
Sec. 2.4 – Chain configurations and elasticity 42

2.4  Chain configurations and elasticity    

Averaged quantities such as the tangent correlation function or <ree
2> provide

only limited information about the behavior of chains or filaments.  In this section, we
develop a more complete picture of chain geometry by determining the probability
distribution for the length of their end-to-end displacements.  These distributions
confirm that it is highly unlikely for a random chain to be found in a fully stretched
configuration: the most likely value of ree

2 for a freely jointed chain is not far from its
mean value of Nb2.  That the chain has an average size much smaller than its contour
length is a reflection of its entropy: there are far more configurations available for ree ~
N1/2b than there are for the fully extended situation ree = Nb.  Because of this, as the
chain is made to straighten out by an external force, its entropy decreases and work
must be done on the chain to stretch it: in other words, the chain behaves elastically
because of its entropy.

Random chain in one dimension

Consider the set of one-dimensional random chains with three segments, as
shown in Fig. 2.15: each chain starts off at the origin, and a link in the chain can point
to the right or the left.  As each link has 2 possible orientations, there are a total of 23 =
8 possible configurations for the chain as a whole.  Using C(ree) to denote the number
of configurations with a particular end-to-end displacement ree, the eight configurations
are distributed according to:

C(+3b) = 1 C(+1b) = 3 C(-1b) = 3 C(-3b) = 1. (2.42)

The reader will recognize that these values of C(ree) are equal to the binomial
coefficients in the expansion of (p+q)3; i.e., the values are the same as the coefficients
N ! / i !j ! in the expansion

(p + q)
N
 = Σ i=o,N {N ! / i !j !} piqj, (2.43)

where j = N - i.  Is this fortuitous?  Not at all; the different configurations in Fig. 2.15 just
reflect the number of ways that the left- and right-pointing vectors can be arranged.
So, if there are i vectors pointing left, and j pointing right, such that N = i + j, then the
total number of ways in which they can be arranged is just the binomial coefficient

C(i, j) = N! / i! j!. (2.44)
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Fig. 2.15.  Configurations for a one-dimensional chain with three segments of equal
length b.  Only half of the allowed configurations are shown, namely those with ree > 0.
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One can think of the configurations in Fig. 2.15 as random walks in which each
step (or link) along the walk occurs with probability 1/2.  Thus, the probability (i, j) for
there to be a configuration with (i, j) steps to the (left, right) is equal to the product of the
total number of configurations [C(i, j) from Eq. (2.44)] with the probability of an
individual configuration, which is (1/2)i (1/2)j:

(i, j) = {N! / i! j!} (1/2)i (1/2)j. (2.45)

Note that the probability in Eq. (2.45) is appropriately normalized to unity, as can be
seen by setting p = q = 1/2 in Eq. (2.43)

Σ i=o,N (i, j) = Σ i=o,N {N ! / i !j !} (1/2)i (1/2)j = (1/2 + 1/2)N = 1. (2.46)

What happens to the probability distribution as the number of steps becomes
larger and the distribution consequently appears more continuous?  The probability
distribution for a one-dimensional chain with N = 6 is shown in Fig. 2.16, where we
note that the end-to-end displacement ree = (j - i) = (N - 2j) changes by 2 for every unit
change in i or j.  The distribution is peaked at ree = 0, as one would expect, and then
falls off towards zero at large values of |ree| where i = 0 or N.  As becomes ever more
obvious for large N, the shape of the curve in Fig. 2.16 resembles a Gaussian
distribution, which has the form

(x) = (2π 2)–1/2 exp[-(x- )2 / 2 2]. (2.47)

Normalized to unity, this expression is a probability density (i.e., a probability per unit
value of x) such that the probability of finding a state between x and x + dx is (x)dx.
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Fig. 2.16.  Probability distribution from Eq. (2.45) for a one-dimensional chain with six
segments.
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The mean value µ of the distribution can be obtained from

µ = <x> = ∫    x (x) dx, (2.48)

and its variance 2 is

2 = < (x - µ)2 > = <x2> - µ2, (2.49)

as expected.  Eq. (2.47) is the general form of the Gaussian distribution; the values of µ
and  are specific to the system of interest.  For one Cartesian component of ree in a
random chain, µ = 0 because the vectors ree are isotropically distributed; taken
together, µ = 0 and <x2> = Nb2 imply

2 =  Nb2 (one dimension), (2.50)

for random chains.  Proofs of the equivalence of the Gaussian and binomial
distributions at large N can be found in most statistics textbooks.  However, the
Gaussian distribution provides a surprisingly accurate approximation to the binomial
distribution even for modest values of N, as can be seen from Fig. 2.16.

Random chain in three dimensions

By projecting their configurations onto a set of Cartesian axes, as illustrated in
Fig. 2.17, three-dimensional random chains can be treated as three separate one-
dimensional systems.  For example, the x-component of the end-to-end displacement,
ree,x, is just the sum of the individual monomer vectors as projected onto the x-axis:

ree,x = Σ i bi,x , (2.51)

where bi,x is the x-projection of the monomer vector b i.  For freely-jointed chains, the
component bi,x is independent of the component bi+1,x, so the projections form a
random walk in one dimension, although the x-axis projections are of variable lengths
even if all monomers have the same b.  If the number of segments is large, the
probability distribution with variable segment length has the same form as the

x - axis components

ree

random chain

Fig. 2.17. Projection of the segments of a two-dimensional chain onto the x-axis.
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distribution with uniform segment length (Chap. 1 of Reif, 1965),

(x) = (2π 2)–1/2 exp(-ree,x
2 / 2 2), (2.52)

with a variance given by 2 = N<bx
2>.

Now <bx
2> refers to the expectation of the projection of the individual steps on

the x-axis.  Because of symmetry, we anticipate that the mean projections are
independent of direction, so

<bx
2> = <by

2> = <bz
2> = b2/3, (2.53)

the last equality arising from <bx
2> + <by

2> + <bz
2> = <b2> = b2 for steps of constant

length.  Hence, the variance in Eq. (2.52) is

2 = Nb2/3 (for three dimensions). (2.54)

Returning to the properties of three-dimensional chains, the probability of
finding the end-to-end displacement in a volume dx dy dz centered on the position
(x,y,z) is (x,y,z)dx dy dz, where (x,y,z) is the product of the probability distributions in
each of the Cartesian directions

 (x,y,z) = (x) (y) (z) = (2π 2)–3/2 exp[-(x2+y2+z2) / 2 2], (2.55)

where 2 is still given by Eq. (2.54), and where x ≡ ree,x , etc.  Eq. (2.55) says that, of all
possible chain configurations, the most likely set of coordinates for the tip of the chain
is (0,0,0), which is the origin or tail of the chain; it does not say that the most likely

Fig. 2.18.  Probability distributions for random chains in three dimensions.  Two cases
are shown: the three-dimensional distribution, Eq. (2.57), as a function of r = ree, and
the x-axis projection, Eq. (2.52), as a function of x = ree,x (

2 = 1/2 in both distributions).
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value of ree is zero.  Indeed, the distribution of the magnitude of ree must reflect the fact
that many different coordinate positions have the same r.  The probability for the chain
having a radial end-to-end distance between r and  r + dr is rad(r)dr, where rad(r) is the
probability per unit length obtained from

(x,y,z)dx dy dz = rad(r)dr, (2.56)

so that

rad(r) = 4πr2 (2π 2)–3/2 exp(-r2 / 2 2). (2.57)

It’s the extra factor of r2 outside of the exponential that shifts the most likely value of ree
away from zero.  Eq. (2.57), as well as the projection of the chain on the x-axis, is
plotted in Fig. 2.18.  We can equate to zero the derivative of rad(r) with respect to r to
find the most likely value of ree.  A summary of the results for ideal chains in three
dimensions is:

ree, most likely = (2/3)1/2 N1/2b, (2.58)

<ree > = (8/3π)1/2 N1/2b, (2.59)

and, of course,

<ree
2> = Nb2. (2.60)

Note that ree in Eqs. (2.58) and (2.59) is the scalar radius ree = (ree
2)1/2.

Entropic elasticity

The probability distribution functions, as illustrated in Fig. 2.18, confirm our
intuition that far more chain configurations have end-to-end displacements close to the
mean value of ree than to the chain contour length Lc. Being proportional to the
logarithm of the number of configurations, the entropy S of a chain must decrease as
the chain is stretched from its equilibrium length.  Now the free energy of an ensemble
of chains is F = E - TS, which is simply F = -TS for freely jointed chains, since their
configurations all have vanishing energy E.  Thus, S decreases and F increases as the
chain is stretched at non-zero temperature; in other words, work must be done to
stretch the chain, and the chain is elastic by virtue of its entropy.

Viewed as a spring obeying Hooke’s law, the effective force constant of the
chain can be extracted by comparing the distributions for the end-to-end displacement
of the chain with that of a spring, whose fluctuations can be calculated using statistical
mechanics.  Now, a Hookean spring has a potential energy V(x) equal to kspx

2/2,
where x is the displacement from equilibrium and ksp is the force constant of the spring.
Aside from an overall normalization factor, the probability distribution (x) for the
spring displacement x is proportional to the usual Boltzmann factor exp(-E / kBT), which
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becomes, for the Hooke’s Law potential

(x) ~ exp(-kspx
2 / 2kBT). (2.61)

The probability distribution for the displacement of an ideal chain from Eq. (2.52) is
(x) ~ exp(-x2 / 2 2), again aside from an overall normalization factor.  Comparing the

functional form of the two distributions at large x gives ksp = kBT / 2, where 2 = Nb2/d for
ideal chains embedded in d dimensions [the dimensionality can be seen from Eqs.
(2.50) and (2.54)].  Hence, in three dimensions, we expect

ksp = 3kBT / Nb2 = 3kBT / 2 pLc (three dimensions), (2.62)

using Lc = Nb and p = b/2 for an ideal chain.  Observe that ksp increases with
temperature, which is readily demonstrated experimentally by hanging a weight from
an elastic band, and then using a device (like a hair dryer) to heat the elastic.  The
weight will be seen to rise as the elastic heats up, since ksp rises simultaneously and
provides greater resistance to the stretching of the elastic by the weight.

Highly stretched chains

The Gaussian probability distribution, Eq. (2.52), gives a good description of
chain behavior at small displacements from equilibrium.  It predicts, from Eq. (2.62),
that the force f required to produce an extension x in the end-to-end displacement is f =
(3kBT / 2 pLc)x, which can be rewritten as

x/Lc = (2 p / 3kBT) f. (2.63)

If the chain segments are individually inextensible, the force required to extend the
chain should diverge as the chain approaches its maximal extension, x/Lc → 1.  Such
a divergence is not present in Eq. (2.63), indicating that the Gaussian distribution must
be increasingly inaccurate and ultimately invalid as an inextensible chain is stretched
towards its contour length.

Of course, the Gaussian distribution is only an approximate representation of
freely jointed chains; fortunately, the force-extension relation of rigid, freely-jointed
rods can be obtained analytically.  For those familiar with the example, the problem is
analogous to the alignment of spin vectors in an external field, where the spin vectors
represent the projection of the polymer segments along the direction of the applied
field.  It is straightforward to show (Kuhn and Grün, 1942; James and Guth, 1943; see
also Flory, 1953, p. 427)  that the solution has the form

x/Lc = (2 pf / kBT), (2.64)

where (y) is the Langevin function

(y) = coth(y) - 1/y. (2.65)
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Note that x in Eq. (2.64) is the projection of the end-to-end displacement along the
direction of the applied force.  For small values of f, Eq. (2.64) reduces to the Gaussian
expression Eq. (2.63); for very large values of f, the Langevin function tends to 1 so
that x asymptotically approaches Lc in Eq. (2.64), as desired.

The force-extension relation of freely-jointed rods provides a reasonably
accurate description of biopolymers.  Its weakness lies in viewing the polymer as a
chain of rigid segments: thick filaments such as microtubules and DNA surely look
more like continuously flexible ropes than chains of rigid rods.  A more appropriate
representation of flexible filaments can be derived from the Kratky-Porod energy
expression, Eq. (2.13), and is referred to as the worm-like chain (WLC).  Although the
general form of the WLC force-extension relationship is numerical, an accurate
interpolation formula has been obtained by Marko and Siggia (1995):

pf / kBT = (1/4)(1 - x/Lc)
-2 - 1/4 + x/Lc. (2.66)

Again, the force diverges in this expression as x/Lc → 1, as desired.  Eq. (2.66) and the
freely-jointed chain display the same behavior at both large and small forces, although
their force-extension curves may disagree by as much as 15% for intermediate forces.


