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The phase diagram of a fethered-ring model for vesicles in two dimensions is investigated. Each
element on the vesicle’s perimeter is subject to attraction to other elements, and the vesicle as a
whole is under pressure. Four different phases, characterized by their scaling exponents, are found
to be present in this range of parameter space: inflated, dense, self-avoiding-walk, and branched
phases. An approximate phase diagram at small pressure is determined. .

I. INTRODUCYION

Many characteristics of polymers, membranes, and
vesicles have been determined by computer-simulation
techniques.! The computational study of vesicles at finite
temperatures has generally been limited to two dimen-
sions becaunse of the long relaxation times associated with
large vesicles embedded in three dimensions. Currently,
computer models of three-dimensional vesicles® ™ are
necessarily coarse grained and are most appropriate for
studying gross structural properties. Two-dimensional
vesicles have been modeled as closed polymer chains sub-
ject to a pressure difference across the chain. Studies>® of
such chains show that their scaling characteristics (size as
a function of mass) vary with pressure and with bending
rigidity along the chain.

In particular, it is shown in Refs. 5 and 6 that at zero
bending rigidity, vesicle-size scaling behavior changes
from that of a self-avoiding walk at -zero pressure
difference, to either a branched polymer at negative pres-
sure, or an inflated ring at positive pressure. The sign
convention we adopt is that the pressure difference is pos-
itive if the internal pressure exceeds the external pressure.
Duplantier points out’ that the branched-polymer phase
at zero rigidity should be different from the dense phase
expected if the clements of the vesicle’s perimeter were
attractive.

In this paper, we investigate the domains of these
phases—inflated, dense, self-avoiding walk (SAW), and
branched phases—for attractive vesicles under pressure.
In Sec. II, we outline our vesicle model and the computa-
tional techniques used in the simulation. In Sec. III we
extract the phase dependence of the scaling behavior and
of the energetics of the vesicles. Our results are discussed
and summarized in the conclusion.

1I. COMPUTATIONAL TECHNIQUE

The calculational technique we use is the traditional
Metropolis Monte Carlo method at fixed pressure and
temperature.> Monte Carlo simulations of membranes in
three dimensions have often been based on the tethered-
membrane model of Kantor, Kardar, and Nelson.® The
model represents the membrane as a iriangulated net-
work of beads attached by flexible strings or tethers.
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With bending rigidity, the tethered membrane possesses a
transition from a low-temperature flat phase to a high-
temperature crumpled phase if long-rang self-avoidance
is omitted.” For truly self-avoiding membranes, the
phase transition ‘is absent.'” In the limited studies of
three-dimensional vesicles performed so far,” it is found
that scaling behavior may also depend on the connectivi-
ty of the membrane.

Leibler, Singh, and Fisher’ use the tethered-membrane
approach as a model for vesicles in two dimensions. The
boundary of the vesicle is represented by a ring of beads
each of diameter a. The tethering constraint is enforced
through the use of a step-function potential that is
infinitely repulsive at bead center-to-center distances less
than a (for all bead pairs) or greater than 2a (for nearest-
neighbor pairs). The first constraint implies that there is
a minimum perimeter for a given number of beads N.
The second constraint assures self-avoidance of the ring
in the limit of small bead movement. In actual practice,
the maximum allowable nearest-neighbor bead separation
must be made slightly less than 2a in order to prevent a
bead from “stepping across” a remote part of the ring in
a single finite Monte Carlo trial move.

Our meodel potential energy V includes not only the
step-function potentials enforcing self-avoidance and
tethering, but also an attractive term between all beads
on the ring:

BV=—Bk, 3 r;°+s, (1
i<j

where r;; is the separation between beads i and j, §
represents the step functions, and £ is the inverse temper-
ature. For convenience, we rewrite the attraction param-
eter k, as x, =k, /a® and refer to «, as the attraction.
The vesicles are also subject to a pressure difference
Ap =Py —Dex: across the ring. In the simulations, we
refer to [1=fa% Ap as the pressure. With this sign con-
vention for Ap, the enthalpy H of the system is then

BH=BE—I1A4 , (2)

where E is the expectation of the potential energy of Eq.
(1) and A is the enclosed area of the vesicle in units of a*.
The bead momenta are omitied in this simulation, since
they are not required for the observables of interest.
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In the Monte Carlo procedure we use, a trial position
for a member of the ring is chosen randomly from within
a coordinate space box of fixed size (a square of length 2s
to the side) centered on the bead’s current position. We
choose to move beads in pairs, so that the algorithms can
be used for fixed-arca simulations,!! as well as the fixed-
pressure results reported here. A sweep around the ring
consists of making a trial move on each bead i in se-
quence 1 to N. For each bead i, a mate j is randomly
chosen from any site on the ring (except the nearest-
neighbor sites) and trial positions are selected for i and j
J
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simultaneously. Hence, one sweep around the ring in-
volves trial moves on 2N particles. The trial move is ac-
cepted conditionally depending on the enthalpy change
associated with it . With the step size s =0.1, 20—-80%
of the particles are moved per sweep, depending on the
temperature.

Our Monte Carlo algorithm produces successive
configurations that are highly correlated, and it is impor-
tant to determine the “time” scale on which such correla-
tions decay. We define an autocorrelation function for an
observable O by

CAN={[0(t +An—{OY][0()—{O)Y ]} /{[O(5)—{O)T*) , (3)

where the angular brackets indicate an average over
Monte Carlo steps labeled by the time variable . Numer-
ically, we observe the correlation function for the
vesicle’s moments of inertia to decay roughly exponen-
tially with time. For the zero-pressure and zero-
attraction case, the time constants of the decay are in the
range of 10000-20000 sweeps around the ring for
5 =0.1 and N =64, the time constant depending on the
temperature. Based on this value and its dependence on
N and s, we empirically define a relaxation time 7 of

r=(N/45)? . 4)

This dependence of r on ring width is found to be similar
to the Rouse relaxation time.!? For each parameter com-
bination discussed below, an initially circular
configuration is propagated for 2007 (at zero pressure) or
1007 (at finite pressure} with a sample configuration being
stored every T sweeps around the ring. The first ten
configurations are omitted from the analysis, since the
circular-ring initialization may not be similar to the
“average” configuration for some Il-x, combinations.
For the largest ring sizes considered, N =192, at least
4 X107 trial moves are made per bead for each parameter
set in the simulations. Computer Jlimitations have re-
stricted us to ring sizes in the range 64 <N <192 since
the execution time of the code increases faster than N3
This range of N is sufficient to allow the investigation of
some, but not all, finite-size effects. The largest rings re-
quired 200-400 CPU hours per parameter set to execute
on an MIPS R3000 processor. The entire data set re-
quired more than a CPU year to generate.

III. RESULTS

The vesicles in a given part of If-x, parameter space
can be characterized by how their rms radius and area
scale with mass:

{(r2y o N>, (5a)
{(A)<N¥, (5b)

Within the uncertainty of their simulation, Leibler,
Singh, and Fisher® find that v=%=3/4 for lI=x,=0,
For a self-avoiding random walk in two dimensions, it

has been shown'? that v=2 and also established’ that

f

v=n. For I <0, k, =0, the vesicle shapes are observed®
to be consistent with those of a branched polymer,!*
v=0.64 and 5=0.5. For positive pressures Il>0 and
k,=0, they find v=1-1.5, which is consistent with
inflated vesicles,

What do we expect to find in the k, >0 region? Let us
consider three situations.

{a) IT=0. Here, the system should possess a © point
like a simple polymer chain.’’ For small k,, the vesicle
should behave like a self-avoiding random walk with
v=9=2, while for large «,, the vesicle should become
dense with v—=ny=1,

(b) II<0. For II<0, there should be a branched-
polymer phase at small x,. This region is distinct from
the dense phase expected at large x, and [1=0or T <0.

(c) IT>0. Because of its short-range nature, the attrac-
tive term will contribute a maximum of about (—)3«,
per particle to the energy even when the beads are close
packed. Therefore, the attractive energy grows no faster
than N as the ring size increases. The arca of SAW vesi-
cles grows like ¥°/2, while that of inflated vesicles grows
like N2, so that for I1> 0, the pressure contribution ulti-
mately dominates the attractive piece at large N. Hence,
we expect that the vesicles will always be inflated for
I1>0, although finite-size effects are nontrivial, as is
shown below.

A summary of the expected behavior is shown in Fig.
1, in which the dense phase includes the I1=0 axis. The
different phases are assumed to have a “quadruple point”
at II=0 and intermediate x,. In fact, de Gennes'® has
shown that the polymer © point is a tricritical point.!”
Scaling in the tricritical region is more complicated than
the simple forms of Eqgs. {5). Hence, our ability to deter-
mine the order of the transition in the tricritical region is
limited, as we discuss below.

Armed with some intuition about vesicle behavior in
Il-x, parameter space, we turn now to the simulation re-
sults. The simulations are run at three different pres-
sures, [1=0.1, 0, and —0.1. To graphically illustrate the
shapes of the vesicles in the different phases, we show in
Fig. 2 configurations taken from the N =192 simulations.
The top and bottom rows of the figure correspond to
=0 and —0.1, respectively, while the left and right
columns correspond to x, = 1.5 and 2.5, respectively. All
of the configuration are drawn to the same scale. Vesicles
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FIG. 1. Schematic phase diagram for model vesicles as a

function of pressure (1l) and attraction (x,). The dense phase

includes the TI=0 axis.

at [1=0.1 are inflated and are so large in area that they
are omitted from the figure so as to show more clearly the
behavior of the other phases. Configurations (b) and (d)
are in the dense phase with v=1. Configuration (a} is in
the SAW phase, while (¢} is in the branched-polymer
phase. The shape characteristics of each of these phases

© @

FIG. 2. Representative samples of 192-clement vesicles
shown for several parameter choices. The top [(a) and (b)] and
bottem [(c) and (d)] rows have II==0 and —0.1, respectively,
while the left [(a) and (¢)] and right [(b} and (d)] columns have
k,=1.5 and 2.5, respectively. All configurations are drawn to
the same £ ale.
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are clearly visible in Fig. 2.

The transition from the SAW phase to the dense phase
at II=0 is shown in Fig. 3, in which both scaling ex-
ponents v and 7 are shown as a function of k. First, one
can see that within our estimated exponent error of
F0.03, v and 1 are equal over the «, range investigated.
They both change at around «, =2+0.2 from the SAW
value of v=n=2% to the dense value of v=9n=1. To
define the transition point to better accuracy we would
have to run the simulation for finer steps in «, than 0.25
and for much larger N, since finite-size and other correc-
tions are important in this region.!572!

The transition from the branched-polymer phase to the
dense phase is shown in Fig. 4 for the same scaling ex-
ponents v and 5 as shown in Fig. 3. One can see that the
radius exponent v changes from the branched-polymer
value of 0.64 to the dense-phase value of 1 at around
k,=2. The value of % is equal to § for both the
branched-polymer and dense phases, and this behavior is
found in the figure. We are unable to determine whether
this transition occurs at a larger or smaller value of «,
than does the SAW phase to dense-phase transition at
II=0. .

For II1>0 there is competition between the pressure
and attractive terms in which finite-size effects play a
role. Let us consider two extréme situations. If the at-
fraction is very strong compared to the pressure, then the
system is nearly close packed with each bead having
roughly six nearest neighbors in the large-N limit. The
corresponding enclosed area is roughly Nm(g/2)%.
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FIG. 3. Characteristic scaling exponents v and 7 determined
from the vesicle radii of gyration and area. Results are shown
for [¥=0 and a range of values for the attraction «,. The ex-
ponent uncertainty is estimated to be £0.03.
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FIG. 4. Characteristic scaling exponents v and % determined

for [I=—0.1 The area exponeni 7 is % in both branched-
polymer and dense phases, while v changes from (.64 to 1 in

2
these phases, respectively.

Hence, both the area and energy terms in the enthalpy
scale like N. For the small pressures of interest here
(I /k, =0.05), the area contribution to the enthalpy can
be neglected, and we can write

ﬁHdense == SNKH . (6)

The other extreme is the fully inflated configuration in
which the perimeter 2Na encloses an area of N2a%/w.
The attraction term is roughly —x,N /2% which can be
neglected. Hence, we expect

BHinﬂated:_H(Nz/‘ﬂ') . 7N

For a given II-x, combination with IT>0 and «, >2, we
expect the scaling exponents to be equal to 1 at small N
in the dense phase and 1 at large N in the inflated phase.
As the changeover between these two regimes occurs at
intermediate N, the exponents could exceed unity. From
Eqgs. (6) and (7), the crossover occurs at

N =3, /1T . (8}

For example, Eq. (8) predicts a crossover at N =190 for

I1=0.1 and x,=2. Although the argument leading up to

Eq. (8) is crude, it does indicate that we should see strong
finite-size effects in the mass range 64 SN =192,

The actual behavior of the area at [T=0.1 is shown in
Fig. 5. Several different values of k, are shown: 1.5, 2.0,
and 2.5. The areas of fully inflated vesicles are shown for
comparison. Qverall, for the region of N shown, the
value of 7 decreases towards unity as N increases (the ful-
ly inflated configurations have n=1). Also, 17 moves fur-
ther from unity as x, increases. This behavior is the

logig N

FIG. 5. Logarithmic plot of { 4)'/?, where 4 is the vesicle
area, shown as a function of vesicle size N for pressure 11=0.1.
Three values of the attraction are shown: «,=1.5, 2.0, and 2.5.
Areas of the fully inflated vesicles are shown for comparison.

same as that which leads to Eq. (8). However, we can see
that the crossover value for N given by Eq. (8) is too large
by at least a factor of 2. This most likely reflects the as-
sumption in Eq. (6) that all beads, including those at the
surface of the configuration, have six nearest neighbors.
A more accurate determination of the number of nearest
neighbors reduces the crossover value closer to what is
observed. We conclude that Fig. 5 supports large-N vesi-
cles being inflated at IT> 0.

Having investigated the scaling characteristics of the
four vesicle phases, we now turn to their energetics. Typ-
ical simulation studies of periodic systems make a finite-
size scaling argument to extrapolate to the thermo-
dynamic limit. Our vesicles are finite by their very na-
ture, and the presence of both attraction and the pressure
in the enthalpy may make a simple power-law extrapola-
tion to large N difficult.

We begin with the simplest situation, II=0, for which
H =E in Eq. 2). In the dense region, we expect that the
interior beads in configurations such as (b} or (d) in Fig. 2
should have roughly 4-5 nearest neighbors, while the
surface beads should have 3—4. Since the rms radii of
dense configurations grow like N'/2 then the simplest
surface corrections to the attractive energy should lead to
a scaling form of

H/N=a+b/NY ©)

for the enthalpy per - particle. In contrast, the SAW
configurations should have an approximately constant
value for H /N in the range of N investigated. For [1=0,
we use Eq. (9) as a scaling ansatz to extrapolate to infinite



43 PHASES OF ATTRACTIVE TWO-DIMENSIONAL VESICLES . . .

N. Within our limited data set, we find that Eq. (9) does
provide a good description of H /N, the results of the ex-
trapolation being shown in Fig. 6. In the figure, there is a
change in the behavior of the eathalpy per particle at «,
near 2. Although the change appears to be continuous,
this could simply reflect poorly determined finite-size
effects.

The specific heat as determined by a numerical
differentiation of Fig. 6 would yield a smooth curve with
a change in slope at around «,=2. To investigate the
mass dependence of the specific heat, we use the
fluctuation-dissipation expression:

Cp/k3=%ﬁz((H2)—(H)2) . (10

For I1=0, H is equivalent to E. Note that the 2k, T term
from particle motion is not generated by Eq. (10) as ap-
plied to this simulation. Figure 7 contains the ¥ depen-
dence of C, as determined from Eq. (10). There appears
to be little vesicle mass dependence through the transi-
tion region, and C, appears to be smooth within our reso-
lution. It should be pointed out that in numerical stud-
ies'® of the polymer © point, the specific heat as deter-
mined by Eq. (10) is shifted at finite ¥ to lower tempera-
tures than the tricritical point. Further, the specific heat
cusp observed in such studies is fairly weak, as expected
from renormalization-group arguments.’>%* Our results,
as far as they go, are not in disagreement with the poly-
mer studies.'®

The change from the branched-polymer phase to the
dense phase shows the same general features as the SAW
to dense transition, as seen by the extrapolated enthalpy

0.0 T T T T
05}
Z
Mﬁ
= -0 F
jund
v
L5 PRESSURE .
—aTI1=0
—a— =01
2.0 ] 1 1 1
0.0 0.2 0.4 0.6 0.8 10

FIG 6. Expectation of the enthalpy per particle {8H } /N,
extrapolated to the large N limit by Eq. (9) shown as a function
of temperature «;'. Results are shown for both [I=0 and
—0.1.
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per particle for IT=—0.1 in Fig. 6. Again, the enthalpy
does not show strong discontinuities (subject to the usual
finite-size caveats). The behavior of the specific heat is
also similar to the IT=0 situation, although our statistics
are poorer for [I=—0.1.

The last observable we wish to discuss is the isothermal
compressibility Y. Since we have not performed the
simulation in small steps in Il, which would allow a
determination of yr by numerical differentiation of the
area expectation { 4 ), we use the fluctuation dissipation
result

Xr=%((fiz)—(/l)2). (11)

The results for [I=0 are shown in Fig. & for three
different system masses: N =64, 128, and 192. The
compressibility shows strong finite-size effects in the
SAW phase. The change from the SAW phase to the
dense phase at around «,=2 is clearly marked by the
rapid decrease in the compressibility.

The isothermal compressibility at II=—0.1 is shown
in Fig. 9, which is plotted with the same scale as Fig. 8
for ease of comparison. The compressibility in the
branched-polymer phase is much less than the SAW
phase. The compressibility in the dense phase is similar
in magnitude to that found at zero pressure.

IV. CONCLUSIONS

We have performed extensive simulations on model
vesicles in two dimensions. The vesicles are subject to
pressure I1, and have an attractive interaction of strength

10.0 T T T T
80 |- -
Mn=g¢
—e— N=064
—— N =128
—a— N=192
6.0 u
j=a)
i
\D.
U
4.0 F -
20 .
00 i 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
-1
Ka
FIG., 7. Specific heat at constant pressure for [1=0

configurations as extracted from Eq. (10). Three values of the
vesicle mass are shown: N =64, 128, and 192.
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FIG. 8. Isothermal compressibility y;/8 for II=0 as ex-
tracted from Eq. (11). Three values of the vesicle mass are
shown: N =64, 128, and 192.

K, between elements on their surface. The vesicle shapes
are characterized by their scaling exponents v and 7. At
zero pressure, we find that the vesicle shape scales like a
self-avoiding walk (v=n=21) for 0 =«, =2, but becomes
dense (v=n=4) for «x,22. For negative pressure
IT=—0.1, the configurations scale like branched poly-
mers {v=0.64; p=1) for 0=k, =2, but again become
dense for k, 2. At positive pressure, the vesicles are al-
ways inflated at large enough N, although there are
strong finite-size effects at small N. We explain the ap-
proximate magnitude of these finite-size effects as a com-
petition between the attraction and pressure terms in the
enthalpy.

The enthalpy per particle shows a change in the same
regions of Il-k, parameter space as the exponents do, but
within our statistics, the changes appear to be smooth.
Similarly, the specific heat at constant pressure changes
smoothly through the transition region and only begins
to rise rapidly at temperatures lower than &, !'=1. The
isothermal compressibility also changes rapidly with

0.0 1.0 2.0 3.0

K'd
FIG. 9. Isothermal compressibility y /8 for II==—0.1 as ex-

tracted from Eq. (11). Three values of the vesicle mass are
shown: N =64, 128, and 192.

phase, being smallest for the dense phase.

We are unable to determine the order of the transition
numerically. The tricritical region (IT=0, x,=2) is ex-
pected'® 23 to have more complicated scaling behavior
than the simple forms shown in Eq. (5). We are not able
to detect the logarithmic terms in the tricritical region
given our range of vesicle sizes. Our specific heat behaves
similarly to that observed in numerica! studies'® of the
polymer © point, in which the maximum of C, is both
weak and shifts to temperatures of the order 4 of the ©-
point temperature for chains with 60 monomers. To in-
vestigate the tricritical region will require a much larger
range in N than we have examined here.
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