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2.3                Sizes        of        polymer        chains    

A function of both temperature and bending resistance, the persistence length
of a filament sets the scale of its thermal undulations.  As will be seen in Sec. 2.5, the
persistence lengths of the polymers and filaments in the cell span an immense range,
from a thousand times smaller to a thousand times larger than the cellular length scale
of a micron.  If the contour length of the filament is much smaller than its persistence
length, the filament can be viewed as a relatively stiff rod undergoing only limited
excursions from its equilibrium shape.  In contrast, a filament with a short persistence
length compared to its contour length may appear highly convoluted and display a
large array of configurations.

The curve drawn in Fig. 2.11 might represent a filament with a contour length Lc

many times its persistence length p. The configuration is not excessively convoluted,
but would become more so as Lc grows much larger than p.  The direction of the
curve, as characterized by the unit tangent vector t(s) at arc length s, changes
constantly, such that its correlation function <t(s)•t(0)> decays exponentially with s as
exp(-s/ p).  Over small distances s << p (positions 1 and 2 on Fig. 2.11) the tangent
vector undergoes just a modest change in direction, while over large distances s >> p

(positions 1 and 3), the directions are uncorrelated.  Clearly, very flexible polymers
sample an extensive collection of contorted shapes with erratically changing
directions.  Do the configurations in this collection have any large scale characteristics,
or are they just an unruly mob of rapidly changing tangents and curvatures?  If the
ensemble of configurations do have common or universal features, upon what
properties of the filaments do they depend?  We discuss discuss several polymer
families, characterized by their connectivity and interactions, to answer these
questions.

Ideal chains and filaments

Our first investigation of polymer geometry is based upon the continuous
filament model introduced in Sec. 2.2.  From among the several different observables
that characterize the size of a polymer configuration, we choose to evaluate the end-
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Fig. 2.11.  Representative configuration of a filament whose contour length is many
times its persistence length p.  Positions 1 and 2 are separated by an arc length s with
s < p, while positions 1 and 3 have s >> p.  The displacement vector between the
ends of the filament is denoted by ree.
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to-end displacement vector ree = r(Lc) - r(0), where r(s) denotes the position of the
filament at arc length s (see Fig. 2.11).  The mean square value of ree is then

<ree
2> = <[r(Lc) - r(0)]2>. (2.24)

Integrating the unit tangent vector t(s) of Eq. (2.4)

r(s) = r(0) + ∫0
s du t(u), (2.25)

permits Eq. (2.24) to be recast as

<ree
2> = ∫0

Lc du ∫0
Lc dv <t(s)•t(0)>. (2.26)

According to Eq. (2.23), the correlation function <t(s)•t(0)> decays exponentially as
exp(-s/ p), leaving us to evaluate

<ree
2> = ∫0

Lc du ∫0
Lc dv exp( -|u-v| / p). (2.27)

The condition that the argument of the exponential must be negative can be enforced
by breaking the integral into two identical pieces where one integration variable is kept
less than the other:

<ree
2> = 2 ∫0

Lc du ∫0
u dv exp( -[u-v] / p), (2.28)

It is straightforward to solve this integral using a few changes of variables

2 ∫0
Lc exp(-u/ p) du ∫0

u dv exp(v/ p) = 2 ∫0
Lc du exp(-u/ p) • p • [exp(u/ p) – 1 ]

= 2 p
2 ∫0

Lc/ p dw [1 - exp(-w)]. (2.29)    

Evaluating the last integral gives

<ree
2> = 2 pLc - 2 p

2 [1 - exp(-Lc / p) ]. (2.30)

This equation simplifies in two limits.  If p >> Lc, Eq. (2.30) reduces to <ree
2>1/2 = Lc

using the approximation exp(-x) ~ 1 - x + x2/2... valid at small x; the filament appears
rather rod-like with an end-to-end displacement close to its contour length.  At the
other extreme where p << Lc, Eq. (2.30) is approximately

<ree
2> ≅ 2 p Lc (if Lc >> p), (2.31)

implying that, over long distances compared to the persistence length, <ree
2>1/2 grows

like the square root of the contour length, not as the contour length itself.  In other
words, long polymers appear convoluted, and their average linear dimension
increases much more slowly than their contour length.
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Fig. 2.12.  End-to-end displacement vector ree resulting from a chain with 4 segments.

Let's now repeat this calulation in a discrete representation to relate the
geometry of a continuous polymer to its monomeric constituents.  The filament is
replaced by a chain of N segments each of which is described by a vector b i having
the same length and orientation as the segment.  From all N vectors along the chain,
one can construct the end-to-end displacement ree from

ree = Σ i=1,N b i, (2.32)

as illustrated graphically in Fig. 2.12.  Taking the ensemble average over all chains
with the same number of links N, the mean squared end-to-end displacement < ree

2> is

<ree
2> = Σ i Σ j < b i•b j>. (2.33)

Now we specialize to the case where all segments of the chain have the same length
b, although their orientations differ.  In a random chain, bond vector b i can assume any
orientation independent of b j, with the result that <b i•b j> vanishes.  Thus, the only
terms surviving in the double sum of Eq. (2.31) are the diagonal elements i = j, each of
which equals b2, so that a chain with random orientations obeys

<ree
2> = Nb2 (random chain). (2.34)

An alternate expression makes use of the contour length, Lc = Nb, of the chain

<ree
2> = Lcb. (2.35)

This expression is the same as that found in the continuum description in the limit
where Lc >> p, namely <ree

2> = 2 pLc, except that the persistence length p has been
replaced by b/2.  In other words, both descriptions show that the linear dimension of
very flexible filaments increases as the square root of the contour length.  The scaling
behavior <ree

2>1/2 ~ N1/2 or Lc
1/2 in Eqs. (2.31) and (2.34) is referred to as ideal scaling.

Note that our determination of the ideal scaling exponent does not depend on the
dimension of space in which the chain resides: random chains in two dimensions (i.e.,
confined to a plane) or three dimensions both exhibit the same scaling behavior.

Even if the bond geometry is somewhat restricted, ideal scaling still applies if
the chains are permitted to intersect themselves.  In the freely rotating chain model,
successive chains elements b i and b i+1 are forced to have the same polar angle ,
although the bonds may swivel around each other.  This model is solved in the
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problem set [see also Flory (1953), p. 414], and obeys

<ree
2> = Nb2 (1 - cos ) / (1 + cos ), (2.36)

in the large N limit.  Now, Eq. (2.36) has the same scaling exponent for <ree
2> as a

function of N as does Eq. (2.34), namely N1/2, demonstrating that self-intersecting freely
rotating chains are ideal.  Further, Eq. (2.36) reduces to (2.34) when the chain is
measured on a length scale of b [(1 - cos ) / (1 + cos )]1/2, suggesting that an effective
bond length Beff can be defined for freely rotating chains via

Beff = b [(1 - cos ) / (1 + cos )]1/2. (2.37)

The parametrizations of <ree
2> employed most commonly for ideal chains with N

segments are

NBeff
2

<ree
2> = Lc K (2.38)

2Lc p

where the Kuhn length, K, is defined in analogy with the monomer length: <ree
2> =

NK K
2 and Lc = NK K, with NK the number of Kuhn lengths in the contour length.

Self-avoiding linear chains

Our treatment of random chains places no restriction on the interaction between
chain segments: nothing in the mathematical representation of the chains prevents the
displacement vectors from crossing one another.  However, physical systems have an
excluded volume that enforces self-avoidance of the chain, as illustrated in Fig. 2.13
for two-dimensional chains.  This steric interaction among the chain elements is
important for chains in one-, two- and three-dimensional systems.  As an illustration,
consider the simple situation in which a chain lies along the x-axis.  Self-avoidance
forbids the chain from reversing on itself from one step to the next, so that the end-to-
end distance must be just the contour length Nb: i.e., <ree

2>1/2 ~ N1 for a straight chain
in one dimension.  But Eq. (2.34) shows that <ree

2>1/2 for ideal chains scales like N1/2,

      (a) (b)

Fig. 2.13.  Self-avoidance changes the scaling properties of chains in one-, two- and
three-dimensional systems.  In the two-dimensional configurations displayed here, (a)
is a random chain and (b) is a self-avoiding chain.

{
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independent of embedding dimension.  Thus, we conclude that in one dimension, self-
avoidance of a chain dramatically affects its scaling properties: N1 for self-avoiding
chains and N1/2 for ideal chains.  Similar conclusions can be drawn for chains in two
and three dimensions, although the scaling exponents are different.  As shown by
Flory, rather general arguments lead to the prediction that the scaling exponents of
self-avoiding linear chains should obey (see Sec. 6.4)

FL = 3 / (2+d), (2.39)

where d is the embedding dimension.  Eq. (2.39) gives FL = 1, 3/4, 3/5 and 1/2, in one
to four dimensions, respectively, predictions which have been shown to be exact or
nearly so.  As the ideal scaling exponent cannot be less than 1/2, Eq. (2.39) is not valid
in more than four dimensions; hence, the effects of self-avoidance are irrelevant in four
or more dimensions and the scaling is always ideal.

Branched polymers

The polymers discussed in most of this text are linear chains; however, there
are many examples of polymers with extensive side branches.  The scaling behavior
of such branched polymers should not be the same as single chains, since branching
adds more monomers along the chain length as illustrated in Fig. 2.14(a).  Because a
branched polymer has more than 2 ends, the end-to-end displacement has to be
replaced by a different measure of the polymer size, such as the radius of gyration, Rg
(see end-of-chapter problems).  The radius of gyration for branched polymers is found
to have a scaling form

<Rg
2>1/2 ~ N ν, (2.40)

where N is the number of polymer segments and  = 0.64 and 0.5 in two and three
dimensions, respectively (see Sec. 6.4).  In comparison, self-avoiding linear chains
have scaling exponents of 3/4 and 0.59, respectively [see Eq. (2.39)], meaning that the
spatial region occupied by branched polymers grows more slowly with N than does
that of linear chains; i.e., linear chains are less dense than branched polymers.  Fluid
membranes also behave like branched polymers at large length scales (see Sec. 6.4).

r

  (a)  (b)

Fig. 2.14.  Sample configurations of a branched polymer (a) and a dense chain (b) in
two dimensions.  To aid the argument in the text, the chain in (b) consists of linked
squares which, when packed tightly together, cover an area ~r2 in two dimensions.
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Table 2.1. Exponents for the scaling law <Rg
2>1/2 ~ N  for ideal (or random) chains,

self-avoiding chains and branched polymers, as a function of embedding dimension d.
Collapsed chains have the highest density and obey <Rg

2>1/2~ N.
__________________________________________________________________
      Configuration d = 2 d = 3 d = 4
__________________________________________________________________

Ideal chains 1/2 1/2 1/2
Self-avoiding chains 3/4 0.59 1/2
Branched polymers 0.64 1/2
Collapsed chains 1/2 1/3 1/4

__________________________________________________________________

Collapsed chains

None of the chain configurations described so far in this section is as compact
as it could be.  Consider a system of identical objects, say squares in two dimensions
or cubes in three dimensions, having a length b to the side such that each object has a
"volume" of bd in d dimensions, and N of these objects have a volume Nbd.  The
configuration of the N objects with the smallest surface area is the most compact or the
most dense configuration, as illustrated in Fig. 2.14(b), and we denote by r the linear
dimension of this configuration.  Ignoring factors of π and the like, the total volume Nbd

of the most compact configuration is proportional to r d, so that r itself scales like

r ~ N1/d (dense). (2.41)

Polymers can be made to collapse into their most dense configurations by a variety of
experimental means, including changes in the solvent, and it is observed that the
collapse of the chains occurs at a well-defined phase transition.

The scaling exponents of all the systems that we have considered in this section
are summarized in Table 2.1.  If the chains are self-avoiding, 1/d represents the lower
bound on the possible scaling exponents, and the straight rod scaling of <Rg

2>1/2 ~ N 1

represents the upper bound.  One can see from the table that random or self-avoiding
chains, as well as branched polymers, exhibit scaling behavior that lies between these
extremes.


