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Abstract  The mechanical properties of the cell’s structural components influence 
the size, shape, and functionality of the cell throughout its division cycle. For 
example, a combination of the plasma membrane’s edge tension and bending 
resistance sets a lower bound on cell size, while the membrane’s tear resistance sets 
a pressure-dependent upper bound on the size of cells lacking a cell wall. The division 
cycle of the simplest cells may be dominated by one or two principles such as the 
maximization of entropy, or the minimization of energy or structural materials. 
By studying colonies of cells, modern and fossilized, with techniques from classical 
and statistical mechanics, a partial history can be charted for the appearance and 
properties of the simplest cell designs.

Keywords  Cell mechanics • membrane elasticity • microfossils • cell division cycle

2.1 � Introduction

The sizes and shapes of cells have become more diverse with the passage of 
geological time, built around a core of micron length scales and morphologies such 
as rods, diplococci and filaments that appeared early in the Earth’s history. Yet the 
incredibly slow change in cell dimensions is suggestive of optimization – that certain 
structural designs are most appropriate for the complete chemical and physical 
environment in which cells grow. The factors that must influence the design include 
ease of construction and repair, appropriate strength and permeability, availability 
of a mechanically feasible division cycle etc. Further, there may be physical 
principles at play, such as energy minimization or materials minimization, and the 
relative importance of each principle may depend on cell morphology or design.
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Chapter 2
Evolution of the Cell’s Mechanical Design
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D. Boal and C. Forde

The maximization of entropy provides a simple example of how a physical 
principle can drive the division cycle. If the area of the cell’s boundary (its membrane 
and cell wall, if present) grows as fast as its volume, then at some point the surface 
will form entropy-producing arms and channels, as shown in the computer simu-
lation of Fig. 2.1, a category of shapes known as branched polymers. If the arms 
are physically able pinch off to form individual cells, then the entropy-driven 
formation of branched polymer shapes can be the basis of a very simple cell division 
cycle. Of course, this design is not at all efficient in the usage of materials: there is 
a metabolic cost to producing cell boundary material and the boundary area of 
branched polymer shapes is rather large before cell division is achievable. Among 
other cell shapes, diplococci, rods, filaments have division cycles that are more 
materials efficient than branched polymers.

In this chapter, we examine the mechanical properties of the structurally 
simplest cells. In Section  2.1, the most important structural components are 
identified and their properties as a function of cell size are analyzed using 
results from continuum mechanics. For example, we describe the surface stress 
experienced by a cell under elevated interior pressure and examine the defor-
mation energy of a lipid bilayer. Section 2.2 addresses the question of how the 
construction of cells has changed in the past three billion years (3 Ga). In this 
section, we analyze the bending resistance of 2–3 Ga biofilaments using a tech-
nique originating in statistical mechanics, and we demonstrate the consistency 
of design in both ancient and modern filamentous cyanobacteria, as well as 
estimate some bounds on the mechanical properties of these filamentous cells. 
In Section 2.3 we examine a number of models for the cell division cycle that 
focus on the changes in cell shape during growth and division. We show how to 
extract the time evolution of a system by measuring the instantaneous properties 
of an ensemble of cells with steady-state growth. This methodology is then 
applied in Section 2.4 to diplococci in order to study the division cycles of 2 Ga 
microfossils and modern cyanobacteria. Our conclusions are summarized in 
Section 2.5.

Fig. 2.1  Computer simula-
tion of entropy-driven cell 
division in two dimensions. 
Enclosed within this cell are 
four genetic polymers (linked 
spheres) as well as numerous 
solvent spheres. Entropy-
laden arms only appear when 
the perimeter of the cell 
becomes large (Boal and Jun 
unpublished)
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2  Evolution of the Cell’s Mechanical Design

2.2 � Mechanical Features of a Simple Cell

Consider as a model system a very simple cell design in which there are only one or 
two structural components: (1) a fluid membrane that bounds the cell and isolates its 
components from the environment, and perhaps (2) a shear-resistant wall attached to the 
fluid membrane. By the word “fluid” we mean a two-dimensional structure that has no 
shear resistance in its plane: for example, the chocolate coating on a cherry freshly 
dipped in liquid chocolate is effectively a two-dimensional fluid in that the chocolate 
can flow to adapt to the shape of the cherry. In contrast, a child’s balloon resists shear 
in the plane of the rubber membrane, even though that membrane can be highly 
deformed by the pressure of the balloon. The interior of this simple cell may be under 
elevated osmotic pressure, just like modern bacteria, and the larger the cell is, the more 
likely the fluid membrane must be augmented by a structure like a cell wall with high 
tensile strength. We now examine several mechanical properties of fluid membranes.

2.2.1 � Bending Resistance of a Membrane

The lipid bilayer that forms the (two-dimensional) fluid boundary of the cell is a 
self-assembled structure whose equilibrium configuration is spatially flat if the 
molecular composition is the same within both leaflets of the bilayer. Efforts to 
bend an initially flat bilayer require the outlay of an energy cost per unit area E 
whose simplest parametrization is (Helfrich 1973)

	
2

1 2 1 2E ( / 2)(1 / 1 / ) / ,k R R k R R= + + G 	 (2.1)

where the constants k (bending rigidity) and k
G
 (Gaussian curvature modulus) have 

units of energy. The quantities R
1
 and R

2
 are the two principal radii of curvature; for 

example, a sphere of radius R has R
1
 = R

2
 = R, while a cylinder of radius R has R

1
 = R 

around the circumference and R
2
 = ∞ (i.e. no curvature) along the axis of symmetry. 

To find the bending energy of a particular surface, one simply integrates E over the area 
of the surface; hence the deformation energy of a spherical shell of radius R is 8pk + 
4pk

G
, independent of R. Lipid bilayers in conventional cells are found to have k = 

10–25 k
B
T, where k

B
 is Boltzmann’s constant and T is the absolute temperature (Evans 

and Rawicz 1990). The value of k
G
 is less well known, but expected to have a similar 

value to k. Thus, the deformation energy of a bilayer formed into a spherical shell is 
12pk = 250–600 k

B
T when k = k

G
. Although this is not a huge amount of deformation 

energy, why would lipid bilayers spontaneously deform at all to form a simple cell? 
To answer this question, we next look at the so-called edge tension of a bilayer.

2.2.2 � Edge Tension of a Bilayer

A fluid membrane not only resists bending, it also resists stretching and will rupture 
once its area has been stretched by more than a few percent from its unstressed value. 
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The creation of a hole in a membrane likely involves reconfiguring the lipid 
molecules around the boundary of the hole in order to reduce contact between the 
aqueous medium surrounding the bilayer and the water-avoiding hydrocarbon chains 
of the lipid molecules that are normally hidden within the bilayer. In general, the 
orientation of the lipids at the hole boundary is energetically unfavorable compared 
to their orientation in an intact bilayer: that is, there is an energy penalty for creating 
a hole. The boundary of the hole can be characterized by an edge tension l (energy 
per unit length along the boundary), such that the energy of the hole is equal to l 
times its perimeter. Measured values of l are in the 10−11 J/m range; which is larger 
than the minimum l required for membrane stability as estimated from computer 
simulations of membrane rupture (Boal and Rao 1992).

2.2.3 � Minimal Cell Size to Close a Bilayer into a Sphere

The energy of the membrane boundary and the energy of membrane bending have 
a different dependence on the physical size of the membrane, with the result that a 
flat membrane must reach a minimum size before it becomes energetically favorable 
for the membrane to close up into a sphere. In detail, consider a membrane in the 
shape of a flat disk of radius R

disk
, perimeter 2pR

disk
, and consequently, total edge 

energy 2pR
disk

l. This shape will be energetically favored over a closed sphere with 
bending energy 12pk (when k = k

G
) so long as R

disk
 < 6k/l. Since we are more 

interested in the dimensions of closed spheres than flat disks, we replace R
disk

 by 
2R

sphere
 which applies when the disk and sphere have the same area. Thus, the minimum 

radius of a closed sphere within this description of membrane energetics is R
sphere

 > 
3k/l (after Fromhertz 1983). Typical values of k ~ 15 k

B
T and l ~ 1011 J/m lead to 

the condition R
sphere

 > 20 nm, which is somewhat less than the minimal size found 
for pure bilayer vesicles obtained in laboratory studies. Once the membrane has 
adopted the shape of a sphere, the configuration could be further stabilized by the 
addition of lipids to the outer leaflet of the bilayer, thus reducing the strain created 
by the bending deformation.

2.2.4 � Maximal Size for Wall-Less Cells Under Pressure

In a child’s balloon or a bicycle tire, the pressure from the confined gas creates a 
stress within the rubber membrane that forms the boundary of the system. The rubber 
membrane can be regarded as an effectively two-dimensional system because its 
thickness is much smaller than its lateral dimensions. Within the plane of the 
membrane, then, there is a (two-dimensional) surface stress P having units of 
energy per unit area. For a spherical shell supporting a pressure difference P across 
the shell, the surface stress is given by

	 = / 2,PR∏ 	 (2.2)
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2  Evolution of the Cell’s Mechanical Design

where R is the radius of the sphere and P has units of energy per unit volume, 
as usual for a three-dimensional stress. Equation (2.2) tells us that for a fixed pres-
sure difference, the smaller the radius of the sphere, the smaller the surface stress. 
This is the reason why a simple bacterium can support an osmotic pressure of several 
atmospheres without needing a cell wall as thick as a tire.

When subjected to a surface stress, a membrane first stretches and then ruptures: 
depending on their composition, lipid bilayers typically rupture at P around 1 × 
10−2 J/m2 on laboratory time scales (Needham and Hochmuth 1989). For a spherical 
cell of radius R = 1 mm and no cell wall, rupture occurs at a fairly low osmotic 
pressure: Equation (2.2) predicts that the pressure at a failure stress of P = 10−2 J/m2 
would be 2 × 104 J/m3 = 0.2 atm. Thus, a bacterium requires a cell wall to support 
an osmotic pressure of several atmospheres, which is more than the lipid bilayer of 
the plasma membrane can withstand. However, such is not the case for smaller 
cells: the same type of calculation shows that a pure bilayer vesicle of just 100 nm 
(or diameter 0.2 mm) could operate at an osmotic pressure of 2 atm. without needing 
a cell wall for additional strength (Boal 2002).

2.2.5 � Bending and Packaging of DNA

Modern cells carry their genetic blueprint as DNA, which has a contour length that 
well exceeds the linear dimension of the cell itself. As a double-stranded helix, DNA 
is considerably stiffer than a simple flexible polymer like a saturated alkane, such that 
for eukaryotic cells such as our own, the packaging of DNA inside the cell is a 
challenge. The stiffness of a linear filament is often characterized through its bending 
rigidity k

f
 or its persistence length x; we use the latter representation in this section and 

introduce k
f
 in Section 2.2. Mathematically, the persistence length is a measure of the 

length scale over which the orientation of a curve undergoes a significant change in 
direction. For molecules whose variation in shape is governed by thermal fluctuations, 
x and k

f
 are directly proportional to each other through x = k

f
/k

B
T, from which one sees 

that the stiffer the filament (larger k
f
) the longer the persistence length.

If a filament with a specific value of x undergoes random changes in direction 
all along its contour length L

c
, then the root mean square value of the displacement 

r
ee

 between the positions of the two ends of the filament is given by

	 2
ee c2 ,r Lx< >= 	 (2.3)

where the notation < ... > implies than an ensemble average has been made from a selection 
of all observed configurations. Equation (2.3) tells us that the stiffer the filament (larger x) the 
greater the end-to-end displacement for a fixed contour length. Let’s apply this to the DNA 
of E. coli, whose DNA contains 4.7 million base pairs; at 0.34 nm per base pair, this strand 
of DNA has a contour length of 1.6 × 106 nm. The persistence length of DNA is quoted 
as about 53 nm (Bustamante et  al. 1994), so Eq. (2.3) predicts that the root mean 
square end-to-end displacement of an open strand of DNA of E. coli is givven by 

2 1/2
ee ,1 \3 mu mr< > =  not that much larger than the physical size of the bacterium itself.
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D. Boal and C. Forde

A related measure of the size of a flexible filament is its radius of gyration, R
g
, 

which is defined by 2 1 2
ii 1,N

,gR N r−
=

< >= ∑  where the filament has been appropriately 
sampled at N points with displacements r

i
 from the center-of-mass position of the 

filament. If the physical overlap of remote sections of the filament is permitted, 
then randomly oriented filaments are governed by 2 2

ee c/6 / 3.gR r Lx< >=< > =  For 
example, we would expect 2 1/2 5.3 \gR mu< > = mfor the DNA of E. coli given the value 
for 2

eer< > calculated in the E. coli example above. A similar calculation for myco-
plasma, a very small cell with 800,000 base pairs of DNA, yields 2 1/2 2.2 mum\ .gR< > =  
For both of these structurally simple cells, the effective size of a ball of their DNA 
is roughly the same linear dimension as the cell itself. However, this is not the case 
for eukaryotic cells: human DNA is much longer than bacterial such that it takes up 
far more volume in the cell as a random coil. Consequently, advanced cells have 
developed a packaging technique in which their DNA is wrapped around barrel-
shaped proteins called histones, with a diameter of 11 nm, in order to organize and 
sequester their long genetic blueprints.

The examples in this section (the constraints on cell size, the need for cell walls 
to maintain cell integrity, the packaging of DNA) all illustrate the influence of cell 
mechanics and construction on the stability and function of the cell.

2.3 � Structural Evolution of Filamentous Cells

We now turn our attention to how the design and construction of cells has changed over 
time, using as our guide a comparison between modern cyanobacteria and microfossils 
more than two billion years old. The approach is not so much to make statistical 
comparisons between cell shapes, but rather to determine, where feasible, mechanical 
characteristics of cells before they were fossilized and chart the evolution of these 
characteristics. In this section, we focus on the elastic properties of filamentous cells; 
in Section 2.4 we investigate the cell cycles of diplococci and rod-like cells.

First appearing more than three billion years ago, filament-forming cells have been 
present throughout much of the Earth’s history (Cloud 1965; Barghoorn and Schopf 
1966; Walsh and Lowe 1985; Schopf and Packer 1987; Schopf 1993; Rasmussen 
2000). Three examples of two-billion-year-old filamentous structures are displayed in 
Fig. 2.2: parts (a) and (b) are Gunflintia minuta Barghoorn and Gunflintia grandis 
Barghoorn, respectively (Barghoorn and Tyler 1965; author’s specimens from Lake 
Superior, Canada) and part (c) is Halythrix Schopf (Schopf 1968; specimen from 
Belcher Islands, Canada, in Hofmann 1976). Even older examples of filamentous 
structures include 3.23 Ga pyritic replacement filaments (Rasmussen 2000). The 
original internal construction of these filaments has been destroyed or modified by the 
fossilization process, but that doesn’t mean that their native mechanical properties 
cannot be probed by other means. Based solely on the analysis of static images, 
several techniques are available for determining the mechanical behavior of cells, and 
these approaches are equally adaptable to microfossils as they are to living cells.

The technique that we examine most closely in this section is the tangent 
correlation length x

t
 that can be related to the resistance of a filament against 
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2  Evolution of the Cell’s Mechanical Design

bending. To see how this works, consider the changes in the local orientation of the 
sinuous curve illustrated in Fig. 2.3 as recorded through the behavior of the tangent 
vector t(s) at location s along the curve, where t has unit length according to the dot 
product t • t = 1. If two location s

1
 and s

2
 are close to each other on the curve, then 

t(s
1
) and t(s

2
) have similar directions and their dot product is close to unity. On the 

other hand, if s
1
 and s

2
 are far apart along the curve (even though they may be close 

spatially) their tangent vectors may point in quite different directions and t(s
1
) • t(s

2
) 

Fig. 2.2  Examples of 
Gunflintia minuta (a) and 
Gunflintia grandis (b) from 
GSC 10913c (Schreiber, 
Ontario, Canada; Boal and 
Ng unpublished); Halythrix 
(c) from GSC 42769 
(Belcher Islands, Canada; 
reported by Hofmann 1976). 
Scale bar is 10 mm in all 
images

Fig. 2.3  Unit tangent vectors 
(t

1
, t

2
, t

n
) at arc lengths (s

1
, s

2
, 

s
n
) along a sinuous curve. 

Separations between the 
locations Ds = |s

2
 – s

1
| are 

distances, not displacements
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may vary between −1 and +1. The average behavior of t(s
1
) • t(s

2
) is contained in 

the tangent correlation function C
t
(Ds),

	 t 1 2( ) ( ) • ( ) .C s t s t s∆ ≡ < > 	 (2.4)

The ensemble average indicated by the brackets < … > on the right hand side of 
this equation is performed over all pairs of points s

1
 and s

2
 subject to the constraint 

that |s
2
 – s

1
| is equal to a particular Ds specified on the left hand side. When s

1
 and 

s
2
 are nearby (Ds @ 0), the ensemble average over t(s

1
) • t(s

2
) is necessarily close to 

unity, whereas when Ds is so large such that the tangent orientations are random 
with respect to each other, the average is close to zero. For a variety of very general 
situations, this behavior of C

t
(Ds) at small and large Ds is described by exponential 

decay in Ds (see Doi and Edwards 1986 or Boal 2002):

	 t t( ) exp( / ).C s s x∆ = −∆ 	 (2.5)

The length scale for the correlations is provided by the tangent correlation length 
x

t
: the more sinuous the curve, the smaller is x

t
. For filaments whose shapes are 

governed by thermal fluctuations in their deformation energy, the correlation length 
x

t
 of Eq. (2.5) is the same as the persistence length of Eq. (2.3). As a technical aside, 

it should be mentioned that correlation function depends on the dimensionality of 
the system: the true correlation length x

3
 of a filament in three dimensional space 

is related to the correlation length x
2p

 of the same filament whose shape is projected 
into two dimensions via x

3
 = (3p/8) x

2p
.

Now, the magnitude of the deformation of a filament in response to a shear stress 
is inversely proportional to the filament’s stiffness or, properly speaking, its flexural 
rigidity k

f
: the stiffer the filament, the smaller the deformation. To be specific, the 

deformation energy per unit length for bending a uniform rod is equal to k
f
/2 

multiplied by the square of the rate of change of the tangent direction along the 
filament contour. It can be established that the flexural rigidity of a uniform solid 
cylinder of radius R is given by (see Boal 2002)

	
4

f \pi / 4, (solid cylinder)Yk R= 	 (2.6)

where Y is the Young’s modulus of the material; typically Y ~ (1–5) × 108 J/m3 for 
soft biomaterials. For a hollow cylinder of outer radius R bounded by a wall of 
thickness t, the flexural rigidity can be approximated by

	
3

f \pi , (hollow cylinder)Y R tk = 	 (2.7)

when t << R. Thus, the flexural rigidity grows as R3 or R4 for these two simple 
shapes. Given that the energetic cost of the deformation is proportional to k

f
, it 

would not be surprising if the tangent correlation length x
t
 is also proportional to R3 

or R4, as a benchmark.
Two correlation functions obtained from microfossils are shown in Fig. 2.4 for 

projected filament trajectories in two dimensions, leading to the determination of the 
correlation length x

2p
; the figure shows both the raw data as well as their fit with an 
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2  Evolution of the Cell’s Mechanical Design

exponential function (Boal and Ng unpublished). Two taxa from the Gunflint 
Formation are displayed in the figure: G. minuta, the narrower of the two, is found 
to have x

2p
 = 670 ± 40 mm, while the wider G. grandis has a shorter x

2p
 of 330 ± 30 

mm for a particular subset of the G. grandis filaments (there may be two populations 
of filaments in the group that are now collectively assigned as G. grandis, the S 
subset has a smaller mean diameter than the genus as a whole, while the L subset has 
a larger mean diameter). In both cases, x

2p
 is a remarkable two orders of magnitude 

larger than the diameter of the filament itself, a ratio of x
t
:R that is common among 

both microfossils and modern cells. For comparison, Fig.  2.5 shows the tangent 
correlation lengths of three genera of modern cyanobacterial filaments that represent 
three very different cell geometries (Geitlerinema, Pseudanabaena, and Oscillatoria, 
from smallest to largest filament diameter). Both Geitlerinema and Oscillatoria 
exhibit values of x

2
 that rise with filament diameter among species of the genus.

Equations (2.6) and (2.7) demonstrate that k
f
 depends most strongly on the fila-

ment radius, as R3 or R4 for the two idealized systems that we have considered. 

[AU1]

Fig. 2.4  Tangent correlation 
function C

t
(Ds) as a function 

of separation Ds (in microme-
ter) obtained by weighted 
average for G. minuta (disks) 
and the S group of G. grandis 
(diamonds). The solid curves 
are the exponential decays 
predicted by Eq. (2.5) with 
x

2p
 = 670 and 330 mm for G. 

minuta and the S group of 
G. grandis, respectively (Boal 
and Ng unpublished)

Fig. 2.5  Measured x
2
 (in 

micrometer) for filamentous 
cyanobacteria as a function of 
their mean diameter D. The 
correlation functions are 
approximately described by 
4.3 • D3.3 ± 1 for Oscillatoria 
and 62 • D5.1 ± 1 for 
Geitlerinema (solid and dot-
dashed lines, respectively; 
both D and the result are in 
micrometer). The cyanobacte-
ria are Geitlerinema (crosses), 
Pseudanabaena (square), and 
Oscillatoria (disks) (Boal and 
Ng unpublished)
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D. Boal and C. Forde

There are structural differences among even the three genera in Fig. 2.5, so the most 
likely behavior of k

f
 is that the species within a given genus obey a particular Rn 

scaling, but the proportionality constant will vary from one genus to another. For a 
filament subject only to thermal fluctuations in its deformation energy, the correlation 
length x

t
 is linearly proportional to the flexural rigidity k

f
. We assume that this 

proportionality is also valid here, so that the anticipated functional form of the 
correlation length is x

t
 = CRn (where the proportionality constant C varies with the 

genus). Hence, a log-log plot of x
t
 versus R should be a straight line with a slope of 

3 or 4 associated with the power-law dependence of k
f
 on R.

The two straight lines shown in Fig. 2.5 are the functions

	
5.1 1

2 62 • ( )D Geitlerinemax ±= 	 (2.8)

	
3.3 1

2 4.3• , ( )D Oscillatoriax ±= 	 (2.9)

where D is the filament diameter quoted in microns, and the result for x
2
 is also in 

microns (Boal and Ng unpublished). The exponents in these functional forms, 
5.1 ± 1 and 3.3 ± 1, are seen to be in good agreement with the expectations from 
continuum mechanics for the R-dependence of the flexural rigidity. Yet Eqs. (2.8) 
and (2.9) are obviously not identical, indicating that there is a genus-dependence to 
the behavior of the correlation length x

2
. One characteristic that distinguishes 

among the three genera of Fig.  2.5 and that might contribute to the difference 
between Eqs. (2.8) and (2.9) is the mean length-to-width ratio of the individual 
cells: roughly four for Geitlerinema, 1.5–2 for Pseudanabaena and 0.7 for 
Oscillatoria. Thus, at a given filament diameter, x

2
 increases with the length-to-

width ratio of the cell in Fig. 2.5. Given the very large difference between the cell 
length-to-width ratios of Geitlerinema and Oscillatoria, it may be that these two 
genera lie near two distinct soft limits for the range of tangent correlation lengths 
available to cellular filaments. That is, with its large length-to-width ratio of 
individual cells, Geitlerinema may represent one limit, while the small length-to-
width ratio of Oscillatoria represents the opposite limit.

Let’s now compare the behavior of modern filamentous cyanobacteria in Fig. 2.5 
with the measured correlation lengths of microfossils as displayed in Fig. 2.6. The 
first observation is that the tangent correlation lengths of the microfossil taxa 
Gunflintia and Eomycetopsis are easily in the same range as modern filamentous 
cyanobacteria. At 700 ± 100 mm, x

2p
 of E. filiformis is not far from Eq. (2.8) for x

2
 

of Geitlerinema represented by the dot-dashed line on the figure. These two types of 
filaments also have a similar visual appearance as tube-like structures. In addition, 
E. filiformis is not that far removed from x

2
 = 480 ± 50 of modern Pseudanabaena 

PCC 7403, although Pseudanabaena possesses marked indentations at the cell 
division planes while E. filiformis does not. The three variants of Gunflintia in 
Fig.  2.6 have correlation lengths in the 300–700 mm range for populations with 
apparent diameters of 1–4 mm: G. minuta lies near Eq. (2.8) for Geitlerinema while 
the L subgroup of G. grandis lies near Eq. (2.9) for Oscillatoria. All of the Gunflintia 
microfossils lie within the soft boundaries provided by Eqs. (2.8) and (2.9) for the 
most likely domain of correlation lengths. At less than 50 mm, the very short tangent 
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2  Evolution of the Cell’s Mechanical Design

correlation length of the taxon Halythrix is much lower than the range found among 
the selection of modern cyanobacteria in Fig. 2.6, although it is not that far removed 
from the extrapolated fit to Oscillatoria in the figure.

The figure also displays x
2p

 from 3.23 Ga pyritic replacement filaments observed 
in a volcanogenic massive sulphide deposit (Rasmussen 2000). The magnitude of 
x

2p
 determined for these objects is below Gunflintia and E. filiformis by factors of 

three or more, although it is still larger than Halythrix. However, pyritic replacement 
filaments are also relatively narrow, and the combination of their width and tangent 
correlation length is completely consistent with an extrapolation of the empirical 
description of x

2
 of Geitlerinema, as can be seen from Fig. 2.6, although this is not 

proof that the pyritic filaments had a biological origin.
The analysis of filament shapes demonstrates the similarity of the rigidity of 

both modern filamentous cyanobacteria and filamentous microfossils reaching back 
billions of years: most of the filaments exhibit a tangent correlation length that is 
one or two orders of magnitude greater than their radius. However, the similarity of 
their tangent correlation lengths by itself does not imply that these microfossil taxa 
must be cyanobacteria, as the correlation lengths of eukaryotic green algae with 
similar diameters also lie in this range; for example, x

2
 = 900 ± 100 nm for the 

green alga Stichococcus with a mean diameter of 3.5 ± 0.2 mm (Boal and Forde 
unpublished). What this analysis does demonstrate is that the some aspects of the 
design of filamentous cells probably emerged fairly early in the history of life, and 
that filaments represent a robust and adaptable cell design.

2.4 � Models for the Cell Division Cycle

At the molecular level, the materials suitable for the construction of cells must 
satisfy constraints imposed by the need for at least some of the cell’s structural 
components to self-assemble and the need for the cell to change shape during the 
division cycle. At its simplest level, the division cycle only requires that the mean 

[AU2]

Fig. 2.6  Measured x
2p

 (in 
micrometer) for microfossil 
filaments as a function of 
their mean diameter. The 
curves 4.3 • D3.3 ± 1 and 62 • 
D5.1 ± 1 (both D and the result 
are in micrometer) are drawn 
for reference and also appear 
in Fig. 2.10. The filaments 
are Gunflintia (disks), 
Halythrix (cross), and E. fili-
formis (square); pyritic 
replacement filaments are 
indicated by the diamond 
near the y-axis (Boal and Ng 
unpublished)
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volume V and area A of the cell double independently during the cycle once a 
steady-state growth pattern has been achieved. These changes in the area and volume 
of the cell can be accommodated through the use of a (two-dimensional) fluid 
boundary such as a lipid monolayer or bilayer, which has the flexibility to change 
shape as needed with a minimal cost in deformation energy. An illustration of a 
division cycle that even a fluid monolayer can support is displayed in Fig. 2.1: the 
monolayer grows by the random addition of new molecules and ultimately forms 
wavy arms that can pinch off to form new cells, assuming that the cell’s genetic 
blueprint has been replicated on the same time scale as the growth in cell size. The 
main physical principle that drives this model cycle is one that nature adores: the 
maximization of entropy (simulation by Boal and Jun unpublished; see Luisi 2006 
and Zhu and Szostak 2009 for overviews of related experimental work).

The cell shape displayed in Fig. 2.1 belongs to a family of random shapes that 
obey branched polymer scaling, where the surface area is proportional to the 
enclosed volume, unlike a spherical balloon where A ~ V2/3. However, these shapes 
are not efficient in the usage of materials: it isn’t so much that the surface area grows 
so fast, but rather that the cell must be sufficiently large before (i) the branched 
polymer shapes emerge, and (ii) its genetic blueprints have replicated and separated. 
Given that cells must expend metabolic energy to produce the molecules composing 
the cell boundary, other routes to cell division may be more appropriate. One 
possible design is based on the use of molecules that, perhaps because of their 
spatial conformation, generate a membrane that is naturally deformed. For instance, 
a sphere of radius R has a surface with curvature C = 1/R. Suppose a membrane is 
made from molecules that favor surfaces that spontaneously deform to some particular 
curvature C

o
. As more molecules are added to this membrane, it grows at constant 

curvature in the form of two overlapping spherical caps linked together at a ring with 
radius less than 1/C

o
, until the ring closes, leaving just two touching spheres. Now, 

this design is not flawless, in that the membrane curvature in the intersection region 
of the ring has the wrong sign – if the surface is concave (inwardly curved) over most 
of the linked spheres, it is convex (outwards) along the intersection ring itself, like 
the shape of an old-fashioned hour-glass.

Another group of materials-efficient cell designs is based on systems with two 
mechanical components. These components need not possess distinct molecular 
composition, but rather need to move independently of one another over some 
range of shapes. Even a bilayer composed of only one type of lipid is sufficient, so 
long as the time scale for lipid molecules to migrate between leaflets of the bilayer 
is sufficiently long. Consider, for example, the bilayer structures with symmetric 
molecular composition shown in Fig. 2.7. If the inter-leaflet migration of molecules 
is slow, then material produced within the cell can be added to the inner leaflet with-
out immediately transferring to the outer one. For a short time, the inner leaflet can 
accommodate more molecules without increasing its area, resulting in an increase 
in its molecular density and, correspondingly, its state of strain. However, this strain 
can be relieved through buckling, which adds a ring of material to the inner leaflet, 
as shown in cross-section in Fig. 2.7b. Although there is deformation energy asso-
ciated with the region where the ring joins the spherical shape of the inner leaflet, 
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2  Evolution of the Cell’s Mechanical Design

for the most part the bilayer neck formed by the ring is flat and can be extended at 
no cost in deformation energy; in fact, the “hole” in the flat part of the membrane 
created by the ring possesses an edge tension that favors the contraction of the ring 
to form two separate chambers as in Fig. 2.7c. Of course, this is not a complete cell 
cycle, as the configuration in Fig. 2.7c still has the original volume and outer leaflet 
area as Fig.  2.7a; in fact, even the area of the inner leaflet has not doubled yet. 
However, if the time scale for the transfer of material from the inner to outer leaflets 
is not too long, the outer layer may now start to grow, allowing the enclosed volume 
to do likewise as in Fig. 2.7d.

Leaving aside the entropy-driven approach to cell division, we have described two 
“toy” models for the cell division cycle: (1) growth at constant curvature and (2) 
independent growth of bilayer leaflets. The time evolution of the length (L), surface 
area, and enclosed volume of the cell are different for each of these models: for 
growth at constant surface curvature, the cell elongates continuously, while in the 
independent leaflet model, the cell length is initially constant while the inner leaflet 
grows and buckles. Thus, there is a particular time dependence L(t), A(t), and V(t) 
associated with the cell shape within each model for the division cycle. For living 
cells, this time dependence can be measured in the lab by photographing the growth 
of a single cell. Of course, this technique fails for microfossils, requiring the devel-
opment of an alternate means of determining their division cycle. One such approach 
is based on the measurement of an ensemble of cells undergoing steady-state growth.

Suppose that we have an ensemble of n
tot

 cells whose shape we measure one by 
one. We assume that each cell started to grow at a random initial time, so the shapes 
of the cells in the sample are uncorrelated. Choosing a particular variable b (for 
example, length, area, volume...) we count that there are dnb cells having a value of 
b between b and b + db. Now, dnb is a number, which necessarily depends on the 
total size of the sample n

tot
. One can remove this dependence on the size of the 

experimental sample by constructing the probability density Pb (the probability per 
unit b) from the definition.

	 \beta tot \betaP .dn n db= 	 (2.10)

By integrating Eq. (2.10) over b, one finds that Pb is normalized to unity: ∫Pb db = 1. 
Note that Pb has units of b −1, whereas dnb is simply a number. The link between Pb 
and the time-dependence b(t) is that under steady state conditions, Pb is given by

Fig. 2.7  One possible model for the division cycle of a cell with a boundary having two mechanical 
components. In panels (a–c), the inner layer grows and buckles to form two separate chambers, then 
both layers grow at constant curvature as in panel (d) until the original area and volume have doubled
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1

\beta 2P ( / ) / ,t Tb −= ∂ ∂ 	 (2.11)

where T
2
 is the doubling time of the cell cycle. For illustration, suppose the cell 

has the shape of a uniform cylinder that increases in length L from ℓ to 2ℓ (at 
fixed radius) whereupon it divides symmetrically at time T

2
. If L(t) grows lin-

early with time as L(t) = (1 + t/T
2
) ℓ, then P

ℓ
 = 1/ℓ. In words, the physical meaning 

of Eq. (2.11) is that the more rapidly the quantity b changes, (i.e. larger ∂b /∂t) 
the less time the cell spends in that range of b/se because (∂b /∂t)−1 is small. 
This is familiar in the simple pendulum, which moves the fastest through its 
vertical position and slowest through its turning points, such that it is least 
likely to be found in the vertical position and most likely to be found at the 
turning points.

Next, consider the changes in shape of a diplococcus, which we represent as two 
intersecting spheres with the same radius R, like the outlines in Fig. 2.7. The cells 
in a single-species colony for either cyanobacteria or microfossils with the diplo-
coccus shape are found to have uniformly similar radii, from which we conclude 
that the cells grow at constant width 2R; their surfaces also appear to have curvature 
close to 1/R. Thus, the length, area and volume of this family of shapes depend on 
only one geometrical quantity, which we choose to be the separation s between the 
centers of the intersecting spheres. Through the division cycle, the diplococcus 
grows from s = 0 (a single spherical cell) to s = 2R (two spheres in contact), with 
the length L, area A, and volume V of the cell depending on s as

	 = +2 (1 )L R b 	 (2.12a)

	 β= +24 pi (1 )A R\ 	 (2.12b)

	
3 2(4 \ pi / 3) •[1 (3 ) / 2]V R b b= + − 	 (2.12c)

where b ≡ s/2R. Once the time dependence of just one of L, A, or V is known, the 
time dependence of the remainder is determined and the probability densities P can 
be calculated from Eq. (2.11). It turns out that the volume appears to have the 
simplest functional dependence on time, with a linear increase in time or exponential 
increase in time being the most likely (Bennett et al. 2007):

Linear volume increase During the doubling time T
2
, the rate of change of the 

volume is constant at dV/dt = (4pR3/3)/T
2
. The time dependence of the overall cell 

length can be found from this form, which then yields

	 2
\beta ) / 2. (linep a= 3(1- rin )b t 	 (2.13)

Exponential volume increase In this situation, the rate at which the volume 
increases is proportional to the instantaneous value of the volume, or dV/dt = V 
ln2/T

2
. From this,

	 2 2
\beta ) / ln 2] /[2 )p = [3(1- ]. (exponentialin )(3b b b−+ t 	 (2.14)

Although it might appear to be somehow more consistent to calculate P
V
 rather 

than Pb, the cell’s length can be more accurately measured than its volume, so that 
Pb is the more useful quantity.
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2  Evolution of the Cell’s Mechanical Design

2.5 � Evolution of the Division Cycle of Rod-Like Cells  
and Diplococci

The methodology described in Section 2.3 permits the determination of the time 
evolution of a quantity (such as the cell length) through the measurement of an 
ensemble of cells undergoing steady state growth. Being a statistical technique, a 
reasonably good size sample must be taken to ensure accuracy: this is achievable 
for colonies with 200 or more identifiable microfossils, although in the lab, samples 
with more than 600 cells are preferred. Analyses of, and comparisons between, two 
morphologies of modern and ancient cells have been performed thus far: rod-like 
cells and diplococci (also referred to as dyads in some contexts). For theoretical 
reasons, the diplococcus morphology is the more useful of the two, and is the focus 
of this section (which follows Bennett et al. 2007).

Three taxa of microfossils with the diplococcus morphology are displayed in 
Fig.  2.8, along with a rod-like taxon in the upper left-hand corner of the figure 

Fig.2.8  Examples of 2 Ga non-filamentous microfossils from the Belcher Island, Canada. 
Clockwise from the upper left: bacillus-like E. moorei and dyads EB (unclassified colony),  
S. parvum, and E. belcherensis capsulata. Scale bar, 5 mm (Bennett et al. 2007)
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(microfossil specimens reported in Hofmann 1976). Modern diplococcal cyanobacteria 
have a very similar shapes, although the boundary is much crisper. In the strains 
described here, the smallest cells in a population are spherical, although there are 
some species where the smallest cells are slightly elongated, yet not so long as to be 
classified as bacillus-shaped. Colonies of ancient or modern diplococci all possess 
distributions in cell width that are very narrow: the standard deviation in cell width 
is less than 10% of the width itself. This suggests that the cells grow at fairly constant 
width, which is confirmed by scatter plots of cell width against cell length where 
only weak correlations are found to exist between the two variables. Thus, we are 
confident that Eq. (2.12) for L, A, and V of intersecting spheres with constant radius 
captures the shape of the cells to a good approximation.

The probability density Pb for the dimensionless separation b = s/2R is shown in 
Fig.  2.9 for two species of the modern diplococcus Synechocystis from the Pasteur 
Culture Collection, PCC 6804 and PCC 6714 (Boal and Forde unpublished). The 
strains have spherical initial configurations such that there is complete overlap of the 
two mathematical surfaces describing the general diplococcal shape: i.e., s = 0 and 
consequently b = 0. As a result, Pb is non-vanishing in the smallest measurable range of 
b. In fact, Pb is peaked around b = 0, above which it declines and eventully vanishes as 

Fig.2.9  Probability density Pb as a function of b for Synechocystis diplococci PCC 6804 and PCC 
6714. Shown for comparison are predictions from models based on exponential (solid curve) or 
linear (dashed curve) volume growth, as well as exponential growth of cell length or area  
(dotted curve, top panel only) (Boal and Forde unpublished)
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2  Evolution of the Cell’s Mechanical Design

b → 1. This behavior of Pb has the physical interpretation that the cell grows most 
slowly at the start of its division cycle (large Pb) and most rapidly at its end (small Pb).

How do the measurements of Pb in Fig. 2.9 compare with models of cell growth? 
If the length or area of a diplococcus grows linearly with time from b = 0–1, then 
Pb is constant at unity for all b, clearly in disagreement with the measurements. 
Exponential growth based on cell length or area should obey Pb = [ln2 (1 + b)]−1, 
which decreases from 1.44 at b = 0–0.72 at b = 1. These values are well below the data 
in Fig. 2.9 at b = 0 and well above them at b = 1. In other words, neither of the 
length/area-based growth models with linear or exponential time dependence agrees 
with the observed behavior of Pb. The predicted Pb based upon volume growth with 
linear or exponential time dependence is also plotted in Fig. 2.9. The differences 
between the theoretical curves are obviously not large, which is expected because 
the exponential function ex is approximately linear in x at small x. The intercept of 
Pb at b = 0 is predicted to be 3/(2 ln2) = 2.16 for exponential volume growth and 
3/2 for linear volume growth. The higher (exponential) value of Pb (b = 0) is mildly 
preferred by experiment in both panels of the figure, but linear volume growth is 
not ruled out. This preference for exponential growth in volume is seen for many 
other cyanobacteria, including other diplococci as well as rod-like cells (Boal and 
Forde unpublished).

The lab specimens reported in Fig. 2.9 were prepared such that the symmetry 
axis of each cell was made to lie in the observational plane. In contrast, fossilized 
cells may have random orientations, so that either their shape must be recon-
structed in three dimensions, or the analysis must take into account the orienta-
tion if the measured shapes are projections onto a plane. Here, we work with the 
unitless probability density PL, where L is the projected cell length divided by the 
cell width (the width is unchanged by projection); L runs from 1 when b = 0–2, 
when b = 1. The correspondence between b and L is not unique, in that a range 
of configurations in b can contribute to a given L: for example, cells of any length 
may have L = 1 if their symmetry axis points towards the observer. Figure 2.10 
displays PL for three taxa of fossilized diplococci and the probability density is 
seen to rise rapidly to a maximum exceeding PL = 2.5 at L near 1 before falling 
more gently as L approaches its upper limit of two for linked spheres. This 
behavior is very similar to that of Pb for modern diplococci in Fig. 2.9.

In terms of mathematical models for cell growth, it is not difficult to obtain PL 
from Pb, and Fig. 2.10 contains the predictions of two models for the cell division 
cycle: exponential growth in volume (solid curve) and exponential growth in area 
(dashed curve). Exponential growth in area is a poor representation of the measured 
PL, particularly at L near one, just as this same model failed to capture the behavior 
of Pb for modern diplococci. Linear growth in volume also underpredicts PL at L = 1, 
where it approaches 3p/4 = 2.36; PL then exceeds the data as L → 2 in this model. 
In contrast, exponential growth in volume corresponds most closely to both the quan-
titative and qualitative features of PL seen in Fig. 2.10, and predicts PL(1) = 3.34.

Let’s now return to the principles behind the models for cell growth. Models 
where the growth of a cell is linear in time assume that change occurs at the same 
rate throughout the division cycle no matter what the contents of the cell. Examples 
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of linear models can be found in some eukaryotic cells, where cell mass grows 
linearly with time (Killander and Zetterberg 1965). Here, we observe that the only 
linear model not immediately ruled out by data is the linear rise in volume, for 
which agreement with data is marginal. Exponential growth may arise from several 
different mechanistic origins. Exponential growth in area corresponds to new surface 
being created at a rate proportional to the area available to absorb new material – a logical 
possibility but not supported by Fig. 2.10. Lastly, exponential growth in volume 
arises if new volume is created at a rate proportional to the cell’s contents, which is 
the only scenario to comfortably describe the data. What we conclude from 
Figs. 2.9 and 2.10 is that exponential growth in volume has very likely been a guid-
ing principle for the division cycle that was established at least two billion years 
ago for bacteria with the diplococcus morphology.

2.6 � Summary

This article has examined the role that continuum and statistical mechanics plays in 
determining the size, shape and functionality of the simplest cell designs, focusing 
on cell morphologies such as diplococci and filaments that have at the most two 
important structural components. We described the bending resistance, edge tension 
and rupture resistance of lipid bilayers and showed the constraints that these elastic 
and mechanical properties place on the size of the simplest cells. For example, the 
rupture resistance of the bilayer generates a pressure-dependent cell radius 
beyond which a bilayer requires a cell wall for reinforcement. Similarly, the bending 

[AU4]

Fig. 2.10  Combined data for the probability density PL of the dyads S. parvum (diamonds), 
E. belcherensis capsulata (circles), and an unclassified colony labeled EB (triangles) compared to 
the expectations of growth at constant curvature and exponential increase in volume (solid curve) 
or area (dashed curve). The largest values of PL have about 30 cells per data bin for a statistical 
uncertainty of about 20% per individual datum (Bennett et al. 2007)
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2  Evolution of the Cell’s Mechanical Design

resistance and edge tension of the bilayer set a minimal membrane area for the cell 
to spontaneously close into a spherical topology. Mechanical principles also may 
dominate the simplest or earliest forms of the cell division cycle. For example, the 
maximization of entropy can lead to a division cycle in which the membrane grows 
until it produces entropy-rich arms that can pinch off to form new cells if DNA 
replication and separation are appropriately choreographed. The minimization of 
deformation energy or of the consumption of materials also favors specific forms of 
the division cycle.

We investigated the mechanical features of cells more than two billion years old 
using a combination of statistical mechanics and comparisons between modern 
cyanobacteria and microfossils. In Section 2.2, we characterized the sinuous behavior 
of filamentous cells by means of a tangent correlation length x

t
, demonstrated its 

power law dependence on filament diameter as Dn within a given genus, and provided 
an argument from continuum mechanics that this power law should have an exponent 
n in the range of 3–4. We also obtained soft bounds on the relationship between x

t
 and 

D for modern filamentous cyanobacteria according to the length-to-width ratio of 
individual cells within a filament, and then demonstrated that filamentous microfossils 
and pyritic replacement filaments satisfied these bounds. From this, we argued that 
the general mechanical features of filamentous cells were probably established 
relatively early in the development of life. Finally, in Section 2.4, we examined the 
division cycles of non-filamentous cells, focusing heavily on diplococci, in which we 
applied a technique that extracts the time dependence of a geometrical observable 
such as cell volume from an analysis of a colony of cells under steady-state growth 
conditions. It’s found that that modern cyanobacteria and microfossils with rod-like 
or diplococcal shape are most consistent with exponential volume growth (although 
linear growth in volume cannot be ruled out). This argues that the volume of a cell 
increases with the volumetric contents of the cell, a division cycle that dates back at 
least two billion years.
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