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A model for the quark-plasma phase at finite temperature and density is presented. The
assumption that the effective interaction among quarks and gluonis increases as density de-
creases is shown to lead naturally to a critical temperature around 220300 MeV at Zero ‘
chemical potential. The mterpretatlon of this model in terms of phenomena expected in

QCD is discussed.

L INTRODUCTION

To successfully describe hadronic phenomenolo-
gy, a model involving quarks must have very dif-
ferent behavior at large and small interquark
separation. To explain the scaling behavior of
deep-inelastic scattering, the quarks must be oaly
weakly interacting at short distances.! To explain

the nonobservation of free quarks in accelerator =

searches, they must be very strongly interacting at
long distances. Therefore, if one were able to as-
"semble a large number of quarks to form an ensem-
ble of variable density and temperature, one might
“expect to find that at high density or temperature
(high temperature implying large average momen-
tum and hence a large four-momentum transfer g*

_in an average collision) the quarks exist in a plasma .

phase which ‘asymptotically- approaches an. ideal
gas. At low density, the quarks would be hidden in
a phase consisting of discrete hadrons. One of the
" questions which many authors have been trying to
answer is whether there is actually a phase transi-
tion between these regimes and, if so, at what tem-
peratures or densities it will occur.

The purpose of this paper is to discuss a model in
which there is.a distinct limit to the quark-plasma
. phase. The basic assumption, which is similar to
- that made by Olive,? is that the interactions among
~quarks and gluons in the pilasma phase can be

represented by an effective potential which varies
inversely with the density. Requiring a self-

consistent solution for the density almost automati-.
cally vields a critical temperature and density below

which the plasma phase cannot exist. _
.The model, along with a review of other ap-
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. proaches, is given in Sec. II for the case of eqhal

numbers of quarks and antiquarks. Section IIT will
generalize the model to finite net baryon_‘ density, .
and indicate what conditions one might need in, for
example, ‘a heavy-ion collision in order to'access
this transition. Qur conclusions will be given in
Sec. IV. '

II. MODELS FOR THE QUARK-HADRON
TRANSITION

We will specialize immediately to the zero-net-
baryon-number-density (np =0) case, treating the
more general situation in the next section. The
np =0 sitouation is of most interest in cosmology,

__since the early universe presumabty passed through

the quark-hadron transition about 10~ sec after -
the big bang, ‘

Soon after the advent of quantum chromodynam-
ics® (QCD) it was realized*~* that quark matter at
high density and high temperature could exist in an
unconfined or plasma phase. Kislinger and Morley*
particularly emphasized that the long-range color
forces responsible for confinement would be
screened at finite temperature. Since then, proper-
ties of quark matter at high temperature and densi-
ty have been widely discussed.

The best evidence that there exists a deconfining -
phase transition in finite-temperature QCD comes
from an examination of the pure gauge thecry on
‘the lattice. Both Monte Carlo calculations'® and an
effective-Lagrangian approach'' show discontinu-
ous behavior between strong- and weak-coupling re--
gimes as the temperature increases. At high tem-

3245 ©1982 The American Physical Society



3246 : DAVID H. BOAL JOYCE SCHACHTER, AND R. M. WOLOSHYN : 26

perature, the energy density has been shown to ap-
proach that of an ideal gas. As the temperature is
lowered, the specific heat and other quantities such
as the effective string tension, show a transition at
around 40A; [in the SU(2), example]. This corre-

sponds to a transition temperature of about 215

MeV. The obvious drawbacks "of the lattice ap-

proach are that one is not assured that the behavior -

of the theory is the same in the continuum limit and
that the effect of quarks is difficult to take into ac-
count. o

At sufficiently high temperature and density it
should be possible to calculate the equation of state

of the quark matter using QCD perturbation

theory.*~® Although this does not contain all the

physics of the lattice calculation, the quark degrees
of freedom are explicitly included and the calcula-
tions provide some useful insight into the behavior
of the system.

In the perturbatlve QCD approach the pressure is
expanded as a power seties in the QCD running
coupling constant g, :

P=Py+Py+Py+ -+, oH!

where the. subscripts refer to the power of g, in-
volved. P, is clearly the pressure of an ideal gas of
quarks. Such calculations® have only been carried
out for massive quarks to P;.

The kind of behavior one would hope to see is an
ideal gas of quarks at high temperature, and a sharp
deviation from ideality at a temperature of a few
hundred MeV. Shown in Fig. 1 is the actual
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 FIG. 1. Ratios of —P,/Po and P3/P, in a finite-
temperature QCD calculation,

behavior for the ratio of P, and P; to Py as a func-.
tion of temperature in the region of interest. (This
calculation is based on Ref. &, and the reader is re-
ferred thereto for details.) It is fairly clear that the
series is not particularly convergent since P; is actu-
ally larger in magnitude than P,. The sum of the
first three terms does approximate an ideal gas

largely because of the cancellation between the

second and third terms. What effect inclusion of
the fourth term would have is difficult to say.
Defining the transition point as that where the

- perturbative series does not converge is not particu-

larly useful because of the poor behavior of the
series even at a temperature as large as 10* MeV (re-
call that the coupling constant varies only .loga-
rithmically with g%). A slightly better definition
from the operational point of view would be to de-
fine the transition as occurring where P;/Py> 1.
Such a definition at least restricts it to lie (on the
basis of the first few terms) in the 200-t0-600-MeV
range.

A wholly dlfferent approach is represented by the
explicit two-phase calculations,”'2~17 in which one’
attempts to model the quark-plasma and hadron
phases separately, then compare their free-energy
densities or entropies as a function of temperature.
Even for noninteracting particles, the free energies
cross at about 300 MeV as shown in Fig. 2 (dépend-
ing on how many hadrons one includes; Fig. 2 con-
tains hadrons with a mass Iess than 1.5 GeV).
However, the phases come out the wrong way
around: at low temperature the phase is mainly
massless gluons, while at high temperature it is the -
large number of hadronic states available. To re-
verse the phases, one must include the details of the

interactions in each phase. It is clear from Fig. 2

that the free energy curves intersect each other at a
fairly shallow angle, so the transition temperature
will depend very sensitively on the interactions.

Such calculations are difficult to interpret since-

they rely on totally different models for the dwcrip-
tion of the two phases. However, they do indicate®
the possibility of a transition in the 200-te-300-MeV
temperature range.

The approach taken here will be to use a mean-

. field approximation to show that there is a limiting

temperature below which the quark phase vanishes.
The method is reminiscent of the Bethe solution to
the Ising model in condensed-matter physics.'* The
idea is to use a potential for the interaction among

. quarks and gluons that varies inversely with tleir

number density {as s)ugg&_ted by QCD) and intro-
duce it into the number-density equation -either as
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FIG. 2. Ideal-gas pressures for the quark-gluon- -
lepton phase (full curve) and the hadron-lepton phase
(dashed curve). Only hadrons up to 2 mass of 1.5 GeV
have been included.

an effective mass (like a scalar potential)'® or as a
background potential (like the fourth component of
a vector potential). We will then show that the -
equation for the number density has a nonvanishing
solution only for a temperature above a certain
value. ‘ &

In a dense system the potential felt by a single
quark or gluon will be approximated by the inter-
. particle potential calculated at the average separa-
tion distance. Olive? suggested using the linear con-
fining® potential ¥ —ar for the interparticle interac-
tion in the plasma phase. Following this suggestion
we take the interaction energy per particle to be
V =any, " with n,= 3. n; where the ; are the
mumber -densities of the ith quark or gluon spin
 state. Motivation for this particular choice of ¥V
“will be given below. It will be useful to define a
quantity g as the effective number of quark and
gloon spin states at a given temperature.’ This
quantity will be approximately o

g =.n-tot/nspin L] . - . A (2)

where
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1.202

B kT
nspin = 7 N

P 3

around the temperature r'egion' of interest (200— 300
MeV) for the quark masses used below. Then

I_/=antm“/3=a(gnsp;n)‘”3 ] _ {4)

- To obtain a numerical result for the critical tem-
perature, we need to know the coefficient in Eq. (4).-
This can be estimated from the string model®® or
from an analysis’! of meson mass spectra. In the
massless string model, the energy per unit length is
taken to be a constant-g. In a frame in which the
ends of the string rotate at the speed of light, the
angular momentum J and energy E of the string are
related via '

J=Q2ra)"E?. ' 5

This behavior has been exploited for many years
in the Regge trajectory analysis of high-energy dif-
ferential cross sections, with the universal Regge
slope « being related to a simply via

a=2ma)"! . . (6)

An average valie of a would be?® 0,95 GeV 2 and
would give a value to a of 0.17 GeV>. A fit*! to a
part of the meson mass spectrum gave a much
larger value to @, namely, 0.30 GeV?, using a poten-
tial that contained an extra constant term to abso-
lutely normalize the masses. We choose the former
value of a for the purposes of our calculation here,
aithough clearly there is uncertainty in this choice.
We note that Killman® has argued that a will also
be temperature dependent. Since we are concerned

- here mainly with showing the criticality of the plas-
 ma phase, this and other fine details such as the ex-

act relation between r and n,, (counting nearest-
neighbor-interactions} or dividing ¥ by 2 (since a is

“determined for a quark-antiquark pair) will be ig-

nored. . o
We obtain an equation for the number density by

/introducing V into the free-particle expression for

the number density per spin state at zero chemical
potential: ) '
: i - dYg .
h;= (271_)3 f eEl-/kT 4 . (7)

+1
where ‘the +- (—) refers to fermiqhs (bosons), .
respectively. The potential is introduced like an ef-

fective mass through the replacement

Ei—>[(mf+V)2_+q.2]1/2 ' _ (8)

_or likea backgrbund potential through
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Results for both approaches will be given.

It is clear that when s, is very large, as it should
be at high temperature, ¥ is. very small and the
number densities are just those of an ideal, nonin-
teracting gas. As the temperature drops past the

mass of the heavy quarks, each will rapidly decrease -

in number density in turn (since ¥ will still be fairly
small) until one is left with only gluoﬁs and light
quarks. At this point, ¥ will begin to 1ncrease and
the critical behavior will emerge.

To see this behavior, consider all quarks to be
massless. Then if V is large, the number-density
equation in the background-potential example be-
comes, approximately,

kT
2

ny~e V¥4
ex

3 2 ’
JiE, (10)

where V contains n dependence as in Eq. (4). This
equation has a solution only for a limited range of
kT, as can be seen from Figs. 3 and 4. At high T,

 the right-hand side intersects with the left-hand side
at two points in -addition to the trivial zero-density
point, It is easily checked that the highest density
solution is the physical one corresponding to the
minimum free energy. At low T, there is only the
trivial solution #=0. The critical temperature is
equal to (for massless gquarks)
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NUMBER -DENSITY £0UATION ' /‘

n (fm~%}

n(fm)

FIG. 3. Behavior of the right-hand side of Eq. (10)
as a function of #; for high (360 MeV), critical, and low
(245 MeV) temperature Three mass]ess quarks are re-
moved.
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FIG. 4. A somewhat expanded version-of Fig. 3 but

. with different high (319 MeV) and tow (295 MeV) tem-

peratures,
1/2 i
kT, = (#2)1/3%" , : {1 -
where _
k=ag~!3, (12)

In fact this behavior is quite general for any poten-
tial which behaves like :

V:Knspin_s . . - (13
One finds
KT, =[(m}Pex§ /14380 (14)

As a sample calculation, for three flavors of quarks
and eight gluons,

g~[(5X3X3X2X2)+(8x2)],

where a factor of i for the difference between the
fermion- and boson-number density has been “in-
cluded. With ¢=0,17 GeV? and § =+~ S this gives a
critical temperature of 307 MeV.

This same kind of critical phenomenon 1s a]so
found using the single-particle energy of Eq. (8), al-
though the detailed behavior is different. Here, “one
finds that the limiting temperature for massless

3
2e
9 ]

For the numerical example chosen in the

- quarks is

1/4

kT, = |27 _ (1.5)




background-potential case, the critical temperature
is reduced to 239 MeV.

When the different quark flavors have different
masses, Eg. {7) becomes a set of coupled equations
for the quark and gluon densities. It is easily veri-
fied that quarks with mass m T effectively
decouple from the system. The coupled equations
for the quarks and gluons are solved numerically.
Choosing quark masses®* of 8.3, 15, and 300 MeV
for the up, down, and strange quarks, respectively,
it is found that the critical temperature for the
background-potential case is lowered from 307 to
300 MeV, and for the effective-mass case from 239
to 224 MeV. Most of this change is attributable to
the proper treatment of the strange-quark number
density. The routines used to calculate these tem-
peratures result in an uncertainty of about 2 MeV in
the numerical determination of the temperature for
a fixed set of input parameters.

It is tempting to associate the critical téemperature

found here with the temperature for the transition
from the deconfined (plasma) phase to the confined
(hadron). phase. The critical temperature of the
plasma phase would correspond to the limiting tem-
perature of the hadron phase.”
closely parallels what is found in lattice QCD.
Below T, the single-particle energy in our model,
and the self-energy of an isolated color source in
QCD are infinite, indicating confinement. Above
T, these quantities are finite, 1nd1cat1ng that we are
in a deconfined phase.

Of course, other interpretations are still possubIe

For example, _exphclt two-phase models stress the .

comparison of free energies. In a two-phase model
in which the hadron phase does not possess a limit-
ing temperature, the quark-hadron transition would
" take place at a temperature higher than the critical
temiperature calculated in this model for the plasma
phase. :
A major difference between our calculation and
that of Olive is that we couple the quarks and
gluons by using the total density in the interaction
potential, Eq. {(4). This ensures that there is a single

critical temperature for the whole system. In con-

trast, were we to treat the quarks and gluons in-
dependently as Olive does,” we would be led in this
model to' the result that the quark and gluon critical
températures are not the same.

Once the temperature has passed below the tran-~

sition - temperature, the quark-plasma phase no
longer exists and the quarks are bound into had-
rons. One can check that the temperature which we
have obtained is in the appropriate range by using a

This behavior
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crude argument based on hadron close packing. If
one were to approach the transition by heating up
the hadron phase, rather than cooling down the
quark phase, then one would expect that the transi-
tion would occur about when the hadrons were suf-
ficiently dense that they were “close packed.” This
density would presumably be close to that at which
the phase becomes a color conductor. To estimate
this temperature, we will use the condition that the
pion density be egual to the reciprocal of its
volume. We choose the pion since it will be the
most copious hadron in this temiperature range. We
are assuming, of course, that the quarks are some-
what evenly distributed across the hadronic volume,
and not concentrated in its core.

For kT s>mc?, the pion-number density as a
function of temperature is simply

Ry= 3nspin ‘ : ( 16)
for noninteracting pions. Demanding that 7
ny=(37R, ) .an

gives a temperature of 285 MeV for R, =0.6 fm.
This value of the temperature justifies our use of
the extremé relativistic expression for the number .
density.  For comparison, the nonrelativistic expres-
sion for the number density of protons and neu-
trons, ny, given by

Hy=Hg
5 3/2
myc kTl
=(1’:')3 —NZ;_ expl —myc?/kT)

(18}

has a value of 0.17 fm—>. This is the same as that
of normal nuclear matter, ny=0.17 fm‘3. Hence,
one can see that the transition should indeed occur
in the 200 —300-MeV region.

Figure 5 shows the behavior of the change in the
effective mass of the quarks as a function of tem-
perature. At high temperature the masses approach
the “bare” values. The values of the effective
masses dt the critical temperature are thé bare
masses of 8.3, 15, and 300 'MeV (for the u, d, and s
quarks, respectively) plus about 900 MeV. These
are larger than the values usually ascribed to consti-
tuent quarks, as one would expect if there is a latent
heat associated with the transition. Below the criti-

. cal temperature, #,,,=0 is the solution and Eq. (8)

implies the effective quark mass is infinite. This is

* suggestive of the situation in QCD where a calcula-

tion of the confined-quark self-energy, e.g., by solv-



3250 DAVID H. BOAf., JOYCE SCHACHTER, AND R. M. WOLOSHYN ' 26

1000 T T T

800+

SHIFT IN EFFECTIVE MASS
a = QI7 GeV2

[=lelo}

700

€600

500

AM {MeV)

400

300

200,

jele]

1 | ] -
200 400 600 800 1000
T (Mev} .
FIG. §. Change in the effective masses of u, d, and s
quarks as a function of temperature at zero chemical
potential. :

ing the Schwinger-Dyson eqilation', yields an infin-
ite result.*%7

1. FINITE BARYON NUMBER

Wh1le the zero—baryon-number-densny example is
important for the early universe® [(ng—ng)/ng
~107'0%! for this temperature range of the early
" universe; this ratio does not become significantly
larger until the temperature has dropped to the tens
of MeV range], for experimental tests or applica-
tions to present-day astronomical problems such as
neutron-star cores, one must find out the nature of
the transition at finite np. Bag-model and other es-
timates'>~"7 of this transition density at zero tem-
perature generally give a net baryon—number density
of 5 to 20 times n,.
The formalism used above for np=0 can easily
be generalized to finite ny by the replacement of the
energy in the free-particle Eq. (7} by

E[m+VP+g* V2 (19)
for the effective mass case, or '

Ei—(mP?4+g) 2 Vip | {20)

for the background-potential case. The — ( + ) sign
of the chemical potential will be used for baryons

.- (antibaryons) so that a positive value of y, will cor-

respond to a baryon excess. .

We will first develop an approximation for han-‘
dling this at T—0. Again, using the background-
potential approach as an example, Eq. (7) for mass- .

less quarks with the substitution (20), cai1 be written

at low temperature as

quo ~ g’dq

M=oz Jo e E+V —RI/AT ]

1 %0 2
zz—wz fo q°dg 21)

for quarks, and

ng=0 ; | (22)

for anthuarks if 1z >0. The integral is truncated at
¢p such that o :
This is obviously equal to
1 - : .
g =——(u—V), 24) -
9; 61’!‘2 H ' . .

As above this equation has a critical density below ~
which the real solution vanishes. The chemical po-
tential at this point is

pe=2[k (672 : (25) .
corresponding to a critical density of
LG o :
Hpp= [— K32, L (26) -
o 6’ ’ ' :

As an example, consider two flavors of massless
quarks. Then g =(2X3x2X 1) since the antiguark
and gluon densities are very small. The usual factor
of i can be omitted from g because n,o, and n; in-
volve only fermions. Equations (25) and 26)
predict g, =760 MeV and

== 2 ng =4n;, =138 fm_'3 : 27

which is about '8 'times nuclear densuy A similar
calculatlon can be done with the effective-mass ap-
proach. The ' chemical potentlal at the zero-
temperature critical dens1ty is now

e =[2x(6m }1/3]1/2 i o 28)

but the ecritical density. {for massless quarks)
remains. the same as for the background-potential
calculation. The results of some zero-temperature



TABLE L. Predictions of quark-hadron transition den-

sity at zero temperature. Baryon-number densities are in .

units of ny=0.17 fm~—> L :

Baryon
Model Reference density (ng)
Effective mass ; '
Background potential -+ This work 8
Perturbative QCD - 8 c26
Modified bag model 13 . 5
17 -10-20

Two-phase QCD

calculations are summmarized in Table 1.

The region 0 < T < T, can be solved numerically. .

The results are shown in Fig. 6 for the quark
masses introduced previously.. While the =0 case
is of interest in the early universe, and the T=0
case may be important for neutron stars, is there an
intermediate region which might be accessible in the
laboratory? One possibility is the collision of rela-
tivistic heavy ions. We will follow a method used
in Ref. 8 to get an estimate of the kind of energy

" needed in a near central collision of two heavy ions
to access this transition. : :

Shown- in Fig. 7 is the energy-density —vs—
baryon-number-density relationship of our two
models. The numerical routine used to calculate the
energy density did not have excellent convergence,

400 — —
TRANSITION
TEMPERATURES
a= 0.7 Gev?
300 -

BACKGROUND
POTENTIAL

T, (Mev)

200} ™~ i
- ~
~

EFFECTIVE N

MASS, \
100 |- } -

o i
0.0 0.5 1.0 15

AnB(fm-sl

. FIG. 6. Quark-hadron . transition region for . the
effective-mass {dashed- curve} and background-potential
" (solid curve) models. The numerical solution worked
only in the range O<nz<0.5 fm~% The curves were
then joined to the T=0 estimate of Eq. {27).
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FIG. 7. Energy-density — vs—number-dénsity relation
estimated for a heavy-ion collision (full curve) and the
two models presented here (cross hatched region). The

.cross marks on the heavy-ion curve indicate the labora-
. tory kinetic energy per nucleon of the incident heavy

101.

and resulted in 'a 5% uncertainty in the estimated
energy densities.
In calculating these curves, we used a correction

‘procedure suggested by Olive’ to take care of

double-counting the potential. We define the ener-

- gy density U by

U=73, [ Ednj+fn), B )
where the energy is defined by Egs. (8) and (9) and
V d39’i l- .
dn; = 3 texpl(E; +p)/kT]+1} 0. (30)
- (2m) _

The extra term f(n) is determined by the self-
censistency cendition ‘ ' ‘

which yields | |
of _ N
an = ; f (3E; /dn)dn; " 3

For the background-potential case, one finds
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Fim=Ge/2m™ . 33

For the effective-mass case, we are unable to obtain
an analytic expression for f(n). However, it is sim-
ple to show that Eq. (33) is an upper bound for f(n)
in this case, and so we will use it for calculating the
energy density in both models.

The estimated heavy-ion curve is obtained in the
- following way. In the center-of-mass frame of two

identical heavy ions, they will appear to be equally
Lorentz contracted into a volume V(E). We will

assume that when they collide, all of the nucleons

are in this volume, and that all of the center-of-
mass kinetic energy is deposited into this volume.
The energies quoted in Fig. 7 are the laboratory-
frame energies corresponding to theseé center-of-
mass energies.” One can see that the curves intersect
~at about 20—25 GeV/nucleon laboratory energy,
- which is beyond present-day accelerators but cer-
tainly technologically achievable. Again, if one
takes the explicit two-phase approach that the criti-
cal and transition temperatures are not the same,
then the transition densities at nonzero chemical po-
tential will be higher than what we have estimated
here. For a discussion of possible experimental sig-
natures of this transition, the interested reader is re-
ferred to Ref. 29.

IV. SUMMARY

We have described a model for the quark-plasma
phase at finite temperature and- density. Although
not directly related to QCD, the model closely mim-
ics the behavior anticipated in that theory. Our cal-
culation shows that if the single-particle interaction
energy decreases with density there naturally occurs
a critical temperature and density below which the

plasma phase cannot exist. This results from solv-

ing self-consistently for the quark and giuon densi-
ties. At high temperature and density the system

: approaches an ideal gas as suggested by QCD.

Below the critical temperature the self-consistent
equations yield cnly the trivial zero-density solution
which implies infinite quark and gluon = self-
energies. The infinite self-energy is reminiscent of -
the QCD -statement that confined quarks and.
gluons have no mass shell, '

Numerically solving the equations for the number
density, we find that the transition oceurs at 300
and 224 MeV for the background-potential and

. effective-mass approaches, respectively, at zero-net

baryon number. Because of the approximation pro-
cedures involved, the numerical determination of
the critical temperatures are uncertain to 2 MeV.
In- the zero-temperature limit, the critical net.
baryon ‘number density is found to appreach +1.4
fm~? for both of the models examined. . These num-
bers will depend upon the value chosen for the
parameter @ and vary approximately like a!/? for

the temperature and /2 for the density. All of

these results are similar to those obtained by other

authors using different techniques.

A comparison with the energy— baryon-
number —density relationship that one might expect
to find in near-central collisions of relativistic heavy
ions has also been examined. This transition region
should be accessible by an accelerator with a beam
of at least 20 GeV/nucleon, although there is a
30% uncertainty in this estimate.

Note added. Since this paper was submitted, an
extension of the work of Ref. 2 to finite chemical
potential has been compléted. See K. A. Olive,
Nucl. Phys. B198, 461 (1982),
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