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The Kerr-Newman metric in the nonsymmetric unified field theory
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The method introduced by Newman and Janis for obtaining the metric of a rotating, charged
particle in the Einstein-Maxwell theory of gravitation and electromagnetism is examined in the
context of the nonsymmetric unified field theory. Itis found that a transformation very similar to
theirs, when applied to the antisymmetric part of the tensor g, » will generate the required
electromagnetic field associated with the Kerr—Newman metric.

La méthode introduite par Newman et Janis pour obtenir la métrique d’une particule chargée
enrotation, dans la théorie de Einstein-Maxwell de la gravitation et de I’électromagnétisme, est
examinée dans le contexte de la théorie du champ unifié non symétrique. On trouve qu’une
transformation tres semblable & la leur, quand on I"applique a la partie antisymétrique du tensen
8, - g€nere le champ électromagnétique requis associé & la métrique de Kerr-Newman, -
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1. Introduction

Some years ago, Newman and Janis {1965)
proposed a method for finding the metric for a
rotating particle from the spherically symmetric
metric of the particle without angular momen-
tum. They first showed that the procedure gave
the correct results for a particle without charge
(Kerr 1963) and then used the method to predict
the metric for a rotating charged mass (Newman
et al. 1965). Unfortunately, no similar transfor-
mation was found for the electromagnetic field.

Recently, we proposed a theory for the unifica-
tion of gravity and electromagnetism (Moffat
and Boal 1975) in which the electromagnetic
field is directly related to the antisymmetric
part of the metric tensor, g,.. If this theory is
correct, then there must exist a similar trans-
formation to Newman’s (which applies to the
symmetric part of g,,) which will yield the
correct electromagnetic field. We wish to present
such a transformation here.

2., Summary of the Theory

In the unified theory of gravitation and electro-
magnetism proposed by Einstein (Einstein 1945;
Einstein and Strauss 1946), the tensor g,, is
allowed to be nonsymmetric. However, to ob-
tain physical solutions, we found (Moffat and
Boal 1975) that Einstein’s Hamiltonian density,
., must be modified to read?

"We will use the notation g, = (1/2)(g,. + &) and
Lo = (1/2)(guv — gw). The remaining definitions are
given in Moffat and Boal (1975), the only change being an
insertion of 8n into the Lagrangian to facilitate compari-
son with the Einstein~Maxwell theory.

[Traduit par le journal]

(1] #*=# + (4n/k2)~/—gg“"g[v"]
where

[2] H = ~ _‘gg'w Ruv

R, denotes the usual contracted curvature
tensor which may also be nonsymmetric. We
leave aside for the moment the question of
whether g, is real nonsymmetric or Hermitian.
The constant k& is a universal constant having the
dimensions of length. We solved the field
equations derived by varying the action given by
the Hamiltonian in [1] for the spherically sym-
metric case and found (for real nonsymmetric

&)
2 2132
[33 dszz(l_%_+%)(l+kg)dt2
r r ¥
2y —1

— rX(dB* + sin® 0 do?)

in polar coordinates, where m and Q denote the
mass and charge of the particle, respectively, in
units where &' = ¢ = 1. It was found that the
antisymmetric part of the tensor g,, was related
to the electromagnetic tensor F,, through the
relation

[4] g[p.v] = kF].I.V

The consequences of the deviation of this
result from the Reissner—Nordstrém solution
(Reissner 1916; Nordstrom 1918) into which it
collapses when k — 0, was explored for a variety
of phenomena and found to vield only small
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effects (Boal and Moffat 1975). It has also been
shown (Johnson 1975) that the solution given by
I3} generates the correct equations of motion for
a charged particle to the lowest nontrivial order
of approximation.

The most obvious extension of this solution
would be to include the effects of spin. However,
the method employed by Newman et al. (1965)
for including spin in the less complex Einstein--
Maxwell case (kK — O here) was not the exact
solution of the field equations but rather the use
of a complex coordinate transformation. The
metric of the Reissner-Nordstrém solution was
first expressed in null coordinates

[5] ds® = A(r)di? + 2 du- dr
— 12(d0? + sin? 0 d$?)
where

[61 A(r) =1 — @mjr) + (4nQ*/r?)

The contravariant form of the metric was ex-
pressed in terms of a null tetrad by

71 g% =" +I'n") — ("0 + a'b¥)
- where
[8] P =354
O] ot =258" — (/DA
[10] &* = (1/J/2r¥8,* + (i/sin 8)5,%)
and where b* is the complex conjugate of a'.
The coordinate r is now allowed to be complex.
The tetrad vectors I, a'*, and &' for the metric
corresponding to a rotating charged mass, are

obtained from [8]-[10] by applying the complex
coordinate transformation

[11] r"=r+iacosf
[12] # =u— igcos B
[13] =9, ¢ =¢

The vector B is found by applying the trans-
formation given by [13] and the complex con-
jugates of {11] and [12]. Here, "¢’ is the angular
momentum per unit mass. Demanding that r’
be real, the new tetrad I'", #'¥, a'*, and b gives
the rotating analogue of the Reissner—Nordsirém
metri¢ in radiation coordinates.

3. Rotating Electromagnetic Field
The method devised by Newman for obtaining
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the rotating metric can be extended to the case of

the nonsymmetric theory only with difficulty,

since the nonsynumetric tensor, g,,, cannot be

diagonalized into the symmetric form required

by the usual tetrad formalism. It is possible to -
generalize the tetrad formalism to represent a

Hermitian tensor by means of a complex tetrad

¥, and its complex conjugate ¢*¥,, where g"¥

becomes (see, for example, Smith (1974))

[14] g =t

and where n*F is the flat space—time metric. The
imaginary part of the metric tensor g, (which
corresponds to the electromagnetic field in the
k — 0 limit) is then just the appropriate anti-
symmetric combination of the tetrad and its
complex conjugate.

Fortunately, Newman was able to first “test’
his transformation on the Schwarzschild metric
(to produce the Kerr metric) before applying it to
the Reissner—Nordstrdm metric. Because there
is, as yet, no analogous solution for the nonsym-
metric theory, there is no guarantee that a trans-
formation for k # 0 would produce the correct
result, even though it reduced to the proper
electromagnetic tensor in the limit & — 0. On
account of this uniqueness problem, we will con-
fine our attention to the & — 0 limit. In this
limit, for both the real nonsymmetric and
Hermitian cases, g, decouples from g, in the
field equations. Equation 14 suggests that we
represent g™ by the antisymmetric combina-~
tions of the same tetrad as represents the sym-
metric part. Working in the real nonsymmetric
case (the same arguments apply for the Hermi-
tian tensor), we find
[151 —(1/k)g™ = (Q/2r?)[(IFn" — I'n*)

— {(a*h" — a"b")] + complex conjugate

where we have included the complex conjugate
to insure that g™¥1 remains real (see also Newman
and Janis (1965)). The only nonzero elements of
F* = (1/k)g™7 are
[16] FI4 = _F41 — _Q/rz

The coordinate r is now allowed to be complex.
To produce the tetrad for the electromagnetic
tensor of the rotating charge, we apply the same
transformation as before to /¥, »*, and 4* To
find &%, we apply [11] and [13] plus the complex
conjugate of [12]. Thus, we have
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e =3
HP = 8,0 — (1/2A(1)5,*

[17] a* = (1//2r)(a sin 0(8,* — §,%)
+ 6% + (i/sin 0)8,")
b = (1//27)(—ia sin 6(3," + 8,
+ 8, ~ (ifsin 0)3;*)
where

1

091 80 =1+ (L) 1 450

rr

r

and where 7 is the complex conjugate of ». As
might be expected from [14], the vector »'*
is no longer the compiex conjugate of a™ since
the complex tetrad formalism allows for four
vectors plus their complex conjugates. We now
replace r and 9 in [17] by the new coordinates of
f11] and [13], and then demand that r’ be real.
Substituting the resultant tetrad into [15], we
find the only nonzero elements of F* above the
diagonal are

F¥ = Q—;’ (r2 -~ a® cos? 9)
p
F¥ = _ B%- (r2 ~ a* cos? 9)
2 oiem 2
[19] « (142200
p
F23 = 2Qar cos &
T p%sin®
Fo4 2Qa’r sin O cos O
= oF
where
201 p*=r*4+a%cos? 0

and where we have dropped the primes from the
new coordinates.

4. Conclusion
The elements of the tensor F*¥ given by [19]
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are just those of the electromagnetic field of a
rotating charged mass (Misner et al. 1973). A -
similar transformation could also be applied to
the Hermitian case io obtain the same tensor.
Whether this transformation can be applied to
the Hermitian case for nonzero & has yet to be
established, since there may be several different
formulations which reduce to [19] when k%
vanishes.

Despite the striking similarity between the
formal procedures for finding g™ and g™ in
the limit of vanishing &, neither Newman’s
(Newman ef al. 1965; Newman and Janis 1965)
prescription for the symmetric part nor the pre-
scription described here for the antisymmetric
part can be rigorously derived as yet. We must
await exact solutions to other field configura-
tions before accepting their universality,
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