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Appendix C extra - Partition function

This section introduces the partition function Z, a very useful tool for calculations
in statistical mechanics.  There is little new conceptual material here, although the
partition function is used to obtain several important relations.  Mathematical proofs in
the textbook largely avoid invoking the partition function.

Partition function

The unrestricted sum over the Boltzmann factor exp(-ßEα) appears so frequently
in statistical mechanics that it is given a special name, the partition function Z

Z ≡ e −ßE∑ . (Cx4.1)

This sum-over-states involves all accessible states  of the system.  The partition
function is useful for more than just notational convenience.  Consider the mean
energy, which we can write for discrete states as

E =
E e −ßE∑

e −ßE∑ .

The numerator of this expression can also be written as

E e−ßE∑ = −
ß

e −ßE∑ = −
ß

e −ßE∑ = −
ß

Z . (Cx4.2)

Therefore, we can write the mean energy in the elegant form

E = −
1
Z

Z

ß
= −

lnZ

ß
. (Cx4.3)

Written in terms of Z, fluctuations in the energy have an equally compact form.  The
mean squared deviation of the energy is defined as

∆E 2 = E − E ( )2
= E 2 −E 2 . (Cx4.4)

The mean energy has already been determined, so what we need next is to calculate
the mean square of the energy, starting with the analog of Eq. (Cx4.2)

E 2e −ßE∑ = − E
ß

e −ßE∑ = (−1)2
ß ß

e −ßE∑ =
2

ß 2 Z .

Similarly to Eq. (Cx4.3) then



Appendix C extra - Partition function Cextra4 - 2

© 2002 by David Boal, Simon Fraser University.  All rights reserved; further resale or copying is strictly prohibited.

E 2 =
1
Z

2Z

ß 2 . (Cx4.5)

Substituting Eq. (Cx4.5) and (Cx4.3) into (Cx4.4) gives:

∆E 2 = E 2 −E 2 =
1
Z

2Z

ß2 −
lnZ

ß

 
 

 
 

2

. (Cx4.6)

As cumbersome as this expression looks, it can be simplified.  We work backwards
from the second derivative of lnZ:

2 lnZ

ß2 =
ß

lnZ

ß

 
 

 
 

=
ß

1
Z

Z

ß

 
 

 
 

=
Z −1

ß
•

Z

ß
+

1
Z

2Z

ß2

= −
1

Z 2 •
Z

ß
•

Z

ß
+

1
Z

2Z

ß2

= − lnZ

ß

 
 

 
 

2

+ 1
Z

2Z

ß 2

This last line is just the right-hand side of Eq. (Cx4.6), leaving us with

∆E 2 =
2 lnZ

ß2 . (Cx4.7)

Fluctuations and specific heat

Eq. (Cx4.7) provides a compact derivation of the relationship between the
specific heat of a system and the fluctuations in its energy.  Start by breaking up the
derivative and substituting Eq. (Cx4.3):

∆E 2 =
ß

lnZ

ß
= −

ß
E .

Now the heat capacity CV is defined by

CV =
E 

T
. (Cx4.8)

To relate the derivative with respect to T to that with respect to ß is simple
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E 

ß
= T

ß

E 

T
= (kBß)−1

ß

E 

T

=
1

kB

(−1)
1

ß 2

E 

T

= −
1

kBß
2

E 

T

Inverting this expression (watch out for the T's), and substituting into Eq. (Cx4.8) gives

CV =
1

kBT
2 ∆E 2 . (Cx4.9)

From a theoretical perspective, this equation permits the extraction of energy
fluctuations from the specific heat.  Physically, it establishes that the faster the energy
of a system increases with temperature, the greater are the fluctuations in its energy.
That is, systems that require a lot of energy to increase their temperature (small
specific heat) have small energy fluctuations.

Work and Z

Suppose now that there is a change in one or more of the external parameters
h (for example, the volume) describing a system.  For a given energy state Eα, the
change associated with the change in h can be written as

∆hE =
E

h
dh .

The work done by the system as a consequence of this shift is

−
E

h
dh

according to the sign convention in the work-energy relation from thermodynamics

dE = d Q − d W ,

where Q is the heat absorbed by the system and d  indicates an infinitesimal quantity.
Hence, the work done by the system as a consequence of all the shifts in energy
states is

d W =
e −ßE − E

h
dh

 
 

 
 ∑

e −ßE∑ . (Cx4.10)
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The ensemble average is required because the system may roam between states.
Now, the derivative of the Boltzmann factor with respect to h can be written as

h
e −ßE = −ß

E

h
e −ßE .

Combining this with the definition of the partition function transforms (Cx4.10) to

d W =

1
ß h

e−ßE dh
 
 

 
 ∑

Z
=

1
ßZ h

Z dh =
1
ß

lnZ

h
dh .

What good does this do us?  In introductory physics courses, work is equal to the
product of a force acting through a distance.  Here, dh is the generalized distance, so
the generalized force must be

≡
1
ß

lnZ

h
. (Cx4.11)

For example, if the variable h is the volume, then the pressure must be

p =
1
ß

lnZ

V
.

Entropy and Z

To find the link between entropy and the partition function, we must determine
how Z varies with both temperature (since it depends on T, whereas  depends on E)
and observables like h.  With its dependence on T and h we write the change in lnZ as

d lnZ =
lnZ

h
dh +

lnZ

ß
dß . (Cx4.12)

Now, ∂lnZ /dh is just ß  (generalized force from Eq. [Cx4.11]).  The second term,
∂lnZ /dß, is the (negative) of the mean energy:

 
lnZ

h
= ß

lnZ

ß
= −E 

so Eq. (Cx4.12) becomes

d lnZ =ß dh − E dß = ßd W −E dß .

The last term can be rearranged using

d(ßE ) = E dß +ß dE ,
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to read

d lnZ =ß d W +ß dE − d (ßE )

or

d(lnZ +ßE ) = ß (d W +dE ) = ßd Q

With the replacement ß = (kBT)-1, the last line becomes

kB d (lnZ +ßE ) =
d Q

T
. (Cx4.13)

Now, this expression looks like the thermodynamic expression for entropy dS = d Q /T ,
if we identify

S = kB (lnZ +ßE ). (Cx4.14)

This can be reworked to give

TS = TkB lnZ +E 

or

E −TS = −TkB lnZ ≡ F

(Cx4.15)

where F is the Helmholtz free energy.


