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Abstract. 'We consider a system of N particles which are confined to the surface of a sphere
and which interact via a potential that depends logarithmically on their separation. The ground-
state properties of this system are investigated for N = 2 to 65. Unlike the case of Coulomb
interactions this system has ground-state configurations with zero dipole moment for all N. The
thermal properties of a selected set of systems in the range N = 2 to 500 are determined by
Monte Carlo simulation. ’rhe results are compared with analytical calculations in the smatl- and
large-N limits.

1. Introduct_ion

e re-visit an old problem in mathematical physics, which has been presented as having
applications in a wide range of subject areas. The general problem is to find the minimum-
energy configuration of a system of particles (or disclinations, molecules, pores or fuel
depots) located on the surface of a sphere. The particles are subject to a repulsive pair
interaction of the form v(r) o r=", with r the length of a chord connecting the two particles
L11. In the limit n — o the problem is commonly called the Tammes problem [2] after a
Dutch botanist who was interested in the pattern of orifices in spherical pollen grains. The
‘Tammes problem is equivalent to that of finding the largest radius of N non-overlapping
circles on a sphere,

A related, but conceptually simpler problem was posed by Kepler almost 400 years ago.
In that case the problem was to-find the densest packing of spheres in a Euclidean space,
En three dimensions ‘mathematicians believe and physicists know’ that the solution is one
of the two closed packed lattices (hexagonal closed packed or face-centred cubic), while in
two dimensions the solution is a triangular iattice [3, 4] . The reason the situation is more
complicated in the curved space of a spherical surface is that it is not possible to cover
the surface with a triangular lattice without defects. It is easy to understand that in the
wzase of special numbers such as N =7, 11, 23 there will be a great deal of frustration, and
that complicated configurations will result [5]. However, it is surprising that in many cases
when high-symmetry configurations are available, such as an inscribed Platonic solid, the
high-symmetry configuration is often not the favoured solution [6]. This can be partially
understood if one notes that the particles are most closely packed if the coordination number
{number of nearest neighbours} is high. For example, in the case of the inscribed cube the
average coordination number is 3. If, however, two opposing faces are rotated relative to

gach other by 45 degrees, the number of nearest neighbours can be increased to four (see
figure 3).



1280 ' B Bergersen et al

Interest in the problem of N equal Coulomb charges on a sphere, n = 1, began with the
J Thomson plum pudding model of the atom [7, 8]. Although the original motivation was
[mlckly made cobsolete by the advent of quantum mechanics, interest in the mathematical
woblem has continved. A practical motivation was provided by Hansen et al {9] who
werformed molecular dynamics simulations of ionic liquids on a sphere in order to avoid
;aving to perform computationally intensive Ewald sums at each time step. The ground
tates for Coulomb charges on a sphere have recently been reviewed by Erber and Hockney
10]. The thermodynamic limit for charges en ‘a sphere N — ©o has been studied by
worevaar [11}.

Here, we address the case of Ioganthmlc interactions, n = €, on a sphere. Finite-

=mperature Monte Carlo simulations on this system have previously been carried out for

= 104, 160 and 256 by Caillol ef al [12]. The corresponding problem in two-dimensional
Jectrostatics of finding the equilibrium configurations of charges on a disk with a uniform
veutralizing (‘jellium’) background has ‘been studied by a number of authors (see, e.g.,
“hoquard and Clerouin {13] and de Leeuw and Perram [14]), and was recently re-discovered
vy Kogan e af [15]. '

The logarithmic potential is of interest when considering the thermodynamic limit of
nany particles on a large sphere. In this case it is tempting to describe the system in terms
vf disclinations distorting a triangular lattice with logarithmic interactions between nodes.
Zecently, Lubensky and Prost {16] examined the vortex defects in the hexatic phase of a
iquid crystal confined to a closed surface with spherical topology, They determined that
Ire longest-range interaction between the defects was logarithmic in the chord separating
Frem. :
In this paper, we determine the ground states and low-temperature thermodynamics of
v discrete number N of particles with logarithmic pair potentials, where the particles are
:onfined to a spherical surface embedded in three dimensions. In section 2 we show that
Ie logarithmic interaction yiélds ground-state configurations with zero net dipole moment
or any N, in contrast to the Coulomb case where a number of ground-state configurations
+xhibit a net dipole moment [10}]. We also determine the asymptotic form of the ground state
or large N and compare with the ground-state energy for N = 2 to 65 from simulations.
mn addition we classify the ground-state configurations according to their chirality and
roperties of the moment of inertia tensor.

In section 3, we investigate the thermodynamics of a selected set of systems in the
ange N = 2 to 500 at low temperature via Monte Carlo simulation. We determine the
veat capacities of these systems and extrapolate their mean energies to zero temperature. A
aammary is given in section 4.

L. Ground-state properties

Me investigate a system in which the potential energy of N particles, confined to a spherical
wurface, is written as

—-Zl (r‘f) Zln[-Z(l—r, Pl + &i\;ﬂln(%) (1

i>j i>j

ahere ry; is the chord between particles i and j, L is an arbitrary length needed to make
he logarithm dimensionless, and R is the radius of the sphere. In what follows we choose

= R. The sum is performed over all particle pairs. Ihe surface is taken to have unit
=adius, so the maximum valie of r;; is 2.
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Contrary to the Coulomb case where several lowest-energy configurations exhibit a
dipole moment [10], none of the ground-state configurations with the logarithmic potential
have a dipole moment. To see this, we first note that the force on the ith particle due to all
the others must be directed radially for any equilibrium configuration (otherwise the charge
would move along the surface),

Akl APy '
G =) St : @

If we muitiply both sides of (2) with #;, we see that f; = %(N — 1) is the same for all i.
By summing (2) over i, and using the fact that #; — 7; 1s antisymmetric in { and j, we find
that the dipole moment must vanish. The logarithmic interaction appears to be unique in
this respect. ‘ : :

We can obtain analyticaily two limits for the results for the ground-state energy. First,
for N = 2, the partition function Z can be determined exactly: o

'lnz'=tn4n+ﬁln2—1n(§+1) 3)

where B is the inverse temperature.” From the partition function, we find E; = — In?2 for
the ground-state energy, and C/N = 0.5 for the specific heat.

‘ At large N, a mean-field model can be used to evaluate the energy. The average
interaction energy of a single particle as a result of its interaction with ¥ — | other particles
is :

it 4 ’ .
€ = _%f dq}f dg p(9, =) In{2(1 — cos )] sin @ {4)
0 0

where p(0, @) is the probability of finding a particle at polar angle 8 and azimuthal angle
¢, given that there is a particle at the north pole (8 = 0).- The ground-state energy of the
system is then given by E = %EN . We can get an estimate of the ground-state energy by
making the approximation

.} 0 g <8y ' '

p(9,¢)~[ N/jdrn >0 >6. ).

We determine by requiring that ‘
n b3 : ' .

f dqﬁf df p(B, m) =N -1 : (6)

0 0
which gives g = /4/N. Substituting into the expression for the energy gives

Em N (3In2—§) - %N+ N(in2- 1), (7

If a more accurate form is used instead of (5), equation (7) would be modified. However,
since there will still be an average particle density N /47 and an angle of closest approach
8 ~ 1//N, the terms in (7) proportional to N? and NInN will not be affected. If
we rescale our unit of length (make R s L) we add a term [N{N — 1}/2]In L/R in the
expression for the energy. We can therefore choose the energy term proportional to N? to
be zero. We believe the term proportional to N In N to be exact and this term will pre-empt
the system from having a proper thermodynamic limit.

We expect to be able to fit the ground-state energy for large N to a formula of the form

"N .
_E:wNZ(%ln2~4i)—IlnN+l;N+l2+--- (8

where I; and [, are Riting parameters.
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. Table 1. Absolute value of ground-state energies, and type of configuration for ¥ = 2 to 65.
Np = biaxial, C = chiral, N_ = uniaxiat disc-like, 7 = isotropic, N, = uniaxial rod-like.

N Energy N Energy N Energy

1 0 : 2 069314718056 Ny 3 164791843300 N.

4 294248775904 [ 5 442050715524 N, 6 623832462504 [

7  8.18247786444 N_ B 104280177315 N_ 9 12.8877527258 N_
10 155631233890 N, 11 184204797208 Np 12 216061452304 [
13 248667218755 Np 14 284078130092 N_ 15 321478762838 N, C
16 361061521620 JfC 17 402730669612 N, 18 44.6502872592 N_
19 49.1988915658 Np 20 540111299746 N_ 21 59.6009121351 Np
22 642000077617 I 23 695783825925 N_C 24 752139847886 IC
25 80.9975099%02 Np 26 870094230570 NpC 27 932515864000 N..
28 99.6586093841 JC 29 106254571171 NpC 30 113.089255497 NpC
31 120110346640 . N_ 32 127.378867615  J - 33 134747820824 Np
34 142375852271 NpC 35 150.192058511 NpC 36 158224068426  NpC

- 37 166.450697524 Ny 38 174880197152 N_ 39 183509225712 N

40 192.337689917 I 41 201359206648 Ny 42 210584511558  N_ .
43 220003477052 Np. 44 229641801488 I 45 239453698253 N.C
46 249.452540709 IC . 47 259.661 759853 . Np 48 270.117949959 Ic
49 280.701903 118  N,.C 50 291528600658 N, 51 302333673455  N.C
52 313.732371935  N_C 53 325.138234695 Np 54 336745464397  NpC
55 348.541796281 NpC 56 360545899244 ~ NpC 57 3727412006618 N_C
58 385.132829792 NpC 59 397728 149661 NpC 60 410.533162793 N C
61 423507635991 NpC 62 436703979238  N_C 63 450081239177 N.C
64 463.654432987 NpC 65 477426426069  NpC

To determine the ground-state properties numerically, we start an initial configuration
with the particies randomly distributed on the spherical surface. We.then calculate for each
particle the force from all the other particles, and displace each particle a distance which
is proportional to the force. This moves the particles off the surface of the sphere, so we
project the particles back to the surface. The process is repeated and the energy £ and dipole
moment d = }_, r is monitored. The process is stopped when the dipole moment is zero
within a tolerance (< 107", and the energy has stabilized 1o 15 significant figures. The
calculated ground-state energies are listed in table 1. The calculated ground-state energies
are also compared to the asymptotic formula (8) in figure 1, with fitted values of {; and [,
given in the figure caption. We see that when N 22 60 the scatter has been reduced to less
than 1 part in 10~*. The same argument which was used to obtain (8) can also be used to
obtain an asymptotic formula for n = 1 (Coulomb case) [10], of the form

E= N+ NP —N+.-. . - @)

A plot of the scatter when (9) is fitted to the data of [10] is shown in figure 2. We see
that the two figures are remarkably similar, although the ground-state configurations are, in
fact, different for the two potentials (except for N € 6, N = 12, and somewhat surprisingly
N = 32 see (figure 3)).

While ground-state configurations with the logarithmic interaction cannot exhibit a
dipole moment they can exhibit chirality. Given a set of N points, one can generate a
second set by doing an inversion about any point in space. The original set is chiral if the
inverted set cannot be made identical to the first by a series of rotations (we do not need to
worry about translations since all equilibrium configurations with logarithmic interactions
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sels can be made identical by a set of rotations is as follows.

(1) From the coordinates of the original set construct the inverted set r; = —r; for all i.

(2) Take the first two points of the original set and perform rotations about the origin unti
the chord joining the two points is in a ‘standard position’ parallel to the x-axis with
the midpoint on the positive z-axis (see figure 3).

(3) Calcutate the length of the chord and find the set of pairs of the inverted set which are
separated by this length within a tolerance.

(4) Put the chords generated from all the pairs in the standard position.

{5) Test if the two sets are identical within a tolerance.

The low-N configurations for which the ground state is chiral are listed in table 1. We
find for N < 65 that if the ground state with the logarithmic potential is chiral, it will
be chiral with the Coulomb potential. If it is not, it will not be chiral with the Coulomb
potential either, although the configurations are mostly different.

Another way of describing the configurations is through the traceless part of the moment
of inertia tensor

, - |
Oup = IN ;(3ri.uri,ﬂ — 8up) . '¢(s)]

In accordance with liquid-crystal terminology we write g, —%{q -~ p), —%(p 4+ g) for the
sioanvaliiac nf 7Y fwhere 4 ie the eiosnvalue which iz laroest in maonitude). If p and o
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' Figure 3. Polar plots of the ground-state
configurations for N = 8 (top}, N = 16 (middle)
and N = 32 (bottom). Parallels are separated by
15°. All configurations are in one of the ‘standard
positions’ used in the chirality tests. Left and
right eolumns are projections of the upper and
lower hemisphere on the equatorial plane. The
N = 16 configuration is chiral. Note the inversion
symmetry of the N = 32 ground state,

are both zero we refer to the configuration as isotropic (I}, if ¢ > 0, p = 0 it is uniaxial
rod-like nematic (Ny), if ¢ < 0, p =0 it is uniaxial disk-like and we call it (N_), while
if p and g are both non-zero it is biaxial with notation. (Np). The classification of the
ground-state configurations in this scheme is listed in the table.

~For N = 47 the biaxiality was found to be quite weak. The ground states with the
Coulomb potential have the same classification except

N =29, which is (Np) with the logarithmic and (N_) with the Coulomb potential,
N =52 which is (N_)} with the logarithmic and (N;) with the Coulomb potential.

For a number of N-values there are more than one stable configuration, the lowest
of these in energy being the ground state. Suppose we have started up the system with
either the logarithmic or Coulomb potential, and happened to reach the ground state. Then
in almost all cases, if we switch from one potential to another, and keep the step size
small enough, we will evolvé into a ground state of the other potential. The exception is
N = 56, where the ground state of one potential evolves into a metastable configuration
for the other, and vice versa. Of course, we cannot be sure that we have the true ground
state in all cases. We reproduce the results of [10] for the Coulomb potential in almost all
cases. The exceptions are N = 36 where we find a slightly different ground-state energy
E = 529.122 408 38 and a dipole moment < 1078, and N = 38 and 44. where we find that
" the dipole moment is zero. ' '

3. The case of non-zero temperatui'é

Monte Carlo computer simulations allow us to calculate the mean energies of N-particle
systems at non-zero temperature and to determine the ground-state energies via extrapolation
to zero temperature. Because the extrapolations require simulation at several non-zero
e eteeos fam o eivme M tha mathnd ic not as eompidationallv efficient as the approach
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used in the previous section for finding ground states. Hence, the Monte Carlo simulations
are focused on a limited range of N where finite-temperature properiies are of interest.

The simulation is performed using the traditional Metropolis algorithm. A system of N
particles is initialized with the particles randomly placed on the surface of 2 sphete with unit
radius. The particles are subject to the Hamiltonian (1). The kinetic energy does not appear
in the Hamiltonian since we are interested only in equilibrium properties, and the potential
is independent of momentum. Each particle is described by its polar coordinates ¢, ¢. On
each particle in turn, a trial move is made by changing cos @ and ¢ randomly within a range
185 and £=278s, respectively. The change in energy associated with the atternpted move
is determined from the Hamiltonian, and the move is conditionally accepted according to
the Boltzmann weight e f#, where § is the inverse temperature. The choice §s = 0.01
provides a reasonable acceptance rate for the moves. ‘Because the procedure produces
configurations which are highly correlated, not every configuration in the simulation is used
to construct ensemble averages. Rather, configurations are ‘saved’ only 8572 = 10* sweeps
over the positions, where each particle receives one trial move per sweep. Typically 100
configurations are used for constructing ensemble averages at each N, B combination. The
exceptions are N =2 (300), 3 (200), 200 (40) and 500 (20), where the number in parentheses
indicates the number of configurations, separated by 10* sweeps, used at each B.

Each ensemble is used to determine a value for € = (H)/N. Itis observed that € rises -
linearly with temperature 1/ p for g in the range 1000 to 300. This linear behaviour allows
us to determine the heat capacity C at low temperatures and (o obtain the ground-state
energy by extrapolation. The absolute statistical accuracy of our calculation for € is about
10~-*, The statistical uncertanties in heat capacity per patticle C/N are about 3%.

* Table 2. Ground-state energy €gs and specific heat C/Nkp obtained by linear fits to € as a
function of 1/8 in the range f§ =1000 to 300.

N Eg5=limug_,n(H)/N C/Nkp

. 0,34653+ 0.00006 0484 0.03
— 0549284+ 000005  (.46% 0.02
0735774 0.00008 071+ 0.04
— (.884 15+ 0.00006 073% 0.03
—1.039774 000010 075+ 0.04
— 1.16891: 0,00006  0.74+ 0.03
1303264 0.00008  0.684 0.04
30 — 5.830674 0.00005 105+ 0.02
100 - 10.83383:: 0.00002 105+ 0.01
200 - 20.66501% 0.00002 107+ 0.01
500 - — 49.866614 0.00004  1.02F 0.02

00wl AW B

A summary of the Monte Carlo results is shown in table 2. Within the statistical accurac
the extrapolated ground-state energies agree with the results of section 2. The Monte Carl
© ground-state energies were used in the fitting procedure of the previous section to determin
1, and I, of (8). The Jow-temperature heat capacity per particle increases from lz at N =
(as can be computed from (3}) to a value close to 1 for large N, This large-N behaviour

expected if the particles are in Hooke’s-law potentials.
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4. Conclusions

“

We have investigated the properties of a system of particles located on the surface of a sphere
and interacting with a potential which varies logarithmically with the chord separating the
particles. One striking difference between the logarithmic and other potentials is that the
ground states have zero dipole moment for all N in the former case. Except for a few
special cases, the ground-state configurations will be distinct from those calculated with the
Coulomb or a short-range potential. Nevertheless, the confi gurations with different potentials
are similar in many respects. Because of the long range of the logarithmic interaction the
ground-state energy does not have a proper thermodynamic limit, but the heat capacity is
proportional to N and at low temperatures the system behaves as if connected with Hookean
springs. :
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