable segment length has the same form as the distribution 
with uniform segment length (Chapter 1 of Reif,  1965 ), 

   P ( x ) = (2 π   σ    x   2 ) −1/2  exp(− r  ee, x   2  / 2  σ    x   2 ),    (3.42)  

 except that the variance is given by 

    σ    x   2  =  N 〈  b   x   2  〉.    (3.43)  

 In this variance,  b  2  of  the strictly one-dimensional walk with fi xed step size 
has been replaced by 〈  b   x   2  〉  ≤   b  2  for variable step size. Of course, one could 
still say that Eq. (3.43) incorporates the strictly one-dimensional case, in 
that 〈  b   x   2  〉 =  b  2  if  the step size is constant. 

 It is straightforward to determine 〈  b   x   2  〉 even when the projected steps 
are of unequal length. The expectation of the step length in three dimen-
sions must have the form 

  〈  b  2  〉 = 〈  b  x  2  +  b  y  2  +  b  z  2  〉 = 〈  b  x  2  〉 + 〈  b  y  2  〉 + 〈  b  z  2  〉.   (3.44)  

 Because of symmetry, we anticipate that the mean projections must be the 
same along each of the Cartesian axes, so 

  〈  b  x  2  〉 = 〈  b  y  2  〉 = 〈  b  z  2  〉 =  b  2 /3.    (3.45)  

 Hence, the variance in Eq. (3.43) is 

    σ   3  2   ≡    σ    x   2  =  Nb  2 /3,     σ  3  2  in three dimensions   (3.46)  

 where we have introduced the new symbol   σ   3  just to avoid notational con-
fusion between one- and three-dimensional walks. 

 Equation (3.42) is the probability density for  r  ee  as projected onto the 
 x -axis. By symmetry, similar expressions exist for the  y - and  z -axis projec-
tions. These three distributions   can be combined to give the probability 
density for fi nding  r  ee  in a volume d x  d y  d z  centered on the specifi c position 
( x , y , z ), namely  P ( x , y , z ) d x  d y  d z . Thus,  P ( x , y , z ) is the product of the prob-
ability distributions in each of the Cartesian directions 

    P ( x , y , z ) =  P ( x )  P ( y )  P ( z ) = (2 π   σ   3  2 ) −3/2  exp[−( x  2  +  y  2  +  z  2 ) / 2  σ   3  2 ],   (3.47)  

x - axis
components

ree
random
chain 

ree, x

   Fig. 3.10  

   Projection of the segments of a 

two-dimensional chain onto the 

 x -axis.  
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 where   σ   3  2  is still given by Eq. (3.46), and where  x   ≡   r  ee, x  , etc. Equation 
(3.47) says that, of  all possible chain confi gurations, the most likely set 
of  coordinates for the tip of  the chain is (0,0,0), which is the coordinate 
origin of  the chain or random walk; it does  not  say that the most likely 
value of   r  ee  is zero. Indeed, the distribution of  the magnitude of   r  ee  must 
refl ect the fact that many different coordinate positions ( x , y , z ) have the 
same  r , although  r  ee  may point in various directions at that value of 
 r . The probability for the chain to have a radial end-to-end distance 
between  r  and  r  + d r  is  P rad( r ) d r , where  P rad( r ) is the probability per unit 
length obtained from 

   ∫  angle   P ( x , y , z ) d x  d y  d z  =  P rad( r ) d r .    (3.48)  

 Replacing d x  d y  d z  by the angular expression  r  2  d r  sin  θ   d  θ   d φ , the   θ   and 
 φ  integrals in Eq. (3.48) can be done immediately, as  x  2  +  y  2  +  z  2  =  r  2  so 
that there is no angular dependence on the right-hand side of Eq. (3.47). 
Thus, 

   P rad( r ) = 4 π  r  2  (2 π   σ   3  2 ) −3/2  exp(− r  2  / 2  σ   3  2 ).   (3.49)  

 It’s the extra factor of  r  2  outside of the exponential that shifts the most 
likely value of  r  ee  away from zero. 

 Figure 3.11 shows the behavior of Eq. (3.49), as well as the projection of 
the chain on the  x -axis. We can equate to zero the derivative of  P rad( r ) with 
respect to  r  to fi nd the most likely value of  r  ee . A summary of the results for 
ideal chains in three dimensions is:    

   r  ee, most likely  = (2/3) 1/2   N  1/2  b ,    (3.50)  

  〈  r  ee  〉 = (8/3 π ) 1/2   N  1/2  b ,    (3.51)  

 and, of course, 

  〈  r  ee  2  〉 =  Nb  2 .    (3.52)  

 Note that  r  ee  in Eqs. (3.50) and (3.51) is the scalar radius  r  ee  = ( r  ee  2 ) 1/2 .  

  3.4.2     Entropic elasticity 

 The probability distribution functions, as illustrated in Fig. 3.11, confi rm 
our intuition that far more chain confi gurations have end-to-end displace-
ments close to the mean value of  r  ee  than to the chain contour length  L  c . 
Being proportional to the logarithm of the number of confi gurations, the 
entropy  S  of  a polymer chain must decrease as the chain is stretched from 
its equilibrium length. Now the free energy of an ensemble of chains at a 
temperature  T  is  F  =  E  –  TS , which is simply  F  = − TS  for freely jointed 
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chains, since their confi gurations all have vanishing energy  E . Thus,  S  
decreases and  F  increases as the chain is stretched at non-zero tempera-
ture; in other words, work must be done to stretch the chain, and the chain 
is elastic by virtue of its entropy  . 

 Viewed as a spring obeying Hooke’s Law, the effective force constant 
of  a polymer chain can be extracted by comparing the distributions for 
the end-to-end displacement of  the chain with that of  an ideal spring, 
whose fl uctuations can be calculated using statistical mechanics. Now, 
a Hookean spring has a potential energy  V ( x ) equal to  k  sp  x  2 /2, where 
 x  is the displacement from equilibrium and  k  sp  is the force constant of 
the spring. Aside from an overall normalization factor, the probability 
distribution  P ( x ) for the spring displacement  x  is proportional to the 
usual Boltzmann factor exp(− E / k  B  T ), which becomes, for the Hooke’s 
Law potential 

    P ( x ) ~ exp(− k  sp  x  2  / 2 k  B  T ).    (3.53)  

 The probability distribution for the displacement of an ideal chain 
according to Eq. (3.42) is  P ( x ) ~ exp(− x  2 /2  σ   d  2 ), again aside from an overall 
normalization factor. Comparing the functional form of the two distri-
butions at large  x  gives  k  sp  =  k  B  T  /  σ   d  2 , where   σ   d  2  =  Nb  2 / d  for ideal chains 
embedded in  d  dimensions [the dimensionality can be seen from Eq. (3.46)]. 
Hence, in three dimensions, we expect 

    k  sp  = 3 k  B  T  /  Nb  2  = 3 k  B  T  / 2  ξ   p  L  c ,    k  sp  in three dimensions   (3.54)  

 using  L  c  =  Nb  and   ξ   p  =  b /2 for an ideal chain. Observe that  k  sp  increases with 
temperature, which is readily demonstrated experimentally by hanging a 

    Fig. 3.11      Probability distributions for random chains in three dimensions. Two cases are shown: the three-

dimensional distribution (red curve) as a function of  r  =  r  ee , and the  x -axis projection (blue curve) 

as a function of  x  =  r  ee, x   (  σ   2  = 1/2 in both distributions). The dashed vertical line is 〈  r  ee  〉 in three 

dimensions.  
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weight from an elastic band, and then using a device (like a hair dryer) to 
heat the elastic. The weight will be seen to rise as the elastic heats up, since 
 k  sp  increases simultaneously and provides greater resistance to the stretch-
ing of the elastic band by the weight.  

  3.4.3     Highly stretched chains 

 The Gaussian probability distribution, Eq. (3.42), gives a good description 
of chain behavior at small displacements from equilibrium. It predicts, 
from Eq. (3.54), that the force  f  required to produce an extension  x  in the 
end-to-end displacement is  f  = (3 k  B  T  / 2  ξ   p  L  c ) x , which can be rewritten as 

   x / L  c  = (2  ξ   p  / 3 k  B  T )  f .    (3.55)  

 If  the chain segments are individually inextensible, the force required 
to extend the chain should diverge as the chain approaches its maximal 
extension,  x / L  c   →  1. Such a divergence is not present in Eq. (3.55), indi-
cating that the Gaussian distribution must be increasingly inaccurate and 
ultimately invalid as an inextensible chain is stretched towards its con-
tour length. 

 Of course, the Gaussian distribution is only an approximate represen-
tation of freely jointed chains; fortunately, the force–extension relation of 
rigid, freely jointed rods can be obtained analytically  . For those familiar 
with the example, the problem is analogous to the alignment of spin vec-
tors in an external fi eld, where the spin vectors represent the projection of 
the polymer segments along the direction of the applied fi eld. It is straight-
forward to show (Kuhn and Grün,  1942 ; James and Guth,  1943 ; see also 
Flory,  1953 , p. 427) that the solution has the form 

   x / L  c  =  L (2  ξ   p    f  /  k  B  T ),    (3.56)  

 where  L ( y ) is the Langevin function 

    L ( y ) = coth( y ) – 1/ y .    (3.57)  

 Note that  x  in Eq. (3.56) is the projection of the end-to-end displacement 
along the direction of the applied force. For small values of  f , Eq. (3.56) 
reduces to the Gaussian expression Eq. (3.55); for very large values of  f , 
the Langevin function tends to 1 so that  x  asymptotically approaches  L  c  in 
Eq. (3.56), as desired. 

 The force–extension relation of  freely jointed rods provides a reason-
ably accurate description of  biopolymers. Its weakness lies in viewing 
the polymer as a chain of  rigid segments: thick fi laments such as micro-
tubules and DNA surely look more like continuously fl exible ropes than 
chains of  rigid rods. A more appropriate representation of  fl exible fi la-
ments can be derived from the Kratky–Porod energy expression, Eq. 
(3.14), and is referred to as the worm-like chain   (WLC). Although the 
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general form of  the WLC force–extension relationship is numerical, 
an accurate interpolation formula has been obtained by Marko and 
Siggia ( 1995 ): 

    ξ   p   f  /  k  B  T  = (1/4)(1 –  x / L  c ) −2  – 1/4 +  x / L  c .   (3.58)  

 Again, the force diverges in this expression as  x / L  c   →  1, as desired. Equation 
(3.58) and the freely jointed chain display the same behavior at both large 
and small forces, although their force–extension curves may disagree by as 
much as 15% for intermediate forces.   

  3.5     Buckling 

 The fi laments and sheets of a cell are subject to stress from a variety of 
sources. For example:

   the membrane and its associated networks may be under tension if  the • 
cell has an elevated osmotic pressure,  
  components within the cell such as vesicles and fi laments experience a • 
variety of forces as they are dragged by molecular motors,  
  inequivalent elements of the cytoskeleton may bear differentially the • 
compressive and tensile stresses of a deformation.    

 As described earlier, such forces in the cell generally have magnitudes in the 
piconewton range. For a comparison at a macroscopic scale, we calculate 
the force required to bend a strand of hair. The fl exural rigidity   κ   f  of  a solid 
cylindrical fi lament of radius  R  is equal to  π  YR  4 /4, where  Y  is the Young’s 
modulus of the material; with  R  = 0.05 mm and  Y  = 10 9  J/m 3  (typical of 
biomaterials), we expect   κ   f  = 5 × 10 −9  J • m for a strand of hair. With one 
end of a fi lament of length  L  held fi xed, the free end moves a distance  z  = 
 FL  3 /(3  κ   f ) when subjected to a transverse force  F  (see end-of-chapter prob-
lems). Thus, a force of 1.5 × 10 5  pN is required to move the free end of a 10 
cm strand through a distance of 1 cm. In other words, even this impercept-
ibly small force on our fi nger tip is fi ve orders of magnitude larger than the 
typical force on a fi lament in the cell. 

 Newton’s Third Law of mechanics tells us that a tensile stress on one 
component of a cell in equilibrium must be balanced by a compressive 
stress on another. In the design of bridges and houses, one often sees rigid 
beams and bars carrying either tension or compression. The simple truss 
in Fig. 3.12(a) demonstrates how a vertical load is distributed across three 
beams in a triangle: the two thick elements are under compression while 
the thin element at the base is subject only to tension. As a design, these 
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couplets may make effi cient use of materials because a tensile element, in 
general, needs only a fraction of the cross-sectional area of a compressive 
element to do its job properly. Space-fi lling structures built from compo-
nents that individually bear only tension or only compression include the 
so-called tensegrities, a two-dimensional example of which is drawn in Fig. 
3.12(b). Coined by R. Buckminster Fuller as  tensile-integrity structures  in 
1962, tensegrities are intriguing in that rigid compressive elements are often 
linked only by tension-bearing fl exible ropes. The possibility that tensegri-
ties can provide cells with rigidity at an economical cost of materials has 
been raised by Ingber (see Ingber,  1997 , and references therein; Maniotis 
 et al .,  1997 ). Certainly, the fi laments of the cell do span a remarkable range 
of bending stiffness – a microtubule is a million times stiffer than a spectrin 
tetramer – and these fi laments may be capable of forming a delicately bal-
anced network if  the cell could direct its assembly.    

 The importance of compression-bearing rods in the cell’s architecture 
depends upon their buckling resistance; in Fig. 3.12(b), the two compres-
sive elements will buckle if  the tension sustained by the ropes is too great. 
Buckling occurs when a force applied longitudinally to a bar exceeds a 
specifi c threshold value, which depends upon the length of the bar and 
its rigidity. We calculate this buckling threshold in two steps. First, we 
describe the bending of a beam or rod in response to an applied torque 
(leading to Eq. (3.63)), then we apply this equation to the specifi c problem 
of buckling. The calculation follows that of Chapter 38 of Feynmann  et al . 
( 1964 ); a more general treatment can be found in Section 21 of Landau 
and Lifshitz (1986). Readers not interested in the derivation may skip to 
Eq. (3.69) to see the application to microtubules. 

 Suppose that we gently bend an otherwise straight bar by applying a 
torque about its ends. A small segment of the now-curved bar would look 
something like Fig. 3.13(a), where the top surface of the bar is stretched 
and the bottom surface is compressed. Near the middle of the bar (depend-
ing in part on its cross-sectional shape) lies what is called the neutral sur-
face, within which there is no lateral strain with respect to the original 
shape. Let’s assume that the bend is very gentle and that the neutral surface 
runs through the midplane of the bar. Measured from the neutral surface, 
the radius of curvature  R  is taken to be constant on the small segment in 
the fi gure.    

 The segment has an arc length  s  along the neutral surface and a length 
 s  +  Δ  s  at a vertical displacement  y , where  Δ  s  > 0 when  y  > 0. Because the 
arcs in Fig. 3.13 have a common center of curvature, then by simple geom-
etry ( s  +  Δ  s )/ s  = ( R  +  y )/ R , or 

   Δ  s  / s  =  y / R .    (3.59)  

 However,  Δ  s  / s  is the strain in the longitudinal direction (the strain is 
the relative change in the length; see Appendix D), telling us that the 

(a)
load compression-

bearing bar

tension
bearing rope

(b)

fixed base

   Fig. 3.12  

   (a) Three elements linked in a 

triangle bearing a vertical load; 

two bars are under compression 

while the rope is under tension. 

(b) A two-dimensional tensegrity 

structure of ropes and bars: no 

two compression-bearing bars 

are attached.  
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longitudinal strain at  y  is equal to  y  / R . The stress that produces this strain 
is the force per unit area at  y , which we write as d F  /d A , where d A  is the 
unshaded region at coordinate  y  in the cross section displayed in Fig. 
3.13(b). Stress and strain are related through Young’s modulus  Y  by 

  [ stress ] =  Y  [ strain ]    (3.60)  

 which becomes d F  /d A  =  Yy  / R , or 

  d F  = ( yY  / R ) d A .    (3.61)  

 This element of force results in a torque around the mid-plane. Recalling 
from introductory mechanics that torque is the cross product of force and 
displacement, the torque must be equal to  y  d F , which can be integrated to 
give the bending moment  M : 

    M  =  ∫   y  d F  = ( Y  / R )  ∫   y  2  d A ,    (3.62)  

 after substituting Eq. (3.61) for the force; equivalently 

    M  =  Y  I  / R .    (3.63)  

 The quantity  I  made its debut in  Section 3.2  as the moment of inertia of 
the cross section, and has the form 

   I  =  ∫  cross section   y  2  d A , 

 where the integration is performed only over the cross section of the bar. 
 We now apply Eq. (3.63) to the buckling problem  , specifi cally the forces 

applied to the bar in Fig. 3.14. The coordinate system is defi ned with  x  = 0 
at one end of the bar, whose contour length is  L  c . Then, at any given height 
 h ( x ), the bending moment  M  arising from the force  F  applied to the ends 
of the bar is equal to    

    M ( x ) =  Fh ( x ),    (3.64)  

    Fig. 3.13      (a) An exaggerated view of a curved rod lying in the plane of the drawing; (b) the (solid) cylindrical 

rod in cross section. The arc length along the neutral surface is  s , which changes to  s  +  Δ  s  at a vertical 

displacement  y .  

hmax

x

h(x)

rod

FF

   Fig. 3.14  

   A rod subject to a suffi  ciently 

large compressive force  F  in 

its longitudinal direction will 

buckle. The deformed shape 

can be characterized by a 

function  h ( x ).  

9780521113762c03_p61-104.indd   879780521113762c03_p61-104.indd   87 11/11/2011   7:20:48 PM11/11/2011   7:20:48 PM



Rods and ropes88

 as expected from the defi nition of torque ( r × F ). We replace the moment 
using Eq. (3.63) to obtain 

   Y  I  / R ( x ) =  F h ( x ),   (3.65)  

 where we emphasize that the radius of curvature  R  is a function of pos-
ition by writing it as  R ( x ). From  Section 3.2 , the radius of curvature at a 
position  r  is defi ned by d 2  r /d s  2  =  n / R , where  s  is the arc length along the 
curve and  n  is a unit normal at  r . For gently curved surfaces, d 2  r /d s  2  can 
be replaced by d 2  h /d x  2 , so that 1/ R  = −d 2  h /d x  2  (the minus sign is needed 
because d 2  h /d x  2  is negative for our bent rod as drawn). Thus, Eq. (3.65) 
becomes 

  d 2  h /d x  2  = −( F  / Y  I ) h ( x ),    (3.66)  

 which is a differential equation for  h ( x ), showing that the second derivative 
of the height is proportional to the height itself. 

 From fi rst-year mechanics courses, we recognize this equation as having 
the same functional form as simple harmonic motion of a spring (d 2  x /d t  2   ∝  
− x ( t )), which we know has a sine or cosine function as its solution. For the 
specifi c situation in Fig. 3.14, the solution must be 

   h ( x ) =  h  max  sin( π  x  / L  c ),    (3.67)  

 where  h  max  is the maximum displacement of the bend, occurring at  x  =  L  c /2 
in this approximation. As required, Eq. (3.67) has the property that  h (0) = 
 h ( L  c ) = 0. What we are interested in is the allowed range of forces under 
which buckling will occur, and this can be found by manipulating the solu-
tion given by Eq. (3.67). Taking the second derivative of this solution 

  d 2  h /d x  2  = −( π / L  c ) 2   h  max  sin( π  x  / L  c ) = −( π / L  c ) 2  h ( x ).   (3.68)  

 The proportionality constant ( π / L  c ) 2  in Eq. (3.68) must be equal to the pro-
portionality constant  F  / Y  I  in Eq. (3.66). This yields 

   F  buckle  =  π  2  Y  I  / L  c  2  =  π  2   κ   f  / L  c  2 .    (3.69)  

 Now, this expression for the force is independent of  h  max . What does this mean 
physically? If the applied force is less than  F  buckle , the beam will not bend at 
all, simply compress. However, if  F  >  F  buckle , the rod buckles as its ends are 
driven towards each other. To fi nd out what happens at larger displacements, 
greater care must be taken with the expression for the curvature. This type of 
analysis can be applied to the buckling of membranes as well, and has been 
used to determine the bending rigidity of bilayers (Evans,  1983 ). 

 The simple fact that their persistence lengths are comparable to, or less 
than, cellular dimensions tells us that single actin and spectrin fi laments 
do not behave like rigid rods in the cell  . On the other hand, a microtubule 
appears to be gently curved, because its persistence length is ten to several 
hundred times the width of a typical cell (see Table 3.2). Can a microtubule 
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withstand the typical forces in a cell without buckling? Taking its persist-
ence length   ξ   p  to be 3 mm, in the mid-range of experimental observa-
tion, the fl exural rigidity of a microtubule is   κ   f  =  k  B  T   ξ   p  = 1.2 × 10– 23  J • m. 
Assuming 5 pN to be a commonly available force in the cell, Eq. (3.69) tells 
us that a microtubule will buckle if  its length exceeds about 5  μ m, not a 
very long fi lament compared to the width of some cells. If  10–20  μ m long 
microtubules were required to withstand compressive forces in excess of 
5 pN, they would have to be bundled to provide extra rigidity, as they are 
in fl agella.    

 Both of  these expectations for the bucking of  microtubules have been 
observed experimentally (Elbaum  et al .,  1996 ). When a single microtubule 
of  suffi cient length resides within a fl oppy phospholipid vesicle, the vesicle 
has the appearance of  an American football, whose pointed ends demar-
cate the ends of  the fi lament. As tension is applied to the membrane by 
means of  aspirating the vesicle, the microtubule ultimately buckles and 
the vesicle appears spherical. In a specifi c experiment, a microtubule of 
length 9.2  μ m buckled at a force of  10 pN, consistent with our estimates 
above. When a long bundle of  microtubules was present in the vesicle, the 
external appearance of  the vesicle resembled the Greek letter  φ , with the 
diagonal stroke representing the rigid bundle and the circle representing 
the bilayer of  the vesicle. In other words, although they are not far from 
their buckling point, microtubules are capable of  forming tension–com-
pression couplets with membranes or other fi laments. However, more 

 Table 3.2      Linear density    λ   p   (mass per unit length) and persistence length    ξ   p   of some 
biologically important polymers. For the proteins ubiquitin, tenascin and titin ,   λ   p   refers to the 

unraveled polypeptide . 

Polymer Confi guration   λ   p  (Da/nm)   ξ   p  (nm)

Long alkanes linear polymer ~110 ~0.5
Ubiquitin linear fi lament ~300 0.4
Tenascin linear fi lament ~300 0.42 ± 0.22
Titin linear fi lament ~300 0.4
Procollagen triple helix ~380 15
Spectrin two-strand 

fi lament
4500 10–20

DNA double helix 1900 53 ± 2
F-actin fi lament 16 000 (10–20)  ×  10 3 
Intermediate 

fi laments
32 strand 

fi lament
~50 000 (0.1–1)  ×  10 3 

Tobacco mosaic 
virus

~140 000 ~1  ×  10 6 

Microtubules 13  protofi laments 160 000 4–6  ×  10 6 
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fl exible fi laments such as actin and spectrin are most likely restricted to 
be tension-bearing elements.  

  3.6     Measurements of bending resistance 

 The bending deformation energy of a fi lament can be characterized by its 
fl exural rigidity   κ   f . Having units of [ energy  •  length ], the fl exural rigidity 
of uniform rods can be written as a product of the Young’s modulus  Y  
(units of [ energy  •  length  3 ]) and the moment of inertia of the cross section 
 I  (units of [ length  4 ]):   κ   f  =  Y  I . At fi nite temperature  T , the rod’s shape fl uc-
tuates, with the local orientation of the rod changing strongly over length 
scales characterized by the persistence length   ξ   p  =   κ   f  /  k  B  T , where  k  B  is 
Boltzmann’s constant. We now review the experimental measurements of 
  κ   f  or   ξ   p  for a number of biological fi laments, and then interpret them using 
results from  Sections 3.2 –3.5. 

  3.6.1     Measurements of persistence length 

 Mechanical properties of the principal structural fi laments of the 
 cytoskeleton – spectrin, actin, intermediate fi laments and microtubules – 
have been obtained through a variety of methods. In fi rst determining the 
persistence length   of spectrin, Stokke  et al . ( 1985 a) related the intrinsic 
viscosity of a spectrin dimer to its root-mean-square radius, from which 
the persistence length could be extracted via a relationship like Eq. (3.33). 
The resulting values of   ξ   p  covered a range of 15–25 nm, depending upon 
temperature. Another approach (Svoboda  et al .,  1992 ) employed optical 
tweezers to hold a complete erythrocyte cytoskeleton in a fl ow chamber 
while the appearance of the cytoskeleton was observed as a function of the 
salt concentration of the medium. It was found that a persistence length 
of 10 nm is consistent with the measured mean squared end-to-end dis-
placement 〈  r  ee  2  〉 of  the spectrin tetramer and with the dependence of the 
skeleton’s diameter on salt concentration. Both measurements comfortably 
exceed the lower bound of 2.5 nm placed on the persistence length of a 
spectrin  monomer  (as opposed to the intertwined helix in the cytoskeleton) 
by viewing it as a freely jointed chain of segment length  b  = 5 nm and 
invoking   ξ   p  =  b /2 from Eq. (3.34) (5 nm is the approximate length of each 
of approximately 20 barrel-like subunits in a spectrin monomer of contour 
length 100 nm; see Fig. 3.1(a)). 

 The persistence length   of F-actin has been extracted from the analysis of 
more than a dozen experiments, although we cite here only a few works as 
an introduction to the literature. The measurements involve both native and 
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fl uorescently labeled actin fi laments, which may account for some of the 
variation in the reported values of   ξ   p . The principal techniques include:

   (i)     dynamic light scattering, which has given a rather broad range of 
results, converging on   ξ   p  ~ 16  μ m (Janmey  et al .,  1994 );  

  (ii)     direct microscopic observation of the thermal fl uctuations of fl uo-
rescently labeled actin fi laments, as illustrated in Fig. 3.15. Actin fi l-
aments stabilized by phalloidin are observed to have   ξ   p  = 17–19  μ m 
(Gittes  et al .,  1993 ; Isambert  et al .,  1995 ; Brangwynne  et al .,  2007 ), 
while unstabilized actin fi laments are more fl exible, at   ξ   p  = 9 ± 0.5  μ m 
(Isambert  et al .,  1995 );   

  (iii)     direct microscopic observation of the driven oscillation of labeled 
actin fi laments give   ξ   p  = 7.4 ± 0.2  μ m (Riveline  et al .,  1997 ).       

  Taken together, these experiments and others indicate that the persist-
ence length of F-actin lies in the 10–20  μ m range, about a thousand times 
larger than spectrin dimers. 

 Microtubules have been measured with several of the same techniques 
as employed for extracting the persistence length   of actin fi laments. Again, 
both pure and treated (in this case, taxol-stabilized) microtubules have 
been examined by means of:

    (i)     direct microscopic observation of the bending of microtubules as 
they move within a fl uid medium, yielding   ξ   p  in the range of 1–8 mm 
(Venier  et al .,  1994 ; Kurz and Williams,  1995 ; Felgner  et al .,  1996 );  

    Fig. 3.15      Thermal fl uctuations of a rhodamine-labeled actin fi lament observed by fl uorescence microscopy at 

intervals of 6 s (bar is 5  μ m in length; reprinted with permission from Isambert  et al .,  1995 ; ©1995 by 

the American Society for Biochemistry and Molecular Biology).  
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   (ii)     direct microscopic observation of the thermal fl uctuations of micro-
tubules. Most measurements (Gittes  et al .,  1993 ; Venier  et al .,  1994 ; 
Kurz and Williams,  1995 ; Brangwynne  et al .,  2007 ) give a range of 1–6 
mm, and up to 15 mm in the presence of stabilizing agents (Mickey 
and Howard,  1995 ). More recent work which examines the depend-
ence of   ξ   p  on the microtubule growth rate confi rms the 4–6 mm range 
(Janson and Dogterom,  2004 );  

  (iii)     direct microscopic observation of the buckling of a single, long micro-
tubule confi ned within a vesicle under controlled conditions, leading 
to   ξ   p  = 6.3 mm (Elbaum  et al .,  1996 ), although one experiment gives 
notably lower values (Kikumoto  et al .,  2006 ).    

 Thus, the persistence length of microtubules is more than an order of 
magnitude larger than a typical cell diameter, with many measurements 
concentrated in the 4–6 mm range. Some experiments have reported that 
the fl exural rigidities of microtubules appears to depend on the length of 
the fi lament (Kis  et al .,  2002 ; Pampaloni,  2006 ), a situation that can arise 
when the shear modulus of a fi lament is much lower than its longitudinal 
Young’s modulus (Li  et al .,  2006a ). 

 The fi laments of the cytoskeleton are not the only polymers whose mech-
anical properties are important to the operation of the cell. For example, 
the packing of DNA into the restricted volume of the cell is a signifi cant 
challenge, given both the contour length and persistence length   of a DNA 
molecule. Measurements of the DNA persistence length date back at least 
two decades to the work of Taylor and Hagerman (1990), who found   ξ   p  = 
45 ± 1.5 nm by observing the rate at which a linear strand of DNA closes 
into a circle. Other experiments directly manipulate a single DNA mol-
ecule by attaching a magnetic bead to one end of the fi lament (while the 
other is held fi xed) and applying a force by means of an external magnetic 
fi eld. The resulting force–extension relation for DNA from bacteriophage 
lambda (a virus that attacks bacteria such as  E .  coli ) is found to be well-de-
scribed by the worm-like chain model, Eq. (3.58), which involves only two 
parameters – the contour length and the persistence length (Bustamante 
 et al .,  1994 ). As well as yielding a fi tted contour length in agreement with 
the crystallographic value, the procedure gives a fi tted persistence length 
of 53 ± 2 nm, in the same range as found earlier by Taylor and Hagerman. 
Yet another approach records the motion of a fl uorescently labeled DNA 
molecule in a fl uid (Perkins  et al .,  1995 ), the analysis of which gives   ξ   p  ~ 
68 nm (Stigter and Bustamante,  1998 ), a slightly higher value than that of 
unlabelled DNA. The torsion resistance of DNA is described in  Section 
4.3 ; note that   ξ   p  may depend strongly on experimental conditions (see, for 
example, Amit  et al .,  2003 ). 

 The above measurements are summarized in Table 3.2, which also dis-
plays the mass per unit length of the fi lament (from  Section 3.1 ). For 
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comparison, the table includes very fl exible alkanes   (from Flory,  1969 ) as 
well as the   proteins procollagen   (Sun  et al .,  2002 ),   tenascin   (Oberhauser 
 et al .,  1998 ),   titin   (Rief  et al .,  1997 ) and   ubiquitin   (Chyan  et al .,  2004 ). 
Single chains of the polysaccharide   cellulose   exhibit a range of persist-
ence lengths of 5–10 nm, depending on conditions (Muroga  et al .,  1987 ). 
The   tobacco mosaic virus   is a hollow rod-like structure with a linear dens-
ity similar to that of a microtubule and a persistence length to match. 
Experimentally, the fl exural rigidity of the virus on a substrate is obtained 
by observing the response of the virus when probed by the tip of an atomic 
force microscope (Falvo  et al .,  1997 ). The persistence lengths of intermedi-
ate fi laments are less well understood, with     ξ   p  of desmin   lying in the range 
0.1 to 1  μ m as measured by dynamic light scattering (Hohenadl  et al .,  1999 ). 
In this case and several others, the persistence length quoted in Table 3.2 
is found from the fl exural rigidity via Eq. (3.21). The persistence length   
of fi brin   protofi laments with a radius of 10 nm has been measured to be 
0.5  μ m (Storm  et al .,  2005 ).  

  3.6.2      ξ  p  and Young’s modulus 

 The measured persistence lengths in Table 3.2 span more than six orders of 
magnitude, a much larger range than the linear density, which covers about 
three orders of magnitude  . We can understand this behavior by viewing the 
polymers as fl exible rods, whose fl exural rigidity from Eq. (3.2) is 

    κ   f  =  Y  I ,    (3.70)  

 and whose corresponding persistence length, according to Eq. (3.21), is 

    ξ   p  =  Y  I  /  k  B  T ,    (3.71)  

 where the moment of inertia of the cross section for hollow rods of inner 
radius  R  i  and outer radius  R  is (from Eq. (3.13)) 

   I  =  π ( R  4  –  R  i  4 )/4. 

 For some hollow biofi laments like the tobacco mosaic virus, for which 
 R  / R  i  ~ 4.5, only a small error is introduced by neglecting  R  i  4  in the expres-
sion for  I , so that 

    ξ   p   ≅   π  YR  4  / 4 k  B  T ,    (3.72)  

 although we note that this expression is in error by a factor of two for 
microtubules ( R  ~ 14 nm and  R  i  ~ 11.5 nm; see Amos and Amos,  1991 ). 
Being raised to the fourth power,  R  must be known relatively well to make 
an accurate prediction with Eq. (3.72). Such is not always the case, and a 
somewhat gentler approach which, in some sense averages over the bumpy 
atomic boundary of a molecule, replaces  R  2  by the mass per unit length   λ   p  
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using the relationship   λ   p  =   ρ   m  π  R  2  for a cylinder, where   ρ   m  is the mass per 
unit volume. Thus, we obtain 

    ξ   p   ≅  ( Y  / 4 π  k  B  T   ρ   m  2 )   λ   p  2 ,    (3.73)  

 which implies that the persistence length should be proportional to the 
square of the mass per unit length, if   Y  and   ρ   m  are relatively constant from 
one fi lament to the next. 

 Data from Table 3.2 are plotted logarithmically in Fig. 3.16 as a test of 
the quadratic dependence of   ξ   p  on   λ   p  suggested by Eq. (3.73). With the 
exception of spectrin, which is a loosely intertwined pair of fi laments, the 
data are consistent with the fi tted functional form   ξ   p  = 2.5 × 10– 5    λ   p  2 , where 
  ξ   p  is in nm and   λ   p  is in Da/nm. Because the data span so many orders of 
magnitude, the approximations (such as constant  Y  and   ρ   m ) behind the 
scaling law are supportable, and the graph can be used to fi nd the Young’s 
modulus of a generic biofi lament. Equating the fi tted numerical factor 
2.5 × 10 −5  nm 3 /Da 2  with  Y  / 4 π  k  B  T   ρ   m  2  gives  Y  = 0.5 × 10 9  J/m 3  for  k  B  T  = 
4 × 10 −21  J and   ρ   m  = 10 3  kg/m 3  (which is the density of water, or roughly the 
density of many hydrocarbons). Although no more accurate than a factor 
of two, this value of  Y  is in the same range as  Y  = 1–2 × 10 9  J/m 3  found 
for collagen (linear density of 1000 Da/nm; for collagen fi brils, see Shen 
 et al .,  2008 ), but much smaller than that of dry cellulose (8 × 10 10  J/m 3 ) 
or steel (2 × 10 11  J/m 3 ). Of course, Eq. (3.73) can be applied to individ-
ual fi laments if  their radii and persistence lengths are suffi ciently well 
known, yielding  Y  ~ (0.5–1.5) × 10 9  J/m 3  for most fi laments. An analysis 
of the indentation of microtubules using an AFM tip yields 0.6 × 10 9  J/
m 3  (Schaap  et al .,  2006 ). Note that the Young’s modulus of individual 

    Fig. 3.16      Logarithmic plot of persistence length   ξ   p  against linear density   λ   p  for the data in Table 3.2. The 

straight line through the data is the function   ξ   p  = 2.5  ×  10– 5    λ   p  2 , where   ξ   p  is in nm and   λ   p  is in 

Da/nm.  
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fi laments may be strongly hydration dependent; for example, intermediate 
fi laments from hagfi sh slime possess a Young’s modulus that drops from 
3.6 × 10 9  J/m 3  when dry to just 0.006 × 10 9  J/m 3  when hydrated (Fudge and 
Gosline,  2004 ). The decrease of  Y  upon hydration of a fi lament is observed 
for collagen fi brils as well (van der Rijt  et al .,  2006 ).     

  3.6.3     Filament confi gurations in the cell 

 Knowing their fl exural rigidities, how do we expect cytoskeletal fi laments 
to behave in the cell? As one representative situation, we examine microtu-
bules, which can easily be as long as a typical cell is wide (say 10  μ m) and 
have a persistence length one hundred times the cell diameter. Microtubules 
should not display very strong thermal oscillations, and indeed Eq. (3.20) 
demonstrates that the root mean square angle of oscillation 〈   θ   2  〉 1/2  is about 
a tenth of a radian (or about 6°) for a sample microtubule with  L  c  = 10  μ m 
if  the persistence length is in the mid-range of the experimental values, say 
  ξ   p  = 2 × 10 3   μ m. This doesn’t mean that microtubules in the cell behave quite 
like steel rods in a plastic bag, as can be seen by the image in Fig. 3.17(a), 
but a generous amount of energy is required to give our sample micro-
tubule a substantial curvature: for example, Eq. (3.10) for  E  arc  becomes 
 E  arc  = (  ξ   p  / 2 L  c )  k  B  T  when  R  c  =  L  c , and this yields  E  arc  = 100  k  B  T  for  R  c  =  L  c  = 

(a) (b)

    Fig. 3.17      (a) Microtubules, with a persistence length in the millimeter range, are relatively stiff  on cellular 

length scales (image is about 10  μ m across, reprinted with permission from Osborn  et al .,  1978 ; 

©1978 by the Rockefeller University Press), in contrast to spectrin (b), which has a persistence length 

fi ve orders of magnitude smaller as seen in the human erythrocyte (distance between actin nuggets 

is about 100 nm; reprinted with permission from Coleman  et al .  1989 ; ©1989 by Wiley-Liss; image 

prepared by John Heuser, Washington University; see also Heuser,  1983 ).  
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10  μ m. Indeed, Elbaum  et al . ( 1996 ) observe that a single microtubule with 
a length longer than the mean diameter of an artifi cial vesicle can cause the 
vesicle to deform into an ovoid.    

 Having a persistence length about one-tenth of  its contour length, a 
spectrin tetramer should appear contorted on cellular length scales. In 
fact, its mean end-to-end displacement 〈  r  ee  2  〉 1/2  is just 75 nm, which is 
only one-third of  its contour length (200 nm), so the tetramers form a 
sinuous web when joined to form a network, as shown in Fig. 3.17(b). 
Thus, the network of  spectrin tetramers in the human erythrocyte cyto-
skeleton can be stretched considerably to achieve a maximum area that 
is (200/75)2 ~ 7 times its equilibrium area. As discussed in  Section 3.4 , 
highly convoluted chains such as spectrin resist extension, behaving like 
entropic springs with a spring constant  k  sp  = 3 k  B  T  / 2  ξ   p  L  c  in three dimen-
sions, from Eq. (3.54). Our spectrin tetramer, then, has a spring constant 
of  about 2 × 10 −6  J/m 2 , which, although not a huge number, helps provide 
the cytoskeleton with enough shear resistance to restore a red cell to its 
equilibrium shape after passage through a narrow capillary. Lastly, we 
recall from the defi nition   ξ   p  =   κ   f  /  k  B  T  that the persistence length should 
decrease with temperature, if  the fl exural rigidity is temperature-inde-
pendent. The temperature- dependence of  the elasticity of  biofi laments 
has not been as extensively studied as that of  conventional polymers, but 
Stokke  et al . ( 1985 a) do fi nd that the persistence length decreases with 
temperature roughly as expected for an entropic spring.  

  3.6.4     Filamentous cells 

 Many genera of cells form long fi laments whose appearance ranges from 
beads on a string to relatively rigid rods. Two examples from the world 
of cyanobacteria are displayed in Fig. 2.1. The mechanical deformation 
of these fi laments can be analyzed within the same formalism introduced 
earlier in this chapter: each fi lament possesses an intrinsic resistance to 
bending, twisting, etc. Yet there are few direct measurements of fi lament 
elasticity based on conventional stress–strain curves, in which the deform-
ation of a fi lament is observed in response to a known applied stress. 
Further, the thermal fl uctuations in overall fi lament shape are relatively 
tiny compared to what they are on a molecular level (see end-of-chapter 
problems), eliminating this approach as an appropriate technique for 
extracting elastic parameters. However, the scaling behavior of the fl exural 
rigidity can be probed by constructing a tangent correlation function for 
randomly stirred fi laments in a fl uid, and one fi nds that   κ   f  increases like  R  4  
or perhaps  R  3  with increasing fi lament radius  R  for fi lamentous cyanobac-
teria within a given genus.   
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  Summary 

 Sometimes criss-crossing the interior of a cell, sometimes forming a mat 
or wall around it, the biological chains and fi laments of the cell range in 
diameter up to 25 nm and have a mass per unit length covering more than 
three orders of magnitude, from ~100 Da/nm for alkanes to 160 kDa/nm 
for microtubules. A simple mathematical representation of these fi laments 
views them as structureless lines characterized by a position  r ( s ) and tan-
gent vector  t ( s ) =  ∂  r ( s )/ ∂  s , where  s  is the arc length along the line. The low-
est order expression for the energy per unit length of deforming a fi lament 
from its straight-line confi guration is (  κ   f /2)( ∂  t ( s )/ ∂  s ) 2 , where   κ   f  is the fl ex-
ural rigidity of the fi lament. 

 At non-zero temperature, fi laments can exchange energy with their sur-
roundings, permitting their shapes to fl uctuate as they bend and twist. 
Their orientation changes direction with both position and time, such that 
the direction of the tangent vectors to the fi lament decays as 〈  t (0) •  t ( s ) 〉 
= exp(− s /  ξ   p ) due to thermal motion, where the persistence length   ξ   p  =   κ   f  / 
 k  B  T  depends upon the temperature  T  ( k  B  is Boltzmann’s constant). Also, 
because of fl uctuations, the squared end-to-end displacement  r  ee  of  a fi la-
ment is less than its contour length  L  c , having the form 〈  r  ee  2  〉 = 2  ξ   p  L  c  – 
2  ξ   p  2  [1 – exp(− L  c /  ξ   p )], which approaches the rigid rod limit 〈  r  ee  2  〉 1/2  ~  L  c  
only when   ξ   p  >>  L  c . In comparison, long fi laments with relatively short 
persistence lengths obey the form 〈  r  ee  2  〉 = 2  ξ   p  L  c , showing that the linear size 
of sinuous fi laments grows only like the square root of the contour length, 
a property of all linear chains in which self-avoidance is neglected. When 
self-avoidance is enforced, the exponent  n  in the scaling relation 〈  r  ee  2  〉 1/2   ∝  
 L  c  n  is dimension-dependent, achieving ideal behavior  n  = 1/2 only in four 
dimensions. Branched polymers or linear chains with attractive interac-
tions display still different scaling behavior. 

 At fi nite temperature,  r  ee  does not have a unique value but rather is distrib-
uted according to a probability per unit length of the form  P ( x ) = (2 π   σ   2 ) −1/2  
exp(− x  2  / 2  σ   2 ) for fi laments in one dimension, where  x  is the displacement 
from one end of the polymer chain to the other. For freely jointed chains 
with  N  identical segments of length  b , the variance is given by   σ   2  =  Nb  2 / d , 
where  d  is the spatial dimension of the chain. This distribution demon-
strates that a chain is not likely to be found in its fully stretched confi gur-
ation  r  ee  =  L  c  because such a confi guration is strongly disfavored by entropy. 
Thus, the free energy of a fl exible chain rises as the chain is stretched from 
its equilibrium value of  r  ee , and the chain behaves like an entropic spring 
with a force constant  k  sp  = 3 k  B  T  / 2  ξ   p  L  c  = 3 k  B  T  / 〈  r  ee  2  〉 in three dimensions. 
The ideal spring behavior  f  =  k  sp  x  is valid only at small extensions and the 
probability distribution function  P ( x ) does not take into account the fact 
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that  P ( x > L  c ) = 0: the end-to-end displacement of the chain cannot exceed 
its contour length. As the chain becomes increasingly stretched, the rela-
tion between applied force and extension is much better described by the 
worm-like chain model, where   ξ   p   f  /  k  B  T  = (2(1 –  x / L  c )) −2  – 1/4 +  x / L  c . 

 The persistence lengths of  a variety of  the cell’s polymers and fi la-
ments have been measured, and they span the enormous range of  0.5 
nm for alkanes up to a few millimeters for microtubules. This behavior 
can be understood by viewing the fi lament as a fl exible rod of  uniform 
density and cross section, permitting the fl exural rigidity to be written 
as   κ   f  =  Y  I , where  Y  is the material’s Young’s modulus. The moment of 
inertia of  the cross section  I  has the form  I  =  π ( R  4  –  R  i  4 )/4 for a hollow 
tube of  inner and outer radii  R  i  and  R , respectively, predicting that the 
persistence length has the form   ξ   p  =  π  Y ( R  4  –  R  i  4 ) / 4 k  B  T . Treated as uni-
form rods, the fi laments of  the cell have Young’s moduli in the range 
(0.5 – 1.5) × 10 9  J/m 3 , which is about two orders of  magnitude lower than 
the moduli of  conventionally “hard” materials such as wood or steel, but 
comparable to plastics.  

  Problems 

  Applications 

  3.1.   The interiors of some cylindrically shaped bacteria are known to con-
tain fi laments that wind around the inside of the membrane, adopt-
ing the shape of a helix as they travel along the cylindrical part of the 
bacterium. Suppose the fi lament advances 3  μ m along the cylinder 
while it executes one complete turn, for a cylinder of diameter 1  μ m.

   (a)     What is the length of this section of the fi lament?  
  (b)     What angle   α   does it make with respect to a plane perpendicular 

to the cylindrical axis?    

  3.2.   Consider a large motor neuron running from the brain to the arm 
containing a core bundle of microtubules. Taking the persistence 
length of a microtubule to be 2 mm, what energy is required (in  k  B  T  
at 300 K) to bend a microtubule of length 20 cm into an arc of radius 
10 cm? 

  3.3.   Let   θ   be the angle characterizing the change in direction of a fi lament 
along its length. For a tobacco mosaic virus of contour length 250 nm, 
determine the value of 〈   θ   2  〉 1/2  arising from thermal fl uctuations. 
Quote your answer in degrees. 

  3.4.   Consider a piece of spaghetti 2 mm in diameter. If  the Young’s modu-
lus  Y  of  this material is 1 × 10 8  J/m 3 , what is the persistence length of 
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the spaghetti at  T  = 300 K? Is the result consistent with your everyday 
observations? 

  3.5.   Flagella are whip-like structures typically about 10  μ m long whose 
bending resistance arises from a microtubule core. Treating the fl a-
gellum as a hollow rod of  inner radius 0.07  μ m and outer radius 
0.1  μ m, fi nd its persistence length at  T  = 300 K if  its Young’s modu-
lus is 1 × 10 8  J/m 3 . Compare your result with the persistence length 
of  a single microtubule. ( Note: this approximation is not especially 
trustworthy .) 

  3.6.   What are the structural advantages for a microtubule to be hollow? 
Calculate the mass ratio and the fl exural rigidity ratio for a hollow 
microtubule with inner and outer radii 11.5 nm and 14 nm, respect-
ively, compared to a solid microtubule with the same outer radius. 
What is the most effi cient use of  construction materials such as pro-
teins to gain rigidity: one solid microtubule or several hollow ones? 

  3.7.   The virus bacteriophage-  λ   contains a string of 97 000 base pairs 
in its DNA. (a) Find the contour length of this DNA strand at 
0.34 nm/base-pair and compare it with the DNA persistence length. 
(b) If  the DNA is 2 nm in diameter, what is the radius of the small-
est spherical volume into which it can be packed? (c) If  this DNA 
becomes a random chain once released into a host cell, what is its 
root mean square end-to-end displacement? Compare your answers 
to parts (b) and (c) with the size of a typical bacterium. 

  3.8.   (a) Compare the root mean square end-to-end distance 〈  r  ee  2  〉 1/2  of  
strands of spectrin, actin and microtubules 200 nm in contour length, 
using both the exact and approximate expressions from  Section 3.3 . 
Comment on the difference between the results. (b) What is the effective 
spring constant (in N/m) in three dimensions for each type of protein, 
for fi laments with a contour length of 1 cm at 300 K? Use   ξ   p  = 15, 15 × 
10 3 , and 2 × 10 6  nm for spectrin, actin and microtubules, respectively. 

  3.9.   Consider a 30  μ m length of DNA, such as might be found in a virus. 
What force is required to stretch the DNA to an end-to-end displace-
ment  x  = 10, 20 and 25  μ m, according to (a) the Gaussian approxima-
tion and (b) the worm-like chain model of  Section 3.4 ? Quote your 
answer in N, and assume the temperature is 300 K. Comment on the 
accuracy of the Gaussian approximation. 

  3.10.   Eukaryotic cells package their DNA by wrapping short stretches of 
it around the rims of disk-shaped proteins called histones. In a typ-
ical situation, a 150 base-pair segment of DNA wraps itself  1.7 times 
around the histone core. (a) What is the curvature of the DNA? (b) 
What is the bending energy (in units of  k  B  T ) associated with this 
deformation if  the DNA persistence length is 53 nm? 
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  3.11.   Compare the two force–extension relations in Eqs. (3.55) and (3.58) 
by plotting   ξ   p  f  / k  B  T  against  x  / L  c . At what value of  x  / L  c  is the diffe-
rence between these curves the largest? 

  3.12.    Oscillatoria  is a genus of fi lamentous cyanobacteria that execute 
slow side-to-side movement with a typical angular range of 〈   θ   2  〉 1/2  ~ 
0.1. For the sake of illustration, take the length and diameter of an 
 Oscillatoria  fi lament to be 100 μm and 5 μm respectively, and its 
Young’s modulus to be 10 9  J/m 3 . (a) Determine 〈   θ   2  〉 1/2  arising from 
thermal oscillations and compare your result to the observed vari-
ation. (b) Find the buckling force applicable to this specimen. 

  3.13.   One end of a microtubule of length  L  = 5  μ m is subject to a lateral 
force of 0.5 pN while the other end is held fi xed. Assuming this fi la-
ment to have a persistence length   ξ   p  of  2 mm at room temperature, 
do the following.

   (a)     Find the lateral displacement  z  of  the free end of the microtubule; 
use the result from Problem 3.31 without proof and quote your 
answer in  μ m.  

  (b)     Estimate the angular displacement   θ   of  the free end by using  z  
from part (a).  

  (c)     Compare this result with 〈   θ   2  〉 1/2  from thermal fl uctuations.    

  3.14.   In a hypothetical system, two parallel plates are linked by a large 
number of identical polymer chains in parallel with each other. The 
polymers have a length of 50 nm and a persistence length of 0.5 nm.

   (a)     What is the entropic spring constant for each polymer at a tem-
perature of  T  = 300 K. Quote your answer in N/m.  

  (b)     If  the polymers uniformly cover an area of 1 cm 2  on each plate, 
how many of them are required to generate a macroscopic spring 
constant of 10 7  N/m between the plates?  

  (c)     What is the rough spacing between polymers in part (b)? For 
simplicity, assume that they are arranged in a square pattern on 
each plate. Quote your answer in nm and compare it with the 
contour length of the polymer.    

  3.15.   Find the ratio of the fl exural rigidities of the mast and rigging of an 
old sailboat. Use the following values for Young’s modulus  Y  and 
diameter of the components:

   mast:  • Y  = 10 10  J/m 3 , diameter = 30 cm,  
  ropes:  • Y  = 2  ×  10 9  J/m 3 , diameter = 5 cm.    

 Compare this ratio to that for microtubules and actin, using data 
from Table 3.2.  
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  Formal development and extensions 

 Some of the following problems require defi nite integrals for their 
solution.  

 

p 42 ( )2 = √
∞ ∞

∫ ∫exp  d  d( )2 = √ dd πp( ) √∫ /d2 ( )2 √2 π dexp2 ( )2 = √∫22 x exp2 (− x
0 0

p 84 ( )2 = √
∞ ∞

∫ ∫e p d3 exp( )2x exp3 exp(− x  1= 1 / de p4exp( )2 = √3∫2 ∫22
0 0

expexpexpexp(− π
      

  3.16.   The curvature  C ( s ) of a particular deformed fi lament of contour 
length  L  is described by the function  C ( s ) =  C  o  s / L , where  s  is the arc 
length along the fi lament.

   (a)     Draw the shape of the fi lament over the range 0  ≤   s   ≤   L  when 
 C  o  = 1/ L .  

  (b)     For a fl exural rigidity   κ   f , what is the bending energy of the 
deformation?    

  3.17.   The path of a uniform helix is described by the Cartesian 
coordinates: 

  x ( s ) =  a  cos(2 π  s / s  o ) 

  y ( s ) =  a  sin(2 π  s / s  o ) 

  z ( s ) =  ps  / s  o,  

 where  s  is the arc length,  s  o  = ( p  2  + (2 π  a ) 2 ) 1/2 , and the parameters  a  and 
 p  have the dimensions of length (the radius and pitch of the helix, 
respectively).

   (a)     Find the unit tangent vector and unit normal vector to the curve 
at arbitrary  s .  

  (b)     Obtain an expression for the local curvature  C .  
  (c)     Find the behavior of  C  in the two limits  a  >>  p  and  a  <<  p ; inter-

pret your results.    

  3.18.   Show that the curvature  C  of  the trajectory of a particle moving with 
velocity  v  and acceleration  a  can be found from the cross product 
| v  ×  a | =  Cv  3 . 

  3.19.   Consider a polymer such as a linear alkane, where the bond angle 
between successive carbon atoms is a fi xed value   α  , although the 
bonds are free to rotate around one another.

 bi+1

α

bi
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 The length and orientation of the bond between atom  i  and atom  i  + 1 
defi nes a bond vector  b   i  . Assume all bond lengths are the same, and 
that remote bonds can intersect.

   (a)     Show that the average projection of  b   i  +  k   on  b   i   is 

 〈  b   i   •  b   i  +  k   〉 =  b  2 (−cos  α  )  k  .   ( k   ≥  0) 

 [ Hint: start with  〈  b   i   •  b   i  + 1  〉  and iterate .]  

  (b)     Write 〈  r  ee  2  〉 in terms of 〈  b   i   •  b   j   〉 to obtain 

 〈  r  ee  2  〉/ b  2  =  N  [1 + (2–2/ N )(−cos  α  ) + (2–4/ N )(−cos  α  ) 2  + …].  

  (c)     Use your result from (b) to establish that, in the large  N  limit 

 〈  r  ee  2  〉 =  Nb  2  (1 – cos  α  ) / (1 + cos  α  ).  

  (d)     What is the effective bond length (in units of  b ) in this model at 
the tetrahedral value of 109.5°?    

  3.20.   The backbones of polymers such as the polysiloxanes have alter-
nating unequal bond angles,   even though the bond lengths are all 
equal.

 
β β

α αα
     

   (a)     Show that, if  self-intersections of this type of chain are permit-
ted, its effective bond length is  B  eff  2  =  b  2  (1 – cos  α  ) • (1 – cos  β  ) / 
(1 – cos  α   cos  β  ). [ Hint: follow the same steps as in Problem 3.19 .]  

  (b)     Confi rm that this expression reduces to the fi xed-angle rotating 
chain expression in Problem 3.19(c) when   α   =   β  .  

  (c)     Evaluate  B  eff  when   α   = 109.5 ° ,   β   = 130 °  and  b  = 0.17 nm.      

3.21.   Show that 〈 | r  ee | 〉 = (8/3 π ) 1/2  N  1/2  b  for ideal chains in three dimensions. 
  3.22.   The radius of gyration, or root mean square radius,  R  g  of  the  N +1 

vertices in a linear chain, is defi ned by 

  R  g  2  = [∑  i  = 1, N +1  ( r   i   –  r  cm ) 2 ] / ( N +1), 

 where  r  i  is the position vector of each of the  N +1 vertices and  r  cm  
is the center-of-mass position  r  cm  =  Σ   i   r   i   / ( N +1). Show that 〈  R  g  2  〉 = 
〈  r  ee  2  〉/6 for ideal chains. [Hint: recast the problem to read R g  2   ∝   Σ  Σ  r ij  2  
and then use 〈 r ij  2  〉 = |j – i|b 2  where  r  ij  is the displacement between verti-
ces i and j. Justify!] 

  3.23.   Find  r  ee, most likely  and 〈 | r  ee | 〉 for ideal chains in two dimensions. 
  3.24.   Suppose that a particle moves only in one direction at a constant 

speed  v  but changes direction randomly at the end of every time 
interval  Δ  t .
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   (a)     Find the diffusion coeffi cient  D  of  the motion as a function of  v  
and  Δ  t , given the diffusion equation 〈  x  2  〉 = 2 Dt .  

  (b)     Find the temperature dependence of  D  if  the kinetic energy of 
the particle is  k  B  T /2.    

  3.25.   Consider a three-dimensional ideal chain of 50 segments, each with 
length 10 nm.

   (a)     What are 〈 | r  ee | 〉 and 〈  r  ee  2  〉 1/2 ?  
  (b)     What is the effective spring constant (in N/m) at 300 K?  
  (c)     If  the chain has charges +/− e  on each end and is placed in a fi eld 

of 10 6  V/m, what is the change in the end-to-end distance?    

  3.26.   The results in the text for the distribution of  r  ee  for random chains 
in three dimensions can be generalized easily to random chains in  d  
dimensions. For chains whose  N  segments have a uniform length  b , 
show that:

   (a)     the distribution of end-to-end distances has the conventional 
Gaussian form, but with   σ    d   2  =  Nb  2 / d ,  

  (b)     the effective spring constant is  k  sp  =  dk  B  T  /  Nb  2 .    

  3.27.   Show that the fl exural rigidity   κ   f  of  a solid beam having a rectangu-
lar cross section of width  w  and thickness  t  is given by   κ   f  =  Ywt  3 /12, 
where the axis of the bending deformation is through the center of 
the rectangle as shown.

 

w

t

      

  3.28.   Consider a hollow rod with the cross section of a square as shown, 
where the length of a side is  a  and the thickness is  t . Determine the 
moment of inertia of the cross section of this shape in the limit where 
 t  <<  a . Place the axis of the bending motion through the center of the 
square.

 

a

t
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  3.29.   Determine the moment of inertia of the cross section  I  for the three 
regular-shaped rods with cross sections (S 1 , S 2 , H) as shown (the 
dashed line indicates the axis around which the rod is to bend).

 

a

a
a

a
a

S1

a

S2 H

      

 Take the length of all sides to be  a . Find the ratio of these moments 
to that of a cylinder of radius  R  ( I  =  π  R  4 /4), imposing the condition 
that all shapes have the same cross-sectional area  π  R  2  to express  a  in 
terms of  R . 

  3.30.   Two uniform cylindrical rods, each of  radius  R , are joined side by 
side as shown. What is the moment of  inertia of  the cross section  I 
 of  the combined pair? Compared to the fl exural rigidity of  a single 
rod (with a bending axis through its center), what is the rigidity of 
the pair? You may NOT use the parallel axis theorem.

 

R R

      

  3.31.   A massless rod of length  L  lies horizontally with one end free and 
one end held so that it can neither translate nor rotate. A force  F  is 
applied in the upward direction to the free end.

 For gentle bends, show that the displacement  z ( x ) of the rod at any 
horizontal position  x  is given by

    z ( x ) = ( F  / Y  I ) • ( Lx  2 /2 –  x  3 /6), 

 where  Y  and  I  are the beam’s Young’s modulus and moment of iner-
tia of the cross section. What is the displacement of the rod at  x  = 
 L ? [ Hint: fi nd the analog of Eq. (3.65) for a force perpendicular to the 
fi lament; after Chapter 38 of Feynmann et al .,  1964 ].   

    

z

L

F

x
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