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The geometric problems of unified theories of gravitation and electromagnetism which contain
a nonsymmetric metric tensor are investigated. Although many of the familiar geometric proper-
ties of the Einstein—Maxwell theory are no longer valid, there do exist autoparalfel ‘gecdesics’ or
paths, whose tangent vectors have constant length. Tt is shown in the weak field approximation
that the theory allows for two oscillatory solutions, co;‘rcsponcling to electromagnetic and
gravitational waves. The propagation of these waves is investigated in the geometric optics
approximation. To the approximations used, light travels on null geodesics of the: gravitational
background in this theory, although not all relevant cases are solved. .

On étudie les probléemes géométriques des théories unifiées de la gravitation et de Félec-
fremagnétisme qui contiennent un enseur métrique non symétrique. Alors que plusieurs des
propriétés géométriques familiéres de la théorie Einstein—Maxweli ne sont plus valides, et existe
des "‘géodésiques’ ou parcours autoparalléles dont les vecteurs tangents ont une longueur
constante. On montre dans 'approximation de champ faible que la théorie permet deux solutions
oscillatoires correspondant aux ondes électromagnétiques et gravitationnelles. La propagation
de ces ondes est étudiée-a I'approximation de 'optique géométrique. Dans les limites des
approximations utilisées dans cette théorie, la lumigre se propage le long des géodésiques nulles
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Physical interpretation of and light propagation in the nonsymmetric unified field theory!

du fond gravitationnel; tous les cas pertinents ne sont cependant pas résolus.
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1. Introduction

We have proposed (I, 2) that the difficulties
associated with Einstein’s formulation (3, 4) of the
nonsymmetric® unified field theory can be eliminated
by a small modification of Finstein’s Lagrangian. In
retrospect, a mathematically equivalent modification
had been proposed by Bonnor (5), although the
physical interpretation was different. In this theory,
the Lagrangian density becomes

[LH] % = /=g g™ B, + (4n/k") V=2 8L

where g is the determinant of the nonsymmetric
metric tensor g,,.. Here, k is a universal constant with
dimensions of length, and B,,, the contracted curva-
ture tensor, is given in terms of the nonsymmetric
connection L%, by

[1‘2] Buv - auL&p\' - %(avLupu + apLava:)

- LuusLumv + LmuvLG:m

Variation of the action integral gives rise to a set of
field equations. Unfortunately, the connection L%,
is underdetermined by the field equation relating
L%, and g, (6, 7). To circumvent this problem, a
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2Revision received August 17, 1978.

*We will use the notation g, = ${gu + £w) and gpe =
Hgw — gw) The convention g°g,, = &, will be used to
define g"¥ A comma will denote coordmatc differentiation.

[ Traduit par le journal)

projective transformation which leaves the auto-
parallel paths unchanged (8) is applied to generate a
new connection I,

[1.3] Foy = L%, + 8%,
where
[14} Vv = %(1"61/5 - Lﬁsv)

The field equations, in terms of the new connection,
are:

[E3] 88 = 8ol "o — Gol T = 0
(6] M= 0
[L7] Ry + fpr = Vi — Ve
[L8] Ry + Ly, = 0
(197 1, = —(@nik?)g,.e",,
+ $8081op18™ + gLy

where R is the same function of I'as Bis of L in [1.2].
The quantity ¥, which, from [1.7], is a potential, is
not determined by the ﬁeld equations so that [1. 7] is
written as a curl

[1.10] Ry + v o1 = 0
Equation [1.6] is equivalent to the condition
[1.11] 0V TE g = 0

In the static spherically symmetric case, these
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equations can be solved exactly to yield the line
element

212 2
[1.12] ds* = (1 . ) (1 —2—Pm+%§2—) de?

?"4
2y -1
1o )

— r%{d8? + sin? 8 do?)

in spherical polar coordinates, where m and Q are the
mass and charge, respectively, in units where
G = ¢ = 1. The only nonvanishing element of gp,.4
is '

[1.13] ey = kQ|r?

In the limit & — 0, [1.12] reduces to the Reissner—
Nordstrém solution (9, 10), suggesting that our field
equations should reduce to the Einstein-Maxwell
field equations in this limit. Equation [1.13] suggests
the identification with the generalized electro-
magnetic field tensor F,:

[1.14] iy = K

Applying the & — 0 limit [1.5], [L.7], [1.8], and
[1.11] yield

[L.15] R,, = 8uT,,

[1.16] —(8nfk)F,, = V.. — Vi,
[1.17] 8 —gF* =0

[1.18] T,.=F"F,+ Lo FugF™®
and

[1.19] Guvia = 0

where R, and g,, are now symmetric and where the
semicolon indicates the covariant derivative. Equa-
tion {1.16] suggests the identification (in the k — 0
limit):

[1.20] V, = —(8rfk)4,

where A, is the usual electromagnetic potential.

We must note two things about £, and A,. First, -

although F,, has the same form for all k, it obeys
Maxwell's equations only when &k = 0. Second, 4,
reduces to the electromagnetic potential only when
k = 0. As defined in [1.20], 4, is in general a func-
tion of &, and in the static spherically symmetric case,
has the form
A;=0 (i=1,23)
oty o oot K20
o= Qlr — K20m{8mr* — k07 [2r

Thus, the electromagnetic potential of the Einstein—
Maxwell theory gains correction terms of order k.

The field equations given above have been shown
(11) to give the correct equations of motion to the
lowest nontrivial order of approximation. Further
properiies of the theory can be found in work by
Boal (12), Borchsenius (13), Moffat (14), Kunstatter
and Moffat (15), and references cited therein.

2. Physical Interpretation

The geometric aspects of the Einstein-Maxwell
theory are well known. One can construct locally flat
frames which retain their ‘flatness’ as they are
parallel propagated along a geodesic. The geodesics
themselves are the same whether they are generated
from the symmetric connection of the field equation
[1.19] or from the connection found from the
extremal of arc length since the two connections are
identical. Further, the length of a vector or its
product with another vector or its angle with that
vector all remain the same when parallel transported
along a geodesic, Since the purpose of the unified
field theory was to incorporate electromagnetism into
the geometry of space-time as had been done with
gravity, we must determine how much of the beautiful
geometric structure of the Einstein—Maxwell theory
still exists.

We can see immediately that in the unified theory
things are not as straightforward. Not only do we
have two different connections entering into the field
equations, L%, and I'%,,, but we also have a third
connection generated by demanding that the arc
length must be extremal,

[2.1] §fds =10
namely the Levi-Civita symmetric connection A%,

[22] .g(uu)Aauv = %(g(pm),v + g(mv),p - g(;.w],u)

The first two connections mentioned above are re-
lated by a projective transformation, so any vector
directions parallel with respect to L7, are parallel
with respect to I'* . Hence, the paths (which we
shall use instead of the word geodesic) of the auto-
parallel tangent vectors are the same (8). However,
the connection A”,, is not related to the other two by
a projective transformation (not even their symmetric
parts are so related) so that a completely different set
of paths is generated

We will return to the Levi-Civita connection later
in this section. Let us first look at the connections
which arise in the field equations of the theory with a
real nonsymmetric metric tensor and consider the
product g, A" B" (since g,,, is nonsymmetric, the order
of the vectors in the product is important) as it is
paraile! transported along some path generated by a
nonsymmetric connection #* . The variation of the
product with respect to an affine parameter ¢ along
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the path is:
[23] O (g,4°8)

= (gpv,m - gﬁquuu - gmwcw)k“A“B“

~ where k” is the vector tangent to the curve. Let us aslk
that this variation vanish in analogy with general
relativity. Now, if #%,, be identified with the connec-
tion I'* . then the fleld equation [1.5] implies that
I = 0, so that the theory reduces to general
relativity. If the connection L7, is chosen instead,
then again we find that L* ,, = 0. Cleatly, this im-
plies that the potential ¥ also has to vanish. Thus, we
see that the product of two arbitrary vectors is not
preserved by parallel transport. If we choose 4* = B,
then the same situation arises so that lengths are not,
in general, preserved.

However, if we put B = £V, then the field equa-
tion [1.5] implies that the right-hand side of [2.3]
vanishes. So the product of the tangent vector with an
arbitrary vector is preserved under parallel transport,
We note this is only valid for the order of vectors
specified, not for g, k*B". Lastly, if we put both
vectors equal to the tangent vector, then we find that
its length is invariant. In summary, we have a
minimal geometry in that we can define paths whose
tangent vectors have both constant length and can
form a product with an arbitrary vector. However,
the product of two arbitrary vectors, and hence the
angle between them, is not invariant, nor is the length
of an arbitrary vector. Indeed, a timelike vector can
be turned into a spacelike one. As an example of this
consider paralle] transport of a null vector along a
radial gecdesic in the exact spherically symmetric
selution mentioned above. Evaluating the derivative
of its length at the initial point, we find it is non-zero.
Therefore on one side the vector is timelike, on the
other it is spacelike.

An alternative approach to the theory which we
considered earlier was to allow g,,, to be Hermitian (1),
so that the antisymmetric part is pure imaginary. The
exact solution to the field equations for the spherically
symmetric case was shown to have the unusual
property of becoming Euclidian within a sphere of
radius /&£Q. Some of the properties of this solution
are presently being investigated (15).

If g,, is Hermitian, then [1.5] implies that I,
must also be Hermitian in the lower two indices.
From [1.7] it follows that the potential ¥* is pure
imaginary. If we combine these two results with [1.3]
then we find that the connection L%, is neither
Hermitian nor generally complex. For example,
L% (o0 # P) is real whereas LP, is complex. Hence,
we find that the Hermiticity of I'*,, has entered in a
somewhat artificial way.

If we use this Hermitian metric to form a product
with two real vectors, as we did before with the real
nonsymmetric metric, then none of our conclusions
are changed. If we extend our considerations to
complex vectors, then we can define a product which
is invariant, namely g, 4" B*, where the bar indicates
complex conjugation. The product is propagated in
such a way that the vectors are propagated inde-
pendently, then the complex conjugation operator is
applied. This has the effect of rearranging the
covariant indices of W* _ in [2.3] to match those in
[1.5]. This has not significantly improved the geo-
metrical problems because we are now faced with the
situation where the angle between two vectors is
complex and an arbitrary real vector (the tangent
vector being an exception) will become complex as it
is parallel propagated along a curve {the length of a
vector will remain real). However, this product
operation is only successful if the parallel propaga-
tion occurs along a real vector: for the general com-
plex case it i1s no longer useful. Because of these
associated problems we will drop the Hermitian
metric from our discussions.

We should stop to consider why there is 0 much
trouble in dealing with anything but tangent vectors.
The answer lies in the incompatibility of these con-
nections with a locally fiat frame which is invariant
under parallel transport. In the Einstein—Maxwell
theory, if there exists a coordinate system such that
g4y = T, (the Minkowski metric}, then the connec-
tion vanishes {in the Cartesian coordinate system).
Here, having a locally flat metric with g, =1
only implies that

[24] nucrc(uv} + Tlvrsl-d[du) + Tlucrro(pv) - 0

and consequently

py

[2.5] M6l ey + Mol Tty = 0
and
[2.6] I, =0

where the i’s are not summed in [2.5] and [2.6].

Since the symmetric parts of the connections do
not vanish, then neither does the second derivative
term in the equation of motion

d?x*
dp?

« dxFdx¥
MR

[2.7]

Thus, we cannot construct a true Lorentz frame.

A solution to these problems can be found by
imtroducing yet a third connection, the Levi-Civita
connection defined by [2.2]. This is not particularly
elegant, as the theory will then have three connec-
tions, two of which appear in the derivation of the
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field equations and one of which defines parallel
propagation. The motivation for introducing the
curvature tensor, which is not defined in terms of
A%,.. appears to be lost.

However, A”, does vanish wheng,,.., = n,, and so
we can construct local Lorentz frames. Furthermore,
if we define the product of the vectors by g,,,,4* 8",
then this product is invariant under parallel propaga-
tion with respect to A%,,.

In summary, we have two cases. We can use I',, to
define parallel propagation, in which case we have a
motivation for the theory but can only properly
incorporate tangent vectors into the geometry. On
the other hand, we can use. A%, for parallel propaga-
tion, but what we gain in widening the geometry con-~
siderably we lose in motivaticn for the theory. One
possible way of distinguishing between these two
connections is to find out along which, if either, light
chooses to propagate. -

Unfortunately, present day experlment is of no
great help either in sorting this problem out or, for
that matter, in testing the theory. Because present day
experiments are done using massive uncharged ob-
Jjects, then we can test only the @ = 0 solution of this
theory. This, of course, is the same as general rela-
tivity, -and so all of the predictions of this theory,
such. as the parameters of the parametrized post-
Newtonian (PPN) formalism, are the same 'as in
general relativity. Since the.corrections (2) in the
() # 0 case given here are several powers of » down
from the Einstein-Maxwell corrections, it is unlikely
that experiment will test this theory for some time to
come, as even Einstein-Maxwell theory remains un-
tested

3. Weak Field Approximation

In order to study light propagation in this theory,
we must first establish that light exists as distinet
from gravitational radiation. As a first step we will
show that in the weak field limit electromagnetic and
gravitational null plane waves analogous to those of
the Einstein-Maxwell theory are allowed solutions.
Because of the extra terms in the nonsymmetric
theory, it is not immediately obvious that these two
types of waves still can be independently present.

In the weak field approximation, the metric tensor
£ 18 expanded in a series with the flat space-time
metric 1, as the principal term and a sum over
progressively weaker perturbing fields:

[3'1] gpv = npv + A’glpv + ?\‘zg”uv +

where the number of primes indicates the order of
approximation involved. In Appendix A, the field
equations are expanded to second order in A. For the
present, we will assume that the perturbing fields are

very weak, so that we can work in first order.
Equations [1.6] to [1.8] then become

[32] npag'[uv],'z =0
[33] éDg’[pv] - (Sﬂ:f'kz)g’[pv] = V,u,v - V,\'.u .
[34] _Dg’{uv) + nug(_g,(Bu);u;v + gI(DV);!-l,ot

+ & o) = 0

respectively. Clearly, the equations have separated
into symmetric and antisymmetric parts. If we work
in harmonic coordinates, such that

[3.5] g, =0

then we find to first order that [3.5] gives the condi-
tion

[3.6] ﬂdﬁaug'(gv) = %T’Imﬁavg’(c«.ﬂ)

For simplicity of notation, we will rewrite g'r,,; as

kF',,and V', as —(8n/k)A,. Then [3.2] to [3.4] have
the following solution in harmonic coordinates:

F’pv = Au,v - Av,p
(3.71 b4, =0

9,4" =0
and

0g'qw =0
[3.8] Wy o 1pabp g

N8 g = M08 ep)

These are just the usual equations for electro-
magnetic and gravitational waves, The field equa-
tions allow the divergence of the potential A to be a
constant which we choose to set equal to zero, so that |
the equations have the solution

[3.9]
[3.10] 2" @) = hy, exp (ipx"} + cc

where g(p) and o,(h,) are the momentum and
polarization vector (tensor), respectively, of the
electromagnetic (grawtatlonal) wave, subject to the
conditions:

A(x) = o, exp (ig,x") + c.c.

g,9" =0, pyp'=

11
[3 ] ot = 0: puhpv =

M

Tt is clear from [A15] to [A18] that the term corre-
sponding to the electromagnetic stress energy tensor,
[1.187, will only appear if the equations are carried to
second order. In particular, g',,, will effect the
solution for g”',,, through [A8], [A12], and [AlS]
Similarly, the first- order field g'(,,, will appear in
[A14], which governs g"",.1- It should be noted that
if we assume that the first-order gravitational field

g’y vanishes, then_ [A10], [Al4], and [Al8]



BOAL AND NOAKES 83

generate the equations
[3.12] N8 (g = 0
[3.13] 008" 1y — BN oy = Vi —
Similarly, [A12] and [A16] give the equation
B4] T = 7 g + T )

- rm[ufr]rml.'mﬂ + 1”(uv} = 0

1
v Vil

Since g”'[,; obeys the same equations as g'[,,;, in
this approximation, the potential ¥, obtained from
g''uvy also has a plane wave solut1on The 1", in
[3.14] is just the usual electromagnetic energy-
momentum tensor so in this approximation we have
the analogous Einstein-Maxwell expression for R,
plus several correction terms of order k?:

[3.15] R" oy = —8aT",, + O(K*)

If we use the plane wave solution [3.9], these extra
terms vanish, leaving the general relativity expression.

4. Light Propagation

In order to press our study of these electromagnetic
and gravitational waves further, we will make use of
the geometric optics approximation. (See, for
example, Isaacson (16), Gerlach (17), Tokuoka (18},
and Misner ef al, (19).) By this, we mean that we will
apply to the background field a periodic disturbance
of high frequency, and expand the field equations in
power series of the wavelength, g, of this disturbance,
which is small. Because of the complexity of the
resulting equations, we will also use the weak field
approximation developed in Appendix A. Care will
have to be taken in dealing with the rélative magni-
fudes of the two expansion parameters A and s to
ensure that the results are physical. We will discuss
this point at length further on.

Before tackling the nonsymmetric case, we will
look at some of the applications of the geometric
optics approximation in the Einstein~Maxwell theory.
For example, if we consider the case where F;
contains no background or source term, that is

[4.1] Fp =

where A,[, is slowly varying, then the weak field
approximation can be avoided entirely.* One writes
the vector potential 4, in terms of the polarization
vector o, by means of

[4.2]

Demanding that F*? be divergenceless and taking
the high frequency (g — 0) limit then yields the
desired results

A exp (isfs) + c.c.

A, = Jeo, exp (isfe) + c.c.

*M. Walker. Private communication.

[4.3] Kk, = 0
[4.4] k*e, =0
where

[4.5] ky=5,=35,

It s well known that if &, the gradient of a scalar s,
is null, then it is geodesic in general relativity.

As an introduction to the methods we will use in
the nonsymmetric theory, we now turn our attention
to a radiative disturbance on a general background in
the Einstein—-Maxweil theory (by which we mean a
slowly varying solution of [L1.15] to [1.20]), where
both weak fields and geometric optics must be used
to obtain null geodesic propagation. We write

[4.6] A, = A", — 53—?“ o, exp (g) +ce + 003
so that

471 Fp=F°p +AF'y + OO

where

[4.8] F, = exp (g) oRksy + o + 0(E)

Similarly

[49] gozB = gOaB + 7\'g’otli + O(xz)

where we write

[4.10] g, = exp ( ) (—&’h,p) + c.c. + Og)

A few words are now appropriate to discuss the
relative magnitude of X and . In order to have a
finite curvature tensor, we must take A to zero at
least as fast as g:

[4.11] Me <1

When we. rescale A — A" in the weak field
approximation’ we find that the magnitude of the
curvature components changes but the formal results
obtained do not. Let us choose Afe to be of order
unity, and then see what constraints we can place on
H s in
[4.12]

to obtain physical results. As it stands, [4.12] will
lead to a typical component of R%.; having a ]eadmg
term of the form Aje?, which clearly diverges if A /s is
of order unity. Smce we wish R,; to remain finite
when g vanishes, we therefore write

[4.13] By = 8%y + O(%)

g = I exp (isfe) + ce.
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where f,; is of order unity in the two parameters, take Mg to be of order unity. In what follows, we will
Although we could avoid the rescaling of /#',, if we assume that o, and 4., may be as large as order
placed more constraints on # in unity (although they may be smaller) and that the
[4.14] Mt < 1 ratio of their magnitudes varies depending on the

‘ ~ strengths of the electromagnetic and gravitational
for the sake of making our results more easily com- sources, respectively,. When both o, and A,y are of
parable with others (for example,” Isaacson (16)) we order unity, we find that

[4.15] * T'p = exp (I'S/S)(Foy‘mﬂ)[.fkpj + F0pk, + $8° 0 FY0 k) + cc + O(e)
[4.16] [y, = 4g% exp (isfe)( — i)k, + kg — hpdes) + c.o0 + O

[4.17] Ry = $8% exp (isfe)huskpk, + hyghok, — hyhksk, — hs ke kg) + ce. + O@)
The divergence condition on F'*® now gives

[4.18] g% Ky = 0

[4.19] 2%k, 5 = 0

and k, is geodesic.

Einstein’s equation is complicated, having electromagnetic source terms, and is not required for our
purposes here. With similar work, it can be seen that, if A, is of order unity and w, of order &, gravitational
and electromagnetic waves travel freely and independently along null geodesics. If 4, is of order unity and
o, of order e2, the curvature equation solves essentially as it did in the linearized theory (k, null with respect
to g”*"), but the electromagnetic divergence equation is complicated by terms in A,

Turning now to the nonsymmetric theory, we have already shown that we have the usual electromagnetic
and gravitational waves for a flat space background. We now wish to consider two extensions of this. We will
deal first with a gravitational background only, and then with a general background.

For a purely gravitational background, we set g%, = 0, so that

[4.20] Zuv = &%y T A& + OQF)
[4.21] T, = %%, + A%, + 0%
[4.22] Ry, = Ry + AR,y + 00D

If we go through the same operations as described in Appendix A for the Minkowski background, then we
find that ROW) and R'y,,, have the same form as a function of g%, and g’ as the corresponding quantities
have in general relativity. Further, / O(M and [’ ,,, both vanish, and so the equations governing gravitational
waves are the same in this case as they are in general relativity. Since the results for gravitational waves are
well known (16, 19} we will not discuss them further. The antisymimetric quantities are of more concern:

13- o ! ’ s ’ 0 I3
(4.23] T = 2828 o1y + &1 + &tpre — 28 el Teis) — 28 ol F )
The tracelessness condition on this connection gives :
[4.24] 2N Ly — & el Py — &ttt i) = 0
Since
[4.25] Fiapy = —(87/k™)g’ 1apy

the equation in R'[,,, reads: _

(4261 (T gy =~ Tl 1 + Tl ra + T 00 ey — (8768 tap) o1 = 0
As before, we now introduce a high frequency perturbation in g';,4:

[4.27] £ 1epy = eXp (i5/8) (—8hp) + cC. + O(e7)

The €2 appears in [4.27] for the same reason that it appears in [4.10]. This is a switch from what we might
naively expect from arguments based on taking the £ — 0 limit to obtain the Einstein-Maxwell expressions,

*Note that Isaacson reverses our definitions of & and ¢.
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where no £* would appear. Substituting [4.27] into [4.23], the leading order in & has the form:

[4.28] Iy = exp (IE—S) (— %) g hpasrky + Mgk + hpgoks) + o+
Since this is traceless '

[4.29] 2"k sy = 0

After a little algebra, the leading term in R4, has the form:

[4.30] R'yupy = Yexp (isfe) g9% kshp gy + €C. + O(g)

Since I'[,; Is of order €2, the field equation on the antisymmetric part of the curvature reads
[4.31] g%k keshp gk, = 0 ’

which implies

[4.32] g(’”“kmkﬁ =0

or

[4.33] hpaply = 0

If [4.33] be true, then there exists ¢, not proportional to k_ such that

[4.34] | Arapr = Dpakp

Substituting [4.34] into {4.29] in turn implies [4.32]. Hence, we find that &, must be null with respect to the
background metric.

Proceeding in a fashion analogous to that followed in the Einstein-Maxwell theory, we also find that the
paths generated by k, are geodesics of the background, i.e.,

[4.35] gk, =
O

where the subscript 0 refers to a covariant derivative with respect to I O“BY.

In the above, we have obtained the first result which we need for the theory to be viable: to first order,
electromagnetic and gravitational waves travel along null geodesics with respect to the background gravita-
tional field. However, insofar as helping sort out which connection of the nonsymmetric field is preferred, we
are not much further ahead, since, to this order, the connections are the same. To proceed further, we have
two choices: either we could try to solve higher orders here (which would require detailed knowledged of the
background) or leading order in the general background case. We will attempt the latter,

In the general background case we do not impose g°,,; = 0. Dropping this condition complicates the field
equations considerably. The zeroth-order equations involve g® and I (erms, and will not be discussed
further here since they will provide no information on the behaviour of the high frequency disturbances.
The first-order terms are:

et ’ 08 0 78 o 03 g0 L] o 05
[4.36] 0=2g"Gny — &l 6~ & wl " — &opl ey — 8l oy — B pesdl g
Q 1z ’ 05 0 76
= & s vpr — &l 1 — & wepil Cean
Y ’ H] _ 50 3 . 05 _ 40 ré o 05
[4.37] 0 =g8"uprr = &resil i3y — & tastl Py — 8l e — £ il Cery — & syl P rp

Q i i 03 O ST
— 2w e — & el e — & epy! e
7] __ ry N Vanl 1y 19 1§ . " 08 Oy 8
[4.38] R'iopy = Ty = e T Tmned = T 060l P ipy = T ol 2 my + Tl Pty
Y 08 Q- 5] 1y 08
T U s T 1 + T Pas) + T apl s
[4:39] Ry = "y, — O T78 [ [0 [Or [ pa 05 4 [0y v
: [+B] L1y i)l Cyp] @)l Ivp] sl o a1l v B (r8)
1y 08
+ DT sy

We observe in [4.36] and [4.37] that the symmetric and antisymmetric parts of the connection do not
separate out cleanly. To simplify the equations somewhat, we put

[4.40] g'up = exp (isfe) (—8%h,g) + cc. + O(e)
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and assume
[4.41] I, = exp (isfe) (—ieA%,,) + cc. + O(=?)
s0 that [4.36},and [4.37] become

[4.42] Alepy = P Ehpiky + Rk — hegky) — &Aooy 8% 1% 1ppa]
[4.43] A'ypy = TP [Eppike + fpapikps + frapike) — 800018 0 = 8 1es1’ (5]
where

[4.44] 1°0%Pg0 ) = 8%

Unfortunately, it has not been possible to make any further progress towards solving these equations
without invoking several assumptions. Since neither have we been able to justify these assumptions nor do
they yield a clean solution, we will not consider them here. One comment worth making here is that decreasing
the strength of the high frequency term in g’(,,, by adding another power of £ does not yield any simpler
result. It should also be added that, unlike in general relativity, it no longer follows that k, is geodesic if it is
null and the gradient of a scalar.

Although we are not able to solve the case which would diseriminate among the various connections, we
can obtain a useful result if we relax our condition on the behaviour of R,, in the high frequency limit.
Isaacscn (16) argues that £ ' behaviour in the curvature is allowable in some circumstances. Following
Isaacson we eliminate & from the equations by replacing it with g, so that the gravitational background case

we considered before becomes
[4.45]

[4.46}

Srap)

E(ap)

g exp (is/e) Aipgy + cc. + O
= 8% + 8 EXP (i578) hupy + .0+ O

This is a slightly stronger result in that we now have a orie parameter expansion whose convergence is easier

to assess, at least in principle. Substituting
[4.47]

into the curvature yields
[4.48]

After some work, we are led to
[4.49] go(“ﬁ}qup =19

In deriving the result, g2*P) appears, so that the
electromagnetic perturbation moves on null geo-
desics of the connection compatible with the slowly
varying background metric:

[4.50] A% gy = 22°Ne% pore + 2% s
0
— & (ap)p)

However, to this order the low frequency parts of
[, and ‘A%g,, are the same, and so we cannot
definitely state that I'%;, is ruled out.

5. Conclusions

The generalization of the nonsymmetric unified
field theory which we have discussed in this paper has
been shown in previous work to possess many
desirable qualities not found in Einstein’s original
formulation. What we have tried to do here is lock at
the fundamental geometric and physical implications
of the theory. We find that much of the structure

TV apy = eXp (is/€) (42)8° P hpypik s + Apaikp + Arupiks) + € + O(E)

Rpp = —(je) exp (is/e) g hy 5k k, + cco + O(1)

found in the ‘*non-unified”’ Einstein-Maxwell theory
has been lost.

The first problem we face is the choice between
which of three connections we should use to define
the geodesics, or paths, of the theory. We find that
one of the connections which appear in the field
equations preserves the lengths of tangent vectors to
the path under parallel propagation, but does not
preserve the product of two arbitrary vectors, nor
does it generate a path which is an extremal of arc
length. The Levi-Civita connection which does
generate a path that is an extremal of arc length does
not arise in the field equations. However, it does
allow for preserved products and for the construction
of locally flat Lorentz frames, which cannot be ob-
tained with either of the other connections.

To try to resolve which of these connections, if any,
have physical meaning, we fook to the propagation of
light in the theory. First, we showed that indeed
electromagnetic and gravitational plane waves do
exist in a Minkowski background, a prerequisite.
Next, we showed that, in the absénce of a strong
electromagnetic background, they propagate along
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the geodesics of the gravitational background (at this
level of approximation, there is no difference between
the connections). In the general background case,
where we would be able to distinguish between
connections, the problem remains unsolved.
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Appendix: Weak Field Approximation to
Second Order

The curvature tensor in the weak field limit of
Einstein’s unified field theory has been derived pre-
viously (4, 20). We complete the calculations for our
theory in this Appendix. In the weak field approxima-
tion, the metric tensor g,,, is expanded in the series
[AI] - gy = M + 28, 2787, + ..

where 1),,, is the flat space-time metric tensor and the
£',, are weak perturbing fields, the number of primes
indicating the order of weakness. The elements of the
contravariant tensor

[AZ]
can be found from the orthogonality condition:
[A3] g™ = —nnPyg,

[A4] g = —* 0P, + NP NPNPE a8 e
where we have carried the calculation to second order.
We employ the same expansion for the connection [

[AS5] [ = A", + 207, + ..

Equation [1.5] can be used with [1.6], which now
reads

1A6]

to obtain expressions for I and I'"":

guv — nuv + }vglpv + A’Zgnpv 4 ...

r —_ PG —
r a[w] =0 T [ual = 0

IA7] Iwo.(p.\ﬂ) = %T]N(g’(w),p +g’(|.m),v - gl(vp.),m)

] ¥ . 4 B
28" (il Py — 28"l Prver — 28" apy P )

[AI0] Ty = I Tavaw + & oty = & twine = 28 11l Py = 28 up il P vy = 28 taprT P red)

This implies that the contracted curvature tensor has the form:

[All] R’(pv) = r’ - %(r’a(pa),v + r,&(va),p)

o
(uv),

[A12Z] Ry = Ty = H 0w + T 0 0) — T P ) = Dl Py + TP )T g

= (Br/kHHN*Pg’ (18 1o __z}rﬂpvg’[qﬁ]g'[um)

[AB3] Ry = Mo .

[Al4] R = D g — T - T il Py + TPl
Lastly, [1.10] yields

[A15] Py =0

[A16] ' S CO

[A17] Uy = — 8k 4y

[A]S] , ‘!”[uv] =

- (Sn/kz)g”[uv]



