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Entropy-Driven Instability and Rupture of Fluid Membranes

Julian C. Shillceck and David H. Boal
Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 156 Canada

ABSTRACT A computer simulation is used to investigate hole formation in a model membrane. The model paramsters are
the stress applied to the membrane, and the edge energy per unit length along the hcle boundary (edge tension). Even at zero
stress, the membrane has an entropically driven instability against hole formation. Within the model, the minimum edge
tension required for the stability of a typical biological membrane is in the region of 1 X 10~ J/m, which is similar to the edge
tension obtained in many measurements of biomembranes. At the zero-siress instability threshold, the hole shape is the same
as a self-avoiding ring, but under compression, the hole shape assumes a branched polymer form. In the presence of large
holes at zero stress, the membrane itself behaves like a branched polymer. The boundaries of the phase diagram for
membrane stability are obtained, and general features of the rate of membrane rupture under stress are investigated. A model
in which the entropy of hole formation is proportional to the hole perimeter is used to interpret the snmu!aﬂon results at small

stress near the instability threshold.

INTRODUCTION

The isolation of a cell’s contents from s surroundings
relies upon the mechanical stability of the plasma mem-
brane. The stability of a bilayer against rupture or lysis has
been investigated by several experimental means. In elec-
troporation experiments, a membrane subject to an electric
field may rupture because of the electrocompressive stress
(Harbich and Helfrich, 1979; for recent results, see Glaser et
al., 1988; Zhelev and Needham 1993; Wilhelm et al., 1993;
Freeman et al., 1994). The swelhng of a cell in a hypoos—
motic solution can also lead to membrane rupture (recent
work can be found in Ertel et al., 1993; Mui et al., 1993).
Many experiments show that the membrane area increases
by only 2-3% before rupture, and that the external tension
needed to induce rupture is on the order of 1077 to 1072
Jrm?, depending on the chemical éQmpbsition of the mem-
brane (Evans and Needham, 1987 Needham and Hoch-
muth 1989),

Some ‘models of membrane rupture assume that hydro-
philic holes are formed in the bilayer through the rearrange-
ment of lipid molecules in a way that keeps their hydrocar-
bon chains away from the swrrounding aqueous medium.
Models that have been proposed for membrane rupture
include the irreversible opening of a single large hole (Lit-
ster, 1975; Wilhelm et al., 1993), the reversible opening of
many small holes (Taupin et al., 1975), and several other
mechanisms (Abidor et al., 1979; Powell and Weaver, 1986;
Popescu et al., 1991). The holes in these models are char-
acterised by an energy per umit length, or edge tension.
Model analyses of the experiments typically yield valaes for
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the edge tension in the 107" J/m range (Zhelev and Need-
ham, 1993).

Rupture models have so far neglected the effects of
entropy, in the sense that the hole geometry is assumed to
minimize thé energy, rather than the. free energy. For ex-
ample, Fromherz et al. (Fromherz, 1983; Fromherz et al.,
1986) analyzed the topology change between a flat, open
sheet and a closed sphere using a zero-temperature model in
which the membrane is subject to an edge tension at the
perimeter and a bending resistance in the bulk. Based on the
maximum radius observed for open :membrane sheets after
sonication, the edge tension of egg lecithin extracted in this
model is 4 > 107" Fm. :

As can be shown with computer simulations, the stability
of model membranes may be temperature dependent (Boal
and Rao, 1992b). A spherical membrane conformation that
is stable at zero temperature can become unstable at nonzero
temperatures for certain combinations of bending resistance
and edge tension. The free energy barrier between open and
closed membrane topologies is reduced by entropic contri-
butions, which place a lower bound on the edge ténsion
required for membranes to be stable against rupture.

In this paper, we examine merbrane stability under stress
at nonzero temperatures. We investigate the geoinetr-y of a
hole during membrane rupture and obtain a phase diagram
for the membrane and hole shapes as a function of stress and
edge tension. We confirm the bound on the edge tension
required for membrane stability that we observed in our
three-dimensional studies (Boal and Rao, 1992b). Although
the value of the bound depends on the chemical composition
of the bilayer, it corresponds to a zero-temperature edge
tension of approximately 1 X 107" ¥m for a typical
biomembrane.

In the following section, we review a conventional zero-
temperature model for hole formation in two dimensions
under stress. Quantitative results for this model at nonzero
temperatures are obtained by computer simulations and are
presented after the computational techniques are outlined.
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The general features of the simulation are consistent with
the entropy of hole formation having a linear dependence on
the hole perimeter. Results from the simulations are ex-
pressed in terms of an elementary length scale a and the
inverse temperature B!, The simulation is of general ap-
Plication, with predictions for specific systems being deter-
mined by the choice of @ and B. In the final section of the
paper, we choose values for these parameters appropriate to
biological membranes and summarize the results in physical
units.

A brief word on notation: To minimize the number of
contexts in which the word “tension” appears, we say that
the membrane is subject to a surface stress ¢ rather than an
applied tension. The sign convention is that o > O corre-
sponds to tension, whereas ¢ < 0 corresponds to compres-
sion, The surface pressure is related to, but not equal to, the
surface stress (see Evans and Waugh, 1977).

MODEL FOR RUPTURE

Our starting point is a commonly used zero-temperature
model for membrane rupture involving only two parame-
ters, o and A, where o is the applied surface stress and A is
the edge tension along the hole perimeter at zero tempera-
ture (Litster, 1975). In this model, the free energy ai zero
temperature, F,, is given by

F,=—0cA + AT (0

The edge tension, A, is positive when energy is required to
increase the hole perimeter. The area, A, is the total area of
the bulk membrane and the hole, and T is the perimeter of
the hole. At zero temperature, the energy-minimizing shape
of the hole is a circle, defined to have radius R. The change
in the free energy associated with the formation of a single
hole is then

AF,=—mRa + 2wRA. (3]

Entropy will contribute to the free energy of Eq. 1 at
nonzero temperatures. There are a number of lattice simu-
lations that can be used to estimate the entropy of hole
formation, but we delay a discussion of these estimates until
after the simulation results are presented.

Holes with R = 0 have the lowest free energy for nega-
tive stress {compression). However, for positive stress {ten-
sion), zero radius holes are only metastable, and R expands
without limit in the thermedynamically favored state. At a
critical radius R*, given by

R¥ = Mo, &)

the free energy barrier against hole formation has a maxi-
mum. value of

AF% = gAYq. 4

Eq. 4 implies that the bartier against hole formation van-
ishes only in the A — 0 or o0 — o limit.
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SIMULATION TECHNIQUES

In our simulations, the membrane is treated as a two-
dimensional, self-avoiding, tethered manifold consisting of
hard spherical beads (vertices) linked together by flexible
tethers (bonds). This class of models was originally devel-
oped for the study of polymerized membranes (Kantor et al.,
1986) and then generalized to simulate fluid membranes of
fixed topology by means of an algorithm for tether mobility
(Bauwmgartner and Ho, 1990). Here, we use the Baumgart-
ner/Ho algorithm for fluid membranes and use a bond
creation and removal algorithm that allows for topology
changes in the fluid membrane (Boal and Rao, 1992b),

The computational membrane is confined to a two-di-
mensional plane and is subject to periodic boundary condi-
tions. Restricting the membrane to lie in-plane means that
our simulation results can be applied to membranes in three
dimensions cnly on length scales that are small compared to
the persistence length of the membrane. The persistence
length of lipid bilayers is typically greater than a micron, so
that our simulation is nseful for investigating holes up to
perhaps 100 nm in diameter. In fact, the typical hole dimen-
sion in cell mupture experiments is thought to be tens of
nanometers (Mui et al., 1993), which is well within the
applicable range of the simulation.

The boundary and interior of the membrane are defined
by bonds and vertices. The number of vertices N is fixed but
the number of bonds is not—bonds can be inserted and
removed at the membrane boundary. Vertices defining the
edge of the membrane are called external, as are bonds
linking two external vertices. All other vertices and bonds
are internal. Only a single, simply connected hole is allowed
in the simulations, although the perimeter of the hole may
cross the periodic boundaries.

Eq. 1 forms the basis of the zero-temperature energetics
of the simulation. The perimeter I is a sum over the lengths
of the external bonds, and the area A is the total area of the
membrane, including the hole, contained within the periodic
boundaries. In addition to Eq. 1, the vertices are subject to
step-function potentials that enforce the self-avoidance con-
straint: the vertices are infinitely repulsive at distances less
than the bead diameter a (for all vertex pairs) or greater than
/3 a (for vertex pairs connected by tethers). The maximum
tether length could be as large as 2a without violating
self-avoidance in two dimensions, but /3 g is chosen so
that direct comparison can be made with results from mem-
brane sinmlations in three dimensions. The average segment
length b in the simulations is cbserved to be 1.34a, with the
difference between the average internal and external seg-
ment lengths being less than 1%. Although individual teth-
ers do not have a fixed length, fluctuations in the bulk
membrane area around its mean are small.

A set of appropriately weighted sample configurations is
generated using the usunal Metropolis Monte Carlo tech-
nique in which trial moves are made on the vertex positions
and connectivity. A sweep across the membrane involves
the following steps: 1) An attempt is made to change the
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position of each vertex by choosing a new position ran-
domly from within a square box of length 2/ to the side
centered on the old position. 2) An attempt is made to
reconnect every internal bond. Each internal bond is defined
by its two end vertices v, and v,, and its two “opposite”
vertices v, and v,,. The move consists of reconnecting the
bond to v, and v, with v, and v, becoming the new “op-
posite” vertices. 3) An attempt is made to remove each
external bond, reducing the total number of bonds by one
while converting two internal bonds into external bonds. 4)
An attempt is made to convert each external vertex into an
internal vertex by adding a new external bond directly
between the two external nearest neighbors of the vertex.
The simulation forbids the total number of external bonds
from decreasing below four, so that a single hole, however
tiny, is always present.in the membrane.

Rectangular periodic boundary conditions are imposed by
connecting the configuration to its periodic images, trans-
lated by the side lengihs L, and L, of the boundary box in
the x and y directions, respectively. In addition to the vertex
and bond moves 1) through 4), attempts are made to rescale
L, and L, independently. Simultaneously, the vertex posi-
tions are rescaled proportionately to the change in L, and L.
The periodic box rescaling algorithm for the isobaric en-
semble was developed by Wood (1968) and is described in
more detail elsewhere (Hansen and McDonald, 1986). All
trial moves on positions, connectivities, and boundaries are
accepted or rejected according to the Boltzmann weight,
exp(—BAF,).

An ensemble of configurations generated by this tech-
nigque is an appropriate sample of the system at finite tem-
perature. The simulation is used to investigate the static
properties of membranes, such as mean areas and clastic
moduli, as well as dynamic properties, such as the mean
time for rupture under tension. For static properties, 400-
100G sample configurations are generated at each (o,A)
combination. Each configuration is separated by a time 7 =
NP Monte Carlo sweeps, where we use ! = 0.1. Before
sample collection, each initialization is allowed to relax for
107. For dynamic properties, such as the rupture rate, a
configuration first is allowed to relax at the chosen stress
with bond removal forbidden, and then the time evolution of
the configuration is followed after SAa is set and bond
insertion and removal are permitted. Rupture rates are cal-
culated using 400 initializations for each (o,A) combination.

The merbrane in-plane elastic constants reported here
are determined from fluctuations in the periodic box
lengths, For example, the compression modulus K, is given
by

BK, = (AM(A% — (4D, (5)

where A = L,L, and {...)indicates an ensemble average.
Because the shear and Young’s moduli vanish for the fluid
membranes investigated in this paper, only the compression
modulus is displayed in the following sections.
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SIMULATION RESULTS

The simulations allow the determination of the membrane
and hole geometry, the system elasticity, and the rupture
rate under stress. Several of these quantities, particularly the
geometry, depend on the edge tension and applied stress in
nontrivial ways. To simplify the presentation, we group the
results into three categories according to the applied stress:
specifically, stress-free, compressed networks, and
stretched networks.

Networks at zero stress

Stress-free networks are governed by one independent vari-
able, namely the edge tension, in the dimensionless combi-
nation BAa. A snapshot of a typical membrane configura-
tion at zero stress and Sie¢ = 1.23 is shown in Fig. 1. The
obvious membrane hole shown in the figure is simply
connected, even though the hole perimeter passes across the
periodic boundaries. One can see that the vertices are ap-
proximately sixfold coordinated on average, although many
five- and sevenfold coordinated vertices are present. The
variable connectivity results from the bond mobility algo-
rithm that is used here for fluid membranes.

Only relatively small holes are present if Bie¢ > 1.3,
whereas large holes are observed for BAa < 1.2, The hole
size changes rapidly around BAa = 1.24, as illustrated in
Fig. 2, where the reduced perimeter I'/Na of the hole is
ploited against the edge tension for a number of system
sizes. Below BAa = 1.0, the holes approach the maximum
value allowed by the system size N. We denote the transi-
tion value of the edge tension at zero stress as A*, with
BA*a = 1.24. Alternatively, if we define the average seg-
ment length as & (b = 1.34a), then the transition occurs at
BA*h = 1.66.

The appearance of a hole in the membrane allows the
membrane/hole system to undergo large area fluctuations,
corresponding to a smail compression modulus. The behav-
ior of the compression modulus K, as extracted from the
simulations using Eq. 5, is shown in Fig. 3. At zero stress,
the modulus is close to zero for Bia << 1.2 and is close to

FIGURE 1 Snapshot of a configuration with N' = 400 vertices at zero
stress. The edge tension is Sre = 1.23,
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FIGURE 2 Reduced hole perimeter {I'Y/Na shown as a function of edge
tension BAa for system sizes N = 144, 256, and 400. The edge tension at
the transition is estimated to be BA*a = 1.24.

the pure fluid modulus, BK,a® = 18 (Boal, 1993), for
Bia > 14. The range of edge tension over which the
change in K, occurs is similar to that observed for the
change in the hole perimeter, although the change in the
modulus is not as abrupt as it is in the hole perimeter. The
hole has no effect on the shear modulus, which is always
zero for a fluid membrane.

Membrane geometry

Fig. 2 demonstrates that the average hole perimeter scales
linearly with the number of vertices & in the membrane.

25 T 1

® N=144

BK a2

FIGURE 3 Dimensionless compression modulus 8K, a” of the mem-
brane/hole system as a function of edge tension BAa for system masses
N = 144, 196, 256, and 400.
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Such scaling behavior reflects the branched polymer scaling
of the membrane itself, a result found previously for fluid
membranes in three dimensions (Boal and Rao, 1992b). For
branched polymers confined to two dimensions, the ensem-
ble averages of the perimeter [" and the radius of gyration Ré
scale with the mass M of the object like

)y =T,m" (6a)
(Rey = RIM'™, (6b)

where I, and R2 are proportionality coustants that are
independent of M for large systems (Derrida and Stauffer,
1985).

The braoched polymer scaling of the membrane cdn be
seen mote clearly if the average hole perimeter is plotted
against the average membrane area at fixed edge tension. As
Fig. 4 illustrates, the average hole perimeter is small even
for an edge tension of BAa = 1.3, which is just above the
transition value. For edge tensions below the irstability
point, the average hole perimeter clearly scales as a power
of the membrane area in the figure. Power law fits to the
data in Fig. 4 give exponents § of 1.0, 1.0, and 1.4 *+ {,15
at BAa = 0.8, 1.0, and 1.2, respectively, for the analog of
Eq. 6a, <I'> = ['_N° Data near BA*a have relatively large
uncertainties and potentially strong finite size effects; we
were unable to extract the membrane scaling behavior at the
transition.

Hole geometry

On large enough length scales all fluid membranes in three
dimensions are expected to show branched polymer scaling
in both open and closed geometries (Gompper and Kroll,
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FIGURE 4 Average hole perimeter (T'¥/a plotted against average men1- .
brane area (A, Ya* for zero stress and edge tensions BAa = 1.0, 1.1, 1.2,
and 1.3. Each data point is determined at a fixed value of ¥: 144, 196, 256,
and 400.
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1992; Boal and Rao, 1992a). Here, we have shown that fluid
membranes in two dimensions behave like branched poly-
mers if the edge tension is sufficiently small. We now
investigate the properties of the membrane hole (as opposed
to the bulk membrane area or radius of gyration), an object
that has a pootly defined area in three dimensions,

The scaling behavior of the holes is difficult to determine
for fAra > 1.3, because most holes are ¢lose to the minimum
size allowed by the simulation algorithm. Near the transi-
tion region, the holes have a broader size distribution, and it
is possible to perform a scaling analysis. We find no simple
functional relationship between the membrane size and the
area or radius of gyration of the hole at the transition BA*q.
There is a relationship between the membrane area and hole
perimeter, as we have discussed, but we interpret this rela-
tionship as one between the membrane perimeter and the
membrane mass.

However, a simple functional relationship is found be-
tween the average hole area (A,} and the hole perimeter {I")
near the transition BA*a. This is shown in Fig. 5, in which
the area and perimeter are normalized by the average seg-
ment or bond Jength & of the hole boundary. At the transi-
tion value BA*qa, the area and the radius of gyration scale
like »*?. Both of these scaling relationships are expected for
a self-avoiding ring, or SAR (Leibler et al., 1987):

{A) = A" (7a)
(R = R, (7o)

The prefactor A, in Eg. 7a is 0.165% for the interparticle
potential used in the simulation. The equivalence between

100_ ] i T TTTTTR 1 1 LI BLLEAL™
[ e Circle ]
- a Boa® = 0 simulation -
[~ ¥ Self-avoiding ring 7]
s
= 10
o
v

1

1

1 I 1 Ll Ll:

1 10 100

Number of segments

FIGURE 5 Average hole area (4,/¥* for a fixed number of segments n
shown as a function of the number of segments. The area has been
normalized by the average segment length & = {T')/n, where the expectation
is over holes with a fixed number of segments {that is, the expectation is
not over all n simultaneously). The parameters are BAa = 1.25 and Boa”
= 0. The areas expected for a circle and a self-avoiding ring are shown for
comparisot.
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the self-avoiding ring and the hole in the membrane/hole
system can be seen in the curves marked by upright and
inverted solid triangles in Fig. 5. The figure also shows the
area expected for circular holes, which clearly are larger
than the holes observed in the simulation. This result is not
really surprising, and emphasizes that circular holes domi-
nate the free energy only for temperatures kg7 << (ha) ™.

Membranes under compression

There are examples of quasi-two-dimensional networks em-
bedded in three dimensions in which a compressive stress
can be placed on the network without it buckling into the
third dimension. Because our model uses a triangulated
network to represent a continuum membrane, the simulation
resulis could be applied to a class of quasi-two-dimensional
networks under compression. Although we do not undertake
such applications in this paper, we report the elastic prop-
erties and phase diagram for membranes under small com-
pressive stress.

From Eq. 1, the area of the membrane/hole system under
compression (o <2 Q) should be less than the corresponding
value at zero siress. The motion of the network elements is
restricted at high density, resulting in a large compression
modulus, as shown in Fig. 6. All values for B\« selected for
the figure correspond to unstable membranes at o = 0. The
compression moduli are seen to increase steadily with com-
pressive stress and rise significantly beyond BK,a® = 18,
which is the value for cur pure computational fluid mem-
brane at zero stress. Furthermore, the figure shows that
BK,a* does not necessarily rise immediately to 18 for any
compressive stress. The membrane area exhibits consider-
able elasticity at small applied stress away from the transi-

BK,a®

~foa?

FIGURE 6 Dimensionless arca compression modulus BK,a® as a func-
tion of applied stress for three values of the edge tension BAa = 0.8, 1.0,
and 1.2, The moduli are determined from a system with N = 196 vertices.
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tion region (e.g., BAg = 0.8), indicating that a population of
holes is present.

Naturally, the holes are smaller in compressed systems
than they are at zero stress, for a given BAg. Furthermore,
the holes may belong to a different class of shapes, Leibler
et al. (1987) found that pelymer rings at zero stress scale
like self-avoiding walks, whereas rings under compression
scale like branched polymers. We have obtained the scaling
exponents for hole area and radius of gyration as a function
of hole perimeter for several parameter combinations at o <
G {compression), and the exponents are consistent with
branched polymer scaling. For examiple, averaged over sev-
eral membrane masses, the holés in the simulation arg
described by

{(AYa* = 0.56n 0= 00 (8a)
(RY/a® = 0.17n12 =00 (8b)
at BAa = 0.8 and Bea® = —1.0, where n is the nurnber of

segments in the hole boumdary. This scaling behavior agrees
with the branched polymer scaling displayed in Eq. 6.
Mapping out the complete phase diagram by simulation is
a task beyond our computational capabilities. For each
(Bou®, BAa) combination, the scaling exponents must be
determined by a power law fit to a geometric quantity as a
function of N, a task that is computationally demanding. We
present only a survey of the phase diagram at negative stress
in Fig. 7. The labels for the scaling of the hole andfor
membrane in the figure are largely self-explanatory. In the
“closed” region, only very small holes are present in any
appreciable abundance. In all other regions, holes that span
the system are present. The phase boundary between open

6 T
o Closed
m BP hole
Sr 4 BP membrane
» SAR hole
4 ¢ @ -1
o
o
m?; 3 | . e B
2 F u
1 - i
0
0 2

FIGURE 7 Instability regions for spontaneous hole formation under
compression (o < (). Unstable regions are labeled by the hole or mem-
brane geometry (SAR = self-avoiding ring, BP = branched polymer}, and
the stable regions are referred to as closed. The approximate phase bound-
ary given by Eq. 13 ig indicated by the steaight line.
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and closed configurations has a steep slope as a function of
the edge tension if Bra < 1. The straight line passing
through BA*a is the phase boundary expected if the entropy
of hole formation depends linearly on », as explained in a
later section. As observed in the previous section on mem-
branes af zero stress, Fig. 7 demonstrates that the holes
present in the model membrane are not circular at high
temperatures.

Membranes under tension

The thermodynamically favored state for membranes under
tension (o >> 0) is the ruptured state with at least one large
hole. This is a reflection of Eq. 1, in which the area term,
which lowers the free energy, grows as the hole radius
squared, whereas the edge tension term, which raises the
free energy, grows only as the hole radius. However, there
may be a barrier against hole growth, and Eqgs. 3 and 4 give
the hole radius and barrier free energy expected for circular
holes at zero temperature. The free enérgy barrier againist
hole formation at high temperatures may be different from
Eq. 4 if the holes are not circular.

The simulation model can be used to investigate the
barrier against rupture under tension. To establish an ap-
proximate definition of the computational rupture point, we
follow the time evolution of 20 configurations for approx-
imately 1 million Monte Carlo sweeps each. The hole in
each configuration is observed to oscillate in perimeter up to
about n = 10 to 12 segments, but almost all holes that reach
a size of 20 segments grow irreversibly. We define the
rupture point as that time when the hole first has 20 seg-
ments along its boundary.

Each initialization in the sample is allowed to relax
according to a procedure described earlier in this paper,
after which the time to rupture is measured in Monte Carlo
sweeps. These times are collected to form a distribution,
D(#). Each distribution is approximately exponential and
can be fitted with a functional form

D(t) = D(0) exp(—pt). (9

where p is the Tupture rate. If the distribution is exponential
over its entire range, then we expect p™! = {f). This equality
is found to be obeyed within the statistical accuracy of the
simulation for all parameter combinations investigated.
Given that {f) can be obtained with greater accuracy than p
for fixed sample size, the rates quoted in the remainder of
this paper are, in fact, ()",

The general features of membrane rupture in the model
are demonstrated by Fig. 8:

1. For fixed stress, the rupture rate decreases with in-
creasing edge tension.

2. For fixed edge tension, the rupture rate increases with
applied stress.

Although these qualitative characteristics are expected
from the barrier height against hole growth given by Eq. 4,
note that this equation predicts that small holes should be
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FIGURE 8 Rupture rates as a function of edge tension at two values of
the applied surface stress: Boa? = 0.5 and 1.0. The rate shown here is
(% see text after Bq. 9 for discussion.

metastable for all values of the edge tension, whereas we
find that systems are unstable if their edge tension is less
than a stress-dependent threshold value.

We are unable to determine the scaling characteristics of
the holes during rupture. Plots of hole area against hole
perimeter do not show any specific scaling form across the
barrier region of 10 < # < 20. Inspection of the hole
configurations only shows that they are larger in area than
self-avoiding rings but smaller than full circles.

DISCUSSION

A schematic phase diagram that sumimarizes the geometri-
cal properties of our membrane/hole model is shown in Fig.
9. The geometry of the holes can be categorized according
to at least three generic descriptions:

&

L2

(7]

N

D

Q. closed

5

BP hole
“'g BP membrane Bra
T SAR hole
metastable hole

=

2 open

c

}4

FIGURE 9 Schematic phase diagram for the model membrane/hole
system.
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1. Large holes are present for a range of edge tensions at
both positive and negative stress. In some regions, open
holes may show the same scaling as branched polymers (o
< 0) or self-aveiding rings (A = A*, ¢ = 0). In other
regions, large holes may not possess well-defined scaling;
these regions include positive stress (tension) and A << A* at
o=0

2. Small holes are observed under compression and edge
tensions larger than a stress-dependent transition value.

3. Small metastable holes may be present for positive
siress and edge tensions greater than a stress-dependent
transition value.

In this section, the region near A* is discussed in more
detail; we interpret the results using a simaple model for the
free energy, and we apply the results to biomembranes.

Free energy of hole formation

At nonzero temperatures, an entropic contribution -7§
must be added to Eq. 1 for the free energy. This contribution
must include the restricted vertex movement in the bulk
membrane and on the membrane boundary. It must also
reflect the larger configuration space available to a network
with a hole present.

As a simple model, we make the possibly dramatic as-
sumption that the entropy difference between networks with
and without holes is dominated by the entropy associated
with the hole boundary. We regard the membrane hole
boundary as a closed self-avoiding path of = steps of con-
stant length b. The mumber of configurations of such paths,
}n), has been investigated in both two and three dimen-
sions for several classes of paths on a lattice, including
branched polymers and self-avoiding rings (McKenzie,
1976; Glaus, 1988), and has the general form

Qn) = Q7" 2 am

where z is the connectivity constant of the lattice (and has a
value somewhat less than the coordination number), « is an
exponent, and £}, is a prefactor that is independent of n. The
entropic contribution to the free energy, kg7 In £}, is then
proportional to n to leading order for the configurations
obeying Eq. 10,

The lattice results suggest that the entropy for hole for-
mation grows linearly with #», with a corresponding free
energy difference of

AF = ~GA + Abn — kpTCn. (11)

where C is a constant. Equation 11 predicts that the hole
shape should be circular at low temperature (large SAb) and
highly convoluted at high temperature (small SAb). Thus,
even when there is no external stress, the membrane is
unstable against the formation of highly convoluted holes if
BAb << C. The simulations fix C = BA*s = 1.66. Using z =
4.15 for a self-avoiding walk (McKenzie, 1976), Eq. 10
predicts BA*h = 1.4, which is fortuitously close to the
observed value. An argument similar to this has been used
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to interpret the instability of fluid membranes against en-
tropically driven hole formation in three dimensions (Boal
and Rao, 1992b),

Equation 11 can be used to estimate the phase boundary
near the zero-stress fransition for systems under compres-
sion in which the holes have the form of branched polymers.
The change in free energy associated with the formation of
branched polymer holes is proportional to n, because the
hole area is proportional to the hole perimeter. Specifically,
the change in free energy per segment is

ABF/n = —0.56B0a® + 1.348 a — 1.66.  (12)

Because it takes no free energy to create a new hole segment
at the transition, we expect that the transition stress o,
should be related to the transition edge tension A, via

Boa® = 2.58M\a — 3.1. (13)

As shown in Fig. 7, the phase boundary predicted by Eq. 13
is not in qualitative disagreement with the known phase
behavior.

At T = Q, the free energy barrier against hole formation
under tension may vanish. Assuming that the holes formed
under tension are approximately self-avoiding rings (see Eq.
7)., then the free energy reduction from the stress term will
be —0.1680b#>? (a is positive) and the barrier against the
formation of SAR holes is

ABFgp = —0.16B0b 0™ + BAnb — 1.66n.  (14)

For a given (o, A) combination, the free energy of Eq. 14
increases with » until it reaches a maximum at a hole with
segment number n¥, 5, given by

néar =4 (BAD — 1.66)49 - (—0.1680bY)%  (15)
at which the barrier height, ABF% .z, is
ABFYuw = 4+ (BAb — 1.66°/27 - (—0.16B0b%*  (16)

Numerical evaluation of Eqs. 4 and 16 demonstrates that
SAR holes may have a substantially lower barrier against
growth than do circular holes, depending on stress and edge
tension.

In the theory of thermally induced reactions, the reaction
rate depends most strongly on the reaction free energy as
exp(—ApBF*), Assuming that

plo, A) = p(e)exp(—APF*), amn

where p(o) is a stress-dependent normalization constant, the
functional forms of Egs. 4 and 16 can be compared to the
simulation data. Both of these forms, normalized to the
simulation data at Boa” = 1 and BAa = 1.6, are shown in
Fig. 10. The rates found in the simulation lie at a point
intermediate between the SAR and circular hole predictions,
even if the holes ultimately become circular once the system
has crossed the barrier.
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FIGURE 10 Rupture rates found by simulation as a function of edge
tension BAa for fixed siress Boa? = 1. The system has N = 144 vertices.
Shown for comparison are the trends expected for rapture via holes shaped
like circles or self-avoiding rings. See text for an explanation of the
comparisons.

Application to lipid bilayers

The motivation for this work is the investigation of the
mechanical stability of biological membranes under stress,
The simulation results can be applied to bicmermbranes or
other systems once the temperature and length scales are
assigned physical values. We choose room temperature to
fix 8. The length scale is system dependent, and what we
wish to do here is obtain the features of a “typical” mem-
brane. Two means of setting the length scale are:

1. Equate the average membrane area per vertex, v/3b%/2,
with the average area per lipid of about 0.5 nm?.

2. Equate the compression modulus of the bulk compu-
tational membrane, which is 8K, 5" = 32, with a typical
bilayer compression modulus of about 0.3 J/m>.

Methods 1 and 2 yield » = 0.76 nm and 0.65 nm,
respectively. We choose b = 0.7 nm as representative of the
biomembrane length scale.

The physical value of the stability bound at BA*h = 1.66
corresponds to an edge tension A* of 9 > 107'? J/m using
representative values of 3 and b. The bound is membrane-
specific becanse A* is a function of the length scale b.
Although this bound is close to the edge tensions extracted
in model-dependent analysis of rupture data, it does not
imply that biomembranes are almost unstable, The method-
ology for obtaining the edge tension experimentally usually
involves a zero-temperature model for rupture that relates
the measured quantity, such as the applied stress at rupture,
to the model quantity—the edge tension. The models of
which we are aware do not include temperature-dependent
corrections, Thus, the fact that the quoted values for the
edge tension range from 1 X 107! 10 4 x 107! J should
be taken as evidence that biomembranes have edge tensions
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that are probably several times the minimum required for
stability,

We now turn to the rupture dynamics predicted by the
simulations, Lysis tensions are commonly observed to be in
the region of 6 X 107 J/m? which is about 1/20 of the
bilayer compression. modulus. In simulation units, such
tensions correspond to Bab® = 0.7. Thus, the typical édge
tension and lysis tension found experimentally are in the
range studied by the simulation. We have demonstrated that
entropy plays an important role in the rupture reaction
mechanism for simulations in this parameter range and may
lower the barrier against rupture significanily below the
5-T0kgT (for A = 1-4 X 107" Jand oo = 6 X 107> J/m?)
predicted for a circular hole.

SUMMARY

We have obtained a phase diagram for the static properties
of a modei fluid membrane that is under stress and charac-
terized by a single hole with a zero-temperature edge ten-
sion parameter A. At zero stress and large edge tension, the
membrane possesses small holes consistent with statistical
fluctuations. However, the membrane becomes unstable
against hole growth for edge tensions less than BA*a =
1.24. At the transition point, the holés scale like self-
avoiding rings. For edge tensions smialler than the transition
value, the holes at zero stress do not show auny particular
scaling behavior, whereas the bulk membrane scales like a
branched polymer., The instability at zero stress is similar to
the instability of fluid rmembranes embedded in three di-
mensions, although the transition value in thrée dimensions
(BA*a = 1.0; Boal and Rao, 1992b) is somewhat $maller
than in twoe dimensions. Even when the networks are com-
pressed, they may be unstable against hole formation, al-
though the value of A at the instability threshold is both
stress dependent and smaller than the corresponding value
at zero stress. In the instability region at o << 0 (compres-
sion), holes exhibit branched polymer scaling. At o > 0
(tension), large holes are thermodynamically favored. How-
ever, there may be a free energy barrier against the forma-
tion of such holes, with the barrier growing as a power law
function of the edge tension.

If the entropy change associated with hole formation is
dominated by the configurational entropy of the hole shape,
then lattice results argue that the free emergy change is
proportional to the hole perimeter. This assumption leads to
quantitative predictions for the phase boundary near the
zero stress transition and for the rupture rates of stretched
membranes. However, the predictions are only in rough
agreement with the simulation results.

‘We have estimated the energy and length scales in our
model that correspond to a typical lipid bilayer. The zero-
temperature edge tension is found to be 9 X 107 ** J/m. This
value is in the same region as the edge tensions obtained
from model-dependent analyses of experiments. Most mod-
els extract a quantity that corresponds to A — TS5/b in the
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simulations, that is, the zere-temperature edge tension re-
duced by the entropic contribution arising from hole forma-
tion. Hence, the quoted values are an underestimate of our
parameter A, although whether they are a significant under-
estimate remains to be seen. Measured values of the edge
tension appear to be larger than the loweér bound for stability
A* obtaiiied here.

Now, there are several features of membrane rupture that
have been omitted in the simulation. We have not included
an activation energy for the formation of a hole, and we
have allowed only a single hole in the membrane; it may be
that many holes ini the meimbrane act collectively. Curvature
dependence of the edge tension has been omitted as well.
For example, it may be that the edge energy of the lipid
surface at the hole boundary depends on the mean curvature
of the surface at the hole boundary, so that straight bound-
aries have larger edge tensions than curved boundaries with
small or zero mean curvature. Molecular-level calculations
should indicate the importance of boundary curvature ef-
fects and the degree to which the model must be revised or
extended.
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