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The liquid/vapor phase diagram of a Hamiltonian-based model for nuclear dynamics (quasipar-
ticle dynamics) is determined. Finite-size effects in the coexistence region and the time scale for
fluctuation growth associated with spinodal decomposition are quantitatively investigated. For
finite nuclei, no direct link is found between the phase diagram and either the rate of fluctuation

growth or its density dependence.

The phase diagram of neutral nuclear matter is known
to possess a liquid/vapor phase transition."* Bertsch and
Siemens® have pointed out that the mechanical instability
region of the phase diagram may play a role in fragment

. formation during heavy-ion collisions. Within the me-
chanical instability region, defined by the spinodal curves
dP/dp <0 at constant temperature or constant entropy, a
homogeneous system is unstable against fluctuation
growth and separates into distinct liquid and vapor com-
ponents,
 Fluctuation growth in infinite Fermi fluids at low tem-
perature has been treated analytically.* Computer simu-
lations of reaction trajectories in the phase-transition re-
gion have been explored for (atomic) argon droplets,’
Boltzmann nucleons,® and a number of approximate fer-
‘mion medels.”® In the simulations there appears to be a
minimum density below which an evolving nuclear system
irreversibly breaks apart. However, no link between this
density and corresponding thermodynamic properties has
been established.

In this paper, the quasiparticle dynamics model® (QPD
hereafter) is used to investigate fluctuation growth in
infinite systems and fragmentation in nuclear reactions.
QPD is a many-body theory in which each nucleon is rep-
resented by a quasiparticle with a fixed-width Gaussian
density distribution in phase space. In the model, the
phase-space coordinates of the quasiparticle R; and P;
corresponding to the expectations (r); and {p); of the
Gaussian distributions are propagated by Hamilton’s
equations and a stochastic collision term between nu-
cleons. The quasiparticie Hamiltonian consists of the
Coulomb potential, a nuclear potential, and a
momentum-dependent “Pauli’” potential, the latter repre-
senting the energetics of fermions arising from the Pauli
exclusion principle. As a result of the Pauli potential,
ground-state nuclei in QPD have nonzero {p2), The col-
lision term conserves linear and angular momentum, as
well as energy, but is stochastic in that the scattering
point is randomly chosen.® QPD has been used as a trans-
port model to investigate inclusive spectra characteristics
in nuclear reactions. ! :

First, we wish to establish that an infinite system obey-
ing the QPD Hamiltonian possesses a similar phase dia-
gram to what is found. in other nuclear matter mod-
els,!~*"!! We determine the QPD phase diagram by cal-
culating the specific heat at constant volume Cp with the
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traditional Metropolis Monte Carlo procedure'? and the
fluctuation-dissipation theorem. At each T-p point, a
simulation is performed for up to six finite systems of A
nucleons {4 =16, 32, 64, 128, 256, and 512) placed in a
box with periedic boundary conditions. The size of the
box is determined by the density p of interest. The system
is isospin symmetric, but has no Coulomb interaction.
Conditional moves are made on each quasiparticle’s
phase-space coordinate, and sample configurations are
stored after enough moves have been accepted that the
successive samples are largely uncorrelated. Typically
8000 samples are used per T-p point, although near the
critical point 12000 samples afé generated per point.

A pseudotransition temperature is associated with the
temperature 7, {(p,4) at which Cy(T,p,A) of the finite
system is a maximum. By considering the surface term in
the free energy, the size dependence of 7., (p,4) to lead-
ing order in 1/4 can be taken to have the form

Twlp,A) =T (p)+B(T:;,p)/A", ()

where B{T,,p) is an unknown function of p and T,{p), the
infinite system transition temperature. For each T-p
point, T}, (p,4) determined numerically is plotted against
A 13 1o determine T, (p) by extrapolation. The constant
B(T,,p), although not of physical interest, is also then
determined.

Shown in Fig. 1 are both T, and the estimated 7, for
A=16-512. The curve passing near the points labeled
“infinite” represents our estimate of the liquid/vapor coex-
istence boundary. Outside this region, the vapor phase is
favored on the low-density side of the critical point, and
the liquid phase is favored on the high-density side. We
estimate a critical temperature of 18,5 MeV and a criticat
density of 0.05 fm ~> (or 0.3pg, where pp=0.17 fm ~3),
similar to values reported in other studies. ! ~*"!" Howev-
er, our results further show that nuclear systems exhibit
strong finite-size effects for system sizes typical of real nu-
clei. In turn, this makes the observation of the transition
in nuclear reactions all the more difficult. A numerical
determination of the spinodal curves 8P/8p < 0 which are

“contained within the coexistence region is beyond our

computational capabilities. Because our phase diagram is
similar to other model phase diagrams, we expect that the
spinodal region will also be similar, and would correspond
roughly to the A =128 curve in Fig. 1 for the constant en-
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FIG. 1. Phase diagram of QPD nuclear matter as calculated
by extrapolating the temperature T» to cbtain 7 of the infinite
system using Eg. (1). A range of system mass 4 {16-512) is
shown for each density. The curve passing near the “infinite”
data points is our estimate of the liquid-vapor coexistence re-

gion. The density is normalized to po=0.17 fm 3,

tropy spinodal (see Refs. 1-4, 7, and 11 for comparison).

We next consider fluctuation growth in homogeneous
matter. A homogeneous ground state at fixed density can
be found numerically by minimizing the energy, subject to
the constraint that the fluctuations {p2 —{p}* arc a
minimum, This is accomplished by using a Lagrange
multiplier method to find the minimum energy at fixed
(p?), where the associated multiplier is chosen such that
{p?) is a minimum. Periodic boundary conditions are en-
forced, and the quasiparticles are driven to their ground-
state configurations using a set of damped Hamilton’s
equations as in Ref. 9. The homogeneity constraint is
then removed and the system is allowed to evolve. A mea-
sure of spatial fluctuations is the guantity I={V?p)/
{V2p;), which compares the fluctuations of the system to
those of a single isolated quasiparticle. The density distri-
bution of a single isolated quasiparticle p; is a fixed-width
Gaussian form.” The expectation is defined by

vip= f (sz)f(r)a”r/ f Fd3r.

Figure 2 shows a scatter plot of df/dt vs I for a number of
different initial densities. The data are clustered about a
single straight line of the form I(r)=explt/z;) with
t;=25 fm/c. This time constant indicates the rate at
which clusters grow in the instability region. ‘The fluctua-
tion growth rate is most reliably calculated at early times
(small I) before the finite box size and quasiparticle width
limit the maximum size of the systems’ vapor phase.
These effects are at least partially responsible for the large
I behavior in Fig. 2 at p/po > 0.6. The stochastic collision
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FIG. 2. Scatter plot of dI/dt vs I, where I is a measure of the
fluctuations of the system (see text for definition of 7). The fit
to the straight line demonstrates the small time exponential
growth of the fluctuations with time constant =, =25 fm/c.

term in the QPD model is not included in the calculations
shown in Fig. 2.

Now we ¢xamine the time evolution and breakup of ex-
cited nuclei, choosing ""®Ag as an example. We excite the
nuclei in one of two ways. In the first method a random
radial component is added to each ground-state quasipar-
ticle momentum P; to generate a new momentum
P/ =P, +AR; where R; is a unit vector along the direction
from the nuclear center of mass to the position of the ith
particle and the A’s are uniformly distributed random
variables in the interval (w;,w;). This procedure gen-
crates radially excited states of low entropy. The second
method randomizes the direction of the ground-state
momentum vectors: P« =S,.P,., where ¢ =x, y, or z and
the S;’s are random scale factors which are distributed
uniformly. in the interval (—o,w). The excited states of
this procedure have high entropy but little initial radial
expansion. For either method, values for @ are chosen so
that a set of several thousand different excited states con-
tains a sample of at least a hundred states which have an
excitation energy per nucleon E*/A4 within 0.5 MeV of -
the desired mean.

Each of the states in this collection is then allowed to
evolve for several hundred fm/c¢ using QPD including sto-
chastic collisions. We use the average central density {p}.
and central fluctuations {p?). —{p)? as observables. The -
{ - denotes both a spatial average over a sphere of ra-
dius 4 fm centered on the center of mass and an ensemble
average over the 100 events in each sample. The time
dependence of {p}. is shown in Fig. 3 for a variety of ini-
tial excitations. In the upper plot the results for the radial
excitation are shown for mean £*/4=2, 6, and § MeV.
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FIG. 3. The time dependence of the average central density
(p).) of excited '®Ag nuclei. The upper diagram illustrates the
behavior for a radially outward directed excitation and the lower
diagram illustrates the behavior for a much more random initial
excitation,

For low excitation energy the system exhibits a damped
oscillation about an equilibrium value of the density. The
period of this oscillation is about 75 fm/c and the relaxa-
tion time constant for the decay of the motion’s amplitude
is o7 =110 fm/c. At E*/A=6 MeV, the system expands
with some particle loss, but then recovers to form a highly
thermalized nucleus. However, at E*/4 =8 MeV the sys-
tem becomes unstable and the central density {p), decays
exponentially with a time constant of 15-20 fm/c. In the
lower part of Fig. 3 results are shown for the random exci-
tation. The oscillations of the system are greatly
suppressed, although the systems do relax. Also the sys-
tems hold together at much larger initial excitation ener-
gies, although they suffer significant particle loss. This
particle loss results in a smaller nucleus and a correspond-
ingly low value of {p}., which is averaged over a 4 fm ra-
dius.

Does the onset of fluctuation growth in the low entropy
sample indicate the breakup of the system? In Fig. 4, a
plot is made of ({p®)./p)2—1) vs {p). for several '®Ag
radial excitations. The marks on each curve are separated
by time intervals of 0 fm/c. Initially all the systems fol-
low the same trajectory. The low-energy trajectories split
off from this common trajectory to follow separate “pig
tail” paths to a thermalized state. The large excitation
energy system continues to expand exponentially with a
time constant 7, of 15-20 fm/c and breaks apart. It is
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FIG. 4. Trajectories of the radially excited “Ag nuclei in
density-fluctuation space. The markers on the curves are
separated by 10-fm/c time intervals.

tempting to identify 7, and 7. and associate fluctuation
growth with the spinodal decomposition of infinite matter
in the mechanical instability region. However, the initial
fluctuation growth of all the radially excited systems

‘passes through the same region of fluctuation/density

space and has very similar growth rates. Further, fluctua-
tion growth itself does not lead to nuclear fragmentation,
as seen from the curves at E*/4 =4 and § MeV. More
likely, nucleon-nucleon collisions make a significant con-
tribution to fluctuation growth and the excitation energy
determines whether the system undergoes multifragmen-
tation. :
Finally, we note that the instability leading to mul-
tifragmentation of the low-entropy radially-excited sys-
tems sets in at {p). < 0.05 fm ~3in Fig. 4. At low entropy,
this isentropic spinodal line is expected' ~*7!! to lie closer
to 0.1 fm. ~* Hence, we do not feel that multifragmenta-
tion can be associated with the expanding system crossing

" the spinodal curve of infinite matter. True heavy-ion col-

lisions are bound to produce systems which are much less
uniform than our idealized system, which resembles more
closely a state of expanding nuclear matter. But even for
our simple system, we see that initial fluctuations, along
with those generated by the collision term in the equations
of motion, very likely mask the fluctuations of the
mechanical instability of infinite matter.
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