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Dual Network Model for Red Blood Cell Membranes
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A two-component network is studied by Monte Carlo simulation te model the lipid/spectrin membrane
-of red blood cells. The model predicts that the shear modulus decreases rapidly with the maximum
length of the model spectrin and should be in the 10~7 J/m? range for human red blood cells. A
simplified model for the isolated spectrin network shows a negative Lamé coefficient A. Transverse fluc-
tuations of the dual membrane are found to be fluidlike over the range of wavelengths investigated.

PACS numbers: 87,22.Bt, 05.40.+j, 68.10.--m, §2.70.—y

Erythrocytes are remarkable elastic bodies [1]. They
are stiff emough to recover their biconcave equilibrium
shape after being squeezed through narrow capillaries
only % of their diameter. Yet they are soft enough to al-
low for thermally excited shape fluctuations as seen in the
flicker phenomenon [2]. Their basic membrane architec-
ture is essentially a three-component system. The lipid
bilayer provides a relatively large area compression
modulus and high flexibility for bending deformations.
The cytoskeleton on the cytoplasmatic side of this bilayer
consists mainly of spectrin tetramers linked together at
Junctional complexes to form a quasihexagonal network.
The spectrin network and its junctional complexes are at-
tached to the bilayer by integral membrane proteins. The
third component, the glycocalix, controls the interaction
with the extracellular matrix or other cells.

Understanding how the mechanical properties of the
red bleod cell (RBC) membrane arise from its structural
composition remains a significant challenge. While equi-
librium shapes, shape transformations, and fluctuations of
giant lipid bilayer vesicles are now understood on the
basis of continuum elastic models for the bending energy
{31, it is not yet fully clear whether and how the
cytoskeleton affects the equilibrium shape of the erythro-
cyte and its fluctuations. Recently, analysis of the flicker
spectrum revealed a wavelength dependence characteris-
tic of fiuid membranes and, thus, no effect of the spectrin
network for wavelengths less than 1.5 um [4]. Likewise,
direct measurement of the mean-square thickness fluctua-
tions [5], which are dominated by the long-wavelength
shape fluctuations, seems to suggest that the shear
modulus for small fluctuations is much less than the one
obtained from the micromechanical experiments [6]. A
possible explanation for such a discrepancy might be a
nonlinear behavior of the network with respect to shear
distortions. If the spectrin tethers can be expanded to a
certain length with almost no cost in energy, then one
might expect that small fluctuations basically do not in-
volve the network, whereas larger distortions as measured
by micromechanical experiments involve shear of this
network. These effects are difficult to model within a
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continuum mechanical model.

In this paper, we present a model for RBC membranes
which draws its inspiration from computer simulations
developed for both polymerized [7,8] and fluid [9] mem-
branes. We capture what we believe to be the two essen-
tial aspects of the RBC membrane, namely, the fluid bi-
layer and the cytoskeleton. In our model, the elasticity is
of entropic origin, an aspect previously incorporated in
phenomenological continuum models. [10,11). Using
Monte Carlo simulations, we first determine the two-
dimensional elastic constants of the model membrane and
then investigate its out-of-plane fluctuations in three di-
mensions.

We define the membrane as a two-dimensional surface
represented by a fixed number N of hard spherical beads
(or vertices) of diameter @. Two different sets of straight
flexible tethers connect the beads together. One set of
connections are fluid tethers, shown in light grey in Fig.
1, whose maximal length of 3a enforces membrane
self-avoidance. These tethers are fluid in that they can
migrate from vertex to vertex. Every bead has an aver-
age of six fluid tethers attached to it. A second set of
connections are what we call spectrin tethers, which form
a hexagonal network with fixed connectivity, as shown in
white in Fig. 1. The spectrin tethers have a maximal
length of smax, which is the main model parameter. One
out of every 36 beads is an anchor point at which a hex-
agonal junction point of the spectrin network is attached
to the fiuid network. Spectrin tethers are allowed to in-
tersect, as they only represent the in-plane projections of
the three-dimensional protein chains. Beads connected
only by fluid tethers move freely through the membrane
like lipid molecules. Anchor beads have their movement
restricted by the spectrin tether constraints, as do the
junction complexes in RBC’s. However, the beads are
used only to mathematically represent the membrane,
and their number density should not be equated with the
number density of lipid molecules.

In the first set of simulations to determine the elastic
moduli, we confine the vertex positions to a two-
dimensional plane. We use a Metropolis Monte Carlo
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FIG. 1.

Sample configuration for smax =9 viewed perpendicu-
lar to the x-y plane. The fluid tethers are grey, while the spec-
trin tethers are white.

technique to generate a set of appropriately weighted
sample configurations. A sweep across the membrane in-
volves the following steps: (i) An attempt is made to
change the position of each vertex by choosing a new po-
sition randomly from within a square box of length 2/ to
the side centered on the old position, where we choose
I1=0.1a. (i) An attempt is made to reconnect every fluid
“tether following the precedure of Baumgartner and Ho
[9]. In this procedure, a tether is removed and replaced
with a new tether connecting the two “opposite” vertices
which (along with the vertices at the ends of the original
téther) define the two triangles having the original tether
- in common. The spectrin tethers are not subject to pro-
cedure (ii) since their attachment is permanent. Each

trial move is accepted if it does not violaie the tether

length and bead size constraints.

A rectangnlar membrane “patch” subject to periodic

boundary conditions in the x and y directions is used in
the simulation. An isobaric simulation is performed by
allowing the rectangle lengths L, and L, to vary indepen-
dently. There is one trial move to rescale the rectangle
size per sweep. The rescaling moves are accepted with a
pseude Boltzmann factor [12]

W =expl — BPAA+NIn(1+AA4/ )], ()

where P is the pressure and AA is the difference in the
area {A=L,L,} before and after the rescaling. Except
where otherwise noted, the pressure has been set to zero.
At least 100 or 200 sample configurations are generat-
ed at each parameter set. Each configuration is separated
by a “Rouse time” r=N/I* Monte Carlo sweeps. The
equilibration time is within a factor of 3 or less of the
Rouse time for membranes of the size used here [7,8,13],
so each initialization is allowed to relax for 107 before
sample collection commences. Between 5x10° and
10x 10° attempted moves are made on each vertex and
tether for membranes with N=3576. The entire simula-
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FIG. 2. Logarithmic plot of the elastic constants Bua? (cir-
cles) and BK.a? (squares) as a function of the maximum spec-
trin length smax in the dual network, Our estimated unceriain-
ties are in the 10% range.

tion required approxnmate]y ten CPU months on a MIPS
R 3000 processor.

Our flat membrane is described by two lateral displace—
ment fields #, and u» which are functions of the reference
coordinate system (x),x;). In terms of the strain tensor
uy; = (Qu;/0x,;+8u;/8x;)/2, the elastic energy is [14]

He|=fd2x{KA(u|_|+u22)2/2
+,u[(u|1 —u22)2/2+2u122]} N . (2)

where K4 and g are the area compressibility modulus and
shear modulus, respectively. Computationally, K4 and
the Young’s moduli Y and Y, are determined: from fluc-
tuations of Ly, Ly, and 4: '

BK.4=( A/ (4D — (D)), (3)
BY: =[AYCLDNLIZ—1)17!, 4)
BY, =KALIALY =11 L. )

Finally, the shear modulus u can be obtained from Y and
KA via

‘u=YK_4/(4KA_Y), (6)

where we use the average of Y, and Y, for Yin Eq. (6).
The behavior of these constants for the model network
is shown in Fig, 2. The smallest value for smax consistent
with our density of anchor vertices is 6a, where all the
beads touch at their hard-core limit. Such a network
should have infinitely large # and K4. From Fig. 2 we
see that ¢ and K4 decrease from large values as spax in-
creases from 6a. The compression modulus BK4a? de-
creases to about 20 and remains near this value as Smax
becomes large. The shear modulus, on the other hand,
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falls approximately as spm>' over the larger values of

Smax Studied. This behavior is expected since networks
with larger smax can support larger shear deformations.
The compression modulus at large spax can be under-
stood by considering the single-component fluid [9] or po-
lymerized [7,8] network model. Kantor and Nelson [8]
point out that in a two-dimensional network of harmonic

springs K4 =2 =32k/2, where k is the spring constant.’

Kantor and Nelson estimate that the square-well tethers
correspond to Pka’~=22 and hence they predict
PBK4a®=20. In a separate simulation of two-dimen-
sional networks, we obtain BK4a2=15%2 for a polymer-
ized network and BK,a?=18+%2 for a pure fluid net-
work. These results are in the range expected from the
harmonic network and are similar to the value of the dual
net. Thus, the compression modulus of the dual net at
large smax is determined by its fluid component and not
its spectrin component.

To understand the shear modulus at large smax we
simulate a pure two-dimensional spectrin network with
fixed hexagonal. connectivity, /N; vertices, and a tether
length ranging from 0 t0 smax. The network is subject to
a tension (or negative pressure) P < 0 so that the only in-

" dependent variable in the simulation is BPsta. The ten-
_sion is used to control the area of the membrane so the
pure spectrin network can be compared with the dual net-
" work. The simulation is performed using the computa-
tional rules set out above for the spectrin part of the dual
network, L ,
The shear modulus s 2,y is shown in Fig. 3 as a func-
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FIG. 3. Comparison of the shear modulus Bus3a for the
dual network (circles) and the pure spectrin network {squares)
as a function of the area per junction vertex {(A}/N;skax. The
compression modulus BK .53, of the pure spectrin network is
also shown (triangles). Most pure spectrin data were calculated
with N;=144, except the two smallest areas which used
Nj=576.

tion of the area per junction vertex {A)/N;sZ.x for the
dual network and the pure spectrin network. To within
our 10% uncertainties, both networks have similar values
of Busiax for those values of {A4)/N;sZs which corre-
spond to large smax in the dual model. Hence, we con-
clude that the shear modulus at large smay is determined
by the spectrin network. Also shown in Fig. 3 is the
compression modulus 8K 152y of the spectrin network.
The fact that K4 is less than p indicates that the second
Lamé coefficient [14] A=K, —u is negative. Materials
with negative A expand transversely when stretched longi-
tudinally.

We can use Fig. 3 to make a “first-principles™ estimate
of the shear modulus of human RBC’s [15], for which the
spectrin has a maximal extension {smax) of ==200 nm
and an average extension of =75 nm [1]. This corre-
sponds to {(A4)/N;s2.=0.12, for which we obtain
Busdax =2 from Fig. 3. This value is equivalent to
p==2%10"7 J/m? and is more than an order of magni-
tude less than what is found in the micropipette experi-
ments [u=(6-9)x107% J/m? [6,16]11. Inclusion of out-
of-plane fluctuations and protein steric effects will un-
doubtedly affect the numerical value of this prediction.
At face value, the prediction supports the hypothesis that
the shear modulus determined by fluctuations [4,5] is
considerably smaller than that determined by mi-
cromechanical experiments [6].

We now investigate the out-of-plane fluctuations of the

_dual network by embedding the membrane in three di-

mensions. To incorporate out-of-plane bending resis-
tance, we add to our simulation a discrete version [7,8] of
the continuum Helfrich Hamiltonian [17]

ﬁH*K‘diSZ(l_nf'ﬂj), 7

. where each n is a unit vector normal to the plane formed

by three vertices which are all nearest neighbors to one
another. The sum is over all n’s whose defining pla-
quettes share a common tether.

We use the same Metropolis algorithm described
above, modified (i} by using a spatial cube for each trial
vertex move and (ii) by accepting or rejecting a move ac-
cording to the Boltzmann weight exp(— SAH ), where AH
is the energy difference of the trial move as determined
by Eq. (7). For low enough temperature, i.e., xgis>> 1,
the out-of-plane fluctuations are moderate and a unique
height function #(x) can be defined for every vertex posi-
tion x in the x-y plane. Fluctvations are characterized by
the correlation function

c(@)=(lulg]® (8)

of the Fourier-transformed height #(q)=5 "' [d*x h(x)
xexpliq-x), where . is the surface area over which the
two-dimensional integral d%x is performed. For long
wavelengths or small g, C(g)==q ~@*% where the
roughness exponent ¢ determines how fluctuations grow
with spatial separation, that is, {[k(x) —h(0)]%) ~= x%
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for large x. Fluid membranes are characterized by {=1,
while simulations variously show {==0.65 for tethered
membranes [13,18-20] and ¢{=+ in a continuum model
of a polymerized membrane [21] and in a perturbation
theory calculation [22].

For the simulation we choose $max =8, which is a value
in the crossover regime between the harmonic (syax

2= 6-7) and pure fluid {(large s,,.x) networks. Over our

- available range of ga from about 0.2 to 2, the in-plane
correlation function drops by 3 orders of magnitude and
scales like ¢ ~*%% %! characteristic of pure fluid mem-
branes {for which we independently find ¢ ~>?*®!). The
present system size is too small to show the predicted
crossover to a “solid” or “tetherlike™ behavior of fluctua-
tions at larger length scales [21,22]. For a pure polymer-
ized network, we find C{g) scales like g ~>7%%2 for
N =576, indicating that we require larger system sizes to
reach the asymptotic regime [18].

In conclusion, we introduce a dual network model for
the RBC membrane in which the maximum spectrin
length 5y is the essential parameter. In two dimensions,
the mechanical properties of this network are determined
entirely by entropy and geometry. At large sma the elas-
tic moduli decouple: The compression modulus is a func-
tion of the fluid bilayer properties while the shear
modulus falls rapidly with the spectrin length. A
simplified model for the spectrin network shows a nega-
tive Lamé coefficient .. We predict the shear modulus
for human RBC’s to be in the range (1-3)x10~7 J/m?2
In three dimensions, the transverse fluctuations are fluid-
like over the range of wavelengths available in the simu-
lation,
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