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We report exiensive simulations of a model for tethered self-avoiding membranes with bending
rigidity. These simulations have been performed at finite and infinite temperature for membranes
whose stretched configurations are hexagonal with linear dimensions L in the range 5-19. We
have analyzed the shape of the clusters by caleulating the eigenvalues A;, i =1-3 of the inertia
tensor and the structure factor for wave vectors in the direction of the eigenvectors of this matrix.
We find that the smallest cigenvalue scales, for all temperatures investigated, as M~L" with
v1=20.,65; the two larger eigenvalues scale as L. Thus, in the thermodynamic limit L— e, the
tethered self-avoiding membrane is flat but rough, in contrast to previous conclusions [Y. Kantor
and D. R. Nelson, Phys. Rev. Lett, 58, 2774 (1987); Phys. Rev. A 36, 4020 (1987)], and in con-
trast to the behavior of membranes without self-avoidance which display a thermodynamic phase
transition between a crumpled high-temperature phase and a low-temperature flat phase [Y. Kan-
tor, M. Kardar, and D. R. Nelson, Phys. Rev. Lett. 57, 791 (1986); Phys. Rev. A 35, 3056
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(1987).

The study of random surfaces is of great interest from
both a conceptual and practical point of view. On the
practical side, the static and dynamic properties of sys-
tems such as microemulsions, biclogical membranes, and
vesicles seem to be determined by the characteristics of
two-dimensional interfaces embedded in three-dimen-
sional space. On the conceptual side, there are indications
that simple models of random surfaces may display novel
phase transitions which are at this point poorly under-
stood. One such modelw~the tethered membrane
model— was introduced recently by Kantor, Kardar, and
Nelson.! In its simplest form the system consists of hard
spheres connected in a fixed geometry by flexible strings
(see Fig. 1). To prevent self-intersection of the mem-
brane, the maximum length of the strings between the
centers of the spheres, for a triangular network of inter-
connections, must be less than or equal to 3d where d is
the hard-sphere diameter. In this simple model, there are
no energy parameters and the free energy of the mem-
brane is simply its entropy. Entropy generates an effective
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FIG. 1. Planar configuration of a tethered membrane of
linear dimension L =5. The solid lines represent flexible strings,
the dashed line indicates the second-neighbor interaction re-
sponsible for the bending rigidity.
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elasticity—the free energy can be taken to be of the form
F=—KR? where R is the radius of the volume occupied
by the membrane—and this tends to favor a collapsed
configuration. The hard-core exclusion competes with this
effect and it is this competition which creates the possibili-
ty of an interesting phase even in the absence of a finite-
energy parameter. We note that if the strings are longer
than /34, the membrane is self-avoiding in the sense that
particles have an excluded volume but not “properly”
self-avoiding in that the surface can intersect itself. We
betieve that self-intersections are crucial for the existence
of a crumpled phase in equilibrivm.

Previous numerical work on tethered membranes can be
divided into two categories. First, because of the long re-
laxation times of simulations, Kantor, Kardar, and Nel-
son! studied a version of the model in which the hard-core
interaction between particles is ignored except for nearest
neighbors in the network, This means that the membrane
can intersect itself and hard spheres can overlap. Their
work on this “phantom” network clearly indicated a
high-temperature crumpled phase with the property
Rg—--(lnL)“'2 (L, with v=0), where L is the linear di-
mension of the network. This form of the radius of gyra-
tion can be derived analytically for a free surface with
fixed connectivity. A Migdal renormalization-group -
analysis also indicated that the form of the nearest-
neighbor interaction is irrelevant.'

For properly self-avoiding surfaces only infinite temper-
ature simulations have been carried out prior to the
present work. Kantor et al! studied membranes with
N =225 particles with a stretched configuration in the
shape of a parallelogram. They calculated, among other
properiies of the membrane, the spherically averaged
structure factor

Sk)y=s(k) =_I_2_<Zeik-ir(x)-—r(x')1>_ )
N x,x'
The behavior of this function provides the most persnasive
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numerical evidence for the existence of a crumpled phase.
When plotted as a function of the scaled variable kL * with
v=0.83 for different L, the data for §{k) collapses rather
well to a single curve. The behavior of the radius of gyra-
tion is also consistent with the functional form R, ~L%3,
" the exponent predlcted for self-avmdmg surfaces by a Flo-
Iy argument
A generalization of this model is obtained if one mcorp-
orates rigidity into the Hamiltonian. Curvature energies
are known to be important in determining the properties
of microemulsions and membranes” and, here, they serve
to set a temperature scale. If the infinite-temperature
phase (zero rigidity) is indeed crumpled, we have the pos-
sibility of a thermodynamic phase transition between this
phase and a low-temperature fiat phase. In our calcula-
tions we have introduced rigidity by means of repulsive
springs between sécond-neighbor atoms on the trlangular
network. Thus our model has the Hamiltonian

BH= —ﬁ ): [r(x) —r(x)1?, (2)

where « is the rigidity parameter, X is a two-dimensional
vector which specifies the posmon of a particle on the un-
derlying network, r{x) is the position in the three-
_dimensional. space, and the sum extends over second
neighbors on the network. The hard-core exclusion and
tethering constraints have not been explicitly stated in (2).
Ina separate study of their phantom surface, Kantor and
Nelson® found a phase transition between the 1dcally
crumpled phase [R;~(nL)'?] and a low-temperatiire
flat phase (R;~L) as a function of & [these authors used
a different form of the bending energy than (2) but for
small curvatures the two energy parameters are
equivalent].

In our simulations we have studied self-avoiding sur-
faces in a hexagenal stretched configuration (see Fig. 1).
For diameter L the membrane consists of N =(3L>+1)/4
particles .and” we have studicd systems up to L =19
(N=271). Conventional Monte Carlo simulations with a
variable stepsize =0. 2+/3d were carried out and the
length of the flexible tethers was taken to be small enough
that it was impossible for the membrane to pass through
itself in a single Monte Carlo step without overlap of hard
spheres. A measure of the relaxation time between two
statlsucally independent configurations of phantom mem-
branes is given by the Rouse relaxation time! rp == N/s
where s is the stepsize. The infinite temperature s1muIa-
tions were run for at least 1000 Rouse relaxation times
and, for the largest membrane, for 2000 relaxation times.
For finite temperature, the simulations (for L =< 11) were
run for 500 relaxation times. In all cases we were satisfied
that the expectation values showed no tendency to drift
after an initial transient which lasted, for L =19, for
roughly 2007g.

We first attempted to find a critical point by determin-
ing the temperature dependence of the specific heat, the
-radius of gyration, and the shape parameter 4 =%, A3,
where A, is the smallest and A3 the largest eigenvalue of
the inertia tensor (matrix elements £, =(r;rm.) —{r;Xry}
‘where ‘angular brackets indicate averaging over particle
positions in a given configuration). In contrast to the
“phantom surfaces,’ the specific heat is a smoothly increas-
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ing function of k with no hint of an emerging singularity
as the size of the network is increased. Similarly, we
found no evidence of a transition in either 4 or R;. Thus,
we decided to reexamine the infinite- temperaturc case.
For our more symmetric hexagonal networks, the two
largest cigenvalues of the inertia tensor are nearly equal
and considerably larger than the smallest eigenvalue. As
function of L, the parameter 4 decreases: A(L=35)
=017, A(L =11)=0.12, and A(L =19) =0.095.

In view of this strong anisotropy, we separately deter-
mined the structure factor for wave vectors projected
along the eigenvectors of the inertia tensor. Thus, if e),
€3, and es are the eigenvectors corresponding to &, A3, and
A3 in a given configuration, we define k; =ke; and calcu-
late

S = ( 3k ) —r(x’)]> ’ @
: o N°\xx

where the angular brackets indicate averaging over the
configurations of the Monte Carlo run. The results of
these calculations of §(k) and S3(k) are displayed in

-Figs. 2.and 3 plotted on a log-log scale as functions of the

scaled variables g; =kL." with v; =0.65 in the case of S 1
and ga=kL" with v;=0.975 in the case of §3. The num-
bers. quoted above for the exponents v; provide the best
(visual inspection) collapse of the data for a large range of
gand S. We have also carried out a more formal analysis
of the structure factor by choosing a value of S| or §3 (in
the range 0.03 < §' =< 0.3) and then determining the value
of k, corresponding to this value of S, .as function of I.
The resulting (k,L) points were fitted to the functional
form k=alL". This procedure yields v; =0.65 £ 0.05 and

v3=0.96+0.05. Since v;=<1.0, we conjecture that
1:5896 .
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FIG. 2. The-*perpendicular” structure factor S1(k) for wave
vectors in the direction of the eigenvector corresponding to the
smallest eigenvalue of the inertia tensor plotted as function of
the scaled variable kLY with v=0.65. Crosses, L =5 (N=19);
open circles, L=11 (¥ =91); filled circles, L =19 (N =271).
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FIG. 3. The in-plane structure factor S3(k) (k in the direc-
tion of the eigenvector corresponding to the largest eigenvalue of
the inertia tensor) plotted as function of the scaled variable kL"
with v=0.875. Symbols correspond te the same size mem-
branes as in Fig. 2.

v3=1.0, indicating that even in the absence of bending ri-
gidity the self-avoiding tethered membrane is flat at large
length scales,

We note that our numerical resulis are not inconsistent
with those of Ref. 1. If one piots the spherically averaged
structure factor (1) as function of the appropriately scaled
wave vector ¢=kL", a reasonable collapse of the data is
obtained for v==0.8. However, over most of the range of
q, the largest contribution to the spherically averaged
structure factor comes from .5 which becomes small near

k == z/</ay. The contributions from wave vectors lying in
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the “plane” of the membrane become negligible at smaller
wave vectors because of the strong anisotropy.

We have alse determined the properties of the self-
avoiding membranes for bending rigidity x = 1.0. In the
phantom membrane, the phase transition to the low-
temperature fiat phase takes place at x=0.15 and this
obviously provides an upper bound for the critical rigidity
in the self-avoiding case. To within our numerical uncer-
tainty, the characteristic exponents v, and v3 are indepen-
dent of the rigidity parameter, indicating that even at
low-temperatures tethered membranes are rough (in the
sense that ; diverges in the thermodynamic limit), with a
nontrivial dependence of the width on the linear dimen-
sion of the network.

Finally, we comment briefly on the renormalization-
group analysis of the crumpling transition.* This work
has been based on a generalization of the Edwards model®
of polymers in which the hard-core exclusion of the parti-
cles is modeled by a &-function potential. Thus, the cost
in energy of a self-intersection of the membrane is finite
rather than infinite as in the system that we have simulat-
ed. We have some evidence, based on a few simulations of
tethered spheres of small diameter, that the possibility of
self-intersections may be crucial for the existence of a
crumpled phase. If confirmed, this result is in marked
contrast to the case of bead and string models of poly-
mers® where the hard-sphere diameter is an irrelevant
variable and whose universal properties are correctly de-
scribed by the Edwards model. Further properties of
these interesting systems as well as simulations of consid-
erably larger systems are in progress and will be reported
elsewhere.
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