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INTRODUCTION

“Like gold to ayery thinnesse beate”
—John Donne, A Valediction:
forbidding mowrning, 1611

In the nineteenth century, Lord Raleigh
speculated that oil spread on water could
form a layer only one molecule thick. By
spreading a known volume of oil on a calm
lake and estimating, by observing reflected
light, the area that the oil covered, he was
able to determine that the layer had a thick-
ness in the range of 107° m. Today, we
know of many examples of thin sheets, net-
works, and membranes that occur naturally
in biological systems or that can be pro-
duced by a variety of physical and chemical
means. These membranes and networks are
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very flexible and have small elastic moduli.
For example, the volumetric compression re-
sistance of a protein network in a cell may
be more than ten million times smaller than
that of a typical liquid.

The properties of highly flexible materials
are a natural area of application for statisti-
cal mechanics. Many interesting characteris-
tics of rubber, such as the observation first
made by John Gough in 1805 that natural
rubber contracts when heated, arise from
the entropic properties of polymeric chains.
The chains in such materials are flexible at
the molecular level and possess a large num-
ber of equal-energy conformations, or equiv-
alently, have substantial conformational en-
tropy. Statistical mechanics explains Gough's
observations by demonstrating that a flexible
chain behaves like a spring with a spring
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542  Statistical Physics of Membranes and Lamellar Systems

constant thal increases linearly with temper-
alure.

Viewed as two-dimensional generaliza-
tions of one-dimensional chains, membranes
show a rich behavior on mesoscopic length
scales. Computer simulations argue that fluid
membranes, with vanishing in-plane shear
modulus, exhibit highly convoluted configu-
rations on long length scales, whereas poly-
merized membranes, which resist an in-plane
shear, are asymptotically flat. Further, the
elastic moduli of membranes are predicted
to be wavelength dependent. In their inter-
action with each other, and with rigid ob-
jects such as flat walls, membranes unbind
at high temperatures because of thermal un-
dulations.

The study of the elastic and geometrical
properties of membranes is a rapidly advanc-
ing field with an interplay of experiment, an-
alytical theory, and computer simulation. In-
sights obtained from each of these physical
approaches are contained in the following
pages, which also include a short review of
some concepls from polymer physics for
both comparative and illustrative purposes.
Space does not permit the presentation here
of the application of statistical mechanics to
the phase behavior of surfactant/solvent sys-
tems. We describe several of these phases in
Sec. 1, where their existence is taken as
given, but refer the interested reader to the
monographs by Israelachvili (1992), Mourit-
sen (1988), and Safran (1994) for detailed
experimental and theoretical treatments.

1. MEMBRANES AND NETWORKS

1.1 Fluid Membranes

Surface-active agents (or surfactants) owe
their grease-cutting success to their affinity
to both polar and nonpolar solvents. Surfac-
tants are referred to as amphiphilic, reflect-
ing their common attraction to otherwise
immiscible liquids. Viewed at the molecular
level, commeon soap (sodium stearate) has a
long hyvdrocarbon chain that is attractive to
nonpolar liquids such as oil and has a polar
carboxylate group at the end of the chain
that is attractive to polar liquids such as wa-
ter; these two interactions are referred 1o as
hydrophobic and  hydrophilic, respectively.
The molecular structures of two families of

amphiphiles, fatty acids and dual-chain lip-
ids, are illustrated in Fig. 1. Most lipids
found in biomembranes have two chains
with 16-18 carbon atoms per chain and head
groups that are geometrically smaller than
the hydrocarbon chains. Some phospholip-
ids, for example, have just a three- or four-
segment group (e.g., -CH,-CH,-NH,) linked
to the carboxylate end of the hydrocarbon
chains through a phosphate group (-PQ,-)
[see Gennis {1989} or Alberts er al. (1989) for
further details].

While amphiphiles play an important role
at interfaces in ternary systems such as oil/
water/amphiphile, complex phases are found
even in binarv systems such as water plus
amphiphile. Concentration, temperature, and
pH are among the conditions that influence
the phase structure of binary and ternary
systems containing amphiphiles. Among
other things, what makes these phases of in-
terest biologically is that the amphiphiles
self-assemble into structures with meso-
scopic dimensions. Some aspects of the
mesoscopic geomeiry have been interpreted
in terms of the molecular geometry of the
amphiphile, as we now attempt to demon-
strate by example [see Israelachvili {1992)
for further detatls].

Consider first the simple system of water
and a single-chain lipid such as a fatty acid.
At very low concentrations, the amphiphile
dissolves in the conventional manner into
the water solvent. In spite of the hvdropho-
bic nature of the amphiphile’s hydrocarbon
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FIG. 1. Molecular structure of two families of amphi-
philes. Molecule (a) is a fatty acid, having a single
hydrocarbon chain terminating in a carboxylic acid
group. Molecule (b) is a dual-chain lipid, with twa hy-
drocarbon chains and a polar head group. In a typi-
cal phaosphaolipid, the head group is much smaller
than the hydrocarbon chains (e.g., -PO4-CH,-CH.-
NH; for phosphatidyl ethanolamine).
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FIG. 2. Sample of phases that may
be present in amphiphile/water sys-
tems: (&) conventional solution at very
low amphiphile concentration, {(b) mi-
celle formation for concentrations
above the critical micelle concentra-
tion {CMGC), and (c) inverted micelles
at high amphiphile concentrations.
Other geometries are possible as well.

chain, the hydrophilic polar group at the
head of the chain favors solvation. However,
even at very rnodest concentrations of am-
phiphile, some fraction of the amphiphilic
molecules undergo phase separation into mi-
celles,- as shown in Fig. 2. The abrupt onset
of micelle formation occurs at the critical
micelle concentration (or CMC), In an aque-
ous medium, the amphiphiles in a micelle
are arranged so that their polar groups are
in contact with water, while the nonpolar
acyl chains aggregate in the interior of the
micelle and are shielded from water. While
micelle formation is favored energetically, it
does not occur at very low arnphiphile con-
centrations because of the low entropy of
mixing compared to a conventional solution.
Finally, at large amphiphile concentration, a
phase of inverted micelles may form, also as
indicated in Fig. 2.

The hydrocarbon chains of the micelle in
Fig. 2(b) are packed together rather tighily,
surrounded by the polar groups, which form
a relatively close-packed array on the micelle
surface to minimize the contact between the
micelle interior and its aqueous environ-
ment. Thus, micelle formation is favored for
amphiphiles whose polar head-group area is
large compared to the transverse dimension
of the hydrocarbon chains. In dual-chain lip-
ids, the chains occupy proporticnately more
area than the head group does, and other
phases, such as the lipid bilayers of Fig. 3,
compete with micelle formation. Depending
on the molecular geometry of the lipid, the
most favored bilayer may be flat or curved.
The ability of dual-chain lipids to form bilay-
ers should not be interpreted as meaning
that such lipids do not form micelles. In fact,
because of the large hydrocarbon areas, the
CMC of dual-chain lipids (typically 10~% mol

In the diagram, the polar group of the
- molecule is indicated by a circle.

LY is orders of magnitude smaller than
that of single-chain lipids (typically 107* mol
L~1). Dual-chain lipids also are capable of
forming phases of inverted micelles. As dis-
cussed further in Sec. 1.2, living cells are.
bounded by a plasma membrane whose
structure includes a fluid lipid bilayer,

It is possible to obtain the elastic proper-
ties of biomembranes and related structures
by several different techniques. An example
of the micropipette aspiration techmigue is
shown in Fig. 4, in which a cell or synthetic
vesicle is drawn under pressure into a micro-
pipette with a diameter of about a micron.
Elastic moduli can be determined from the
strain observed in the membrane when it is
subject to a known stress, Another technique
for measuring elastic moduli uses the fluctu-
ations in cell geometry (see Sec. 2.4 for a de-

Transmembrane
protein

Cytoskeleton

FIG. 3. Bilayer phase that may be present in amphi-
phile/water systems in which the amphiphile has two
hydrocarbon chains. The bilayers in biomembranes
are not chemically pure, and there may be proteins
within the bilayer or attached to the bilayer as a cy-
toskeletal network.
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FIG. 4. Micropipette aspiration of a giant phospholipid bilayer vesicle (left, diameter ~20 xm) and an osmoti:
cally preswollen red coll (right, diameter & pmy. Several of the elastic constants of bilayers can be measurad,
using variations of a technique in which the vesicle is. sub;ect 6 a known stress {from Mohandas and Evans,

1954},

suumon of the bulk modulus in tcrms of
volume fluctuations).

The bending moduli (& of 8ec. 2 3) of

phaspholipid  bilayers of biological impor-
tance tvpically are in the range (3-20) %
107 I ‘depending on chemical composition,
and is-in the same range as that reported for
the red blood-cell plasma membrane using
different technigues. While small compared
to thin inorganic fitms, this modulus is about
an order of magnitude larger than that of
surfactant monolayers at an oil-water inter-
face. The rwo-dimensional area compression
modulus of a fat red-cell bilaver is 0.5 Jim?,
which may be more. than an order of mag-
nitude smaller than the product of the bi-
laver thickness and the volume compression
modulus. of a. simple liguid such as water.
Since btlawm dre fluid, their shcar riiodutus
vanishes. -

DLpendmg on their gtomatﬁ"'and other
properties, lipids may form into bilayers that
are flat or have a tendency o bend sponta-
neously (sportaiieons curvaiure see Sec. 2.3).
A naturally curved bilaver thay form into a
closed -geometry such.as a sphere” with no
energy penalty, A spherical vesicle whose sur-
face energy density depends only on the
mean surface curvature has a relatively mod-

est total energy of 8wk, independent of the

vesicle radiss. This means that the deforma-
tion energy of the whole vesicle may be just
{250-20000kyT for the range of moduli
quoted above {where ky is Boltzmann's con-

stant and T is the absolute temperature). The
size of the mesoscopic structures adopted by
lipid bilayers covers a broad range: Stable
vesicular systems. that are found in Nature or |
that can b prépared in the laboratory vary
from tens of nancimeters to tens of micrens,

Ternary mixtures of -amphiphiles, oil, and
water have very complicated phase diagrams,
as one would expect. Micellar phases may be
present, of course, and there are structures
that can form with aniphiphile at the inter-
face between oil and water. Sponge phases
also exist, in which oil and water are sepa-
rated from each other in a labyrinth of
three-dimensional ¢hannéls running through-
out -the system, In . this: article, we con-
centrate  on . the  self-assembled  bilayers
formed in binary systems.

1.2 Polymériizedi\/iembranés and
Networks

The lipid hilavers described in Sec. 1.1
are fluid: they do not resist an in-plape
shear. However, there are many inorganic
monolayers or polymerized organic monalay-
ers anad bilavers that can support an in-plane
shear (at least on small length scales, see .
Sec. 4.2). These materials are predicted to
have different properties than fluid mem-
branes, so we describe several examples
here.

Graphite derives s lubricating properties
from s molecular geometry consisting of
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carben rings linked together “in-a planar
honeveomb structure. Other examples of pla-
nar inorganic monolavers can be obtained by
a process known as exfoliation {Divigalpitiva
et al, 1989} This is o twesiep process in
which: potentiaily reactive ions sich. as Hih-
Aumare-fntercalated into lavered structures
such as MaS,. In a second step, the. interca-
lated- material is. exposed to water, which re-
acts strengly with the lithium and forees the

monolavers apart. - A sectionr of  an. MoS§, .

monolaver 15 illustrated in Fig. 3. Polymer-
ized organic membranes can be obtained by
exposing to. ulfraviclet radiation monolavers
or bilavers -of certain reactive organic com-
pounds. The resulting materials are not al-
ways aniform, sihce polymerization may oc-
cur -ini-local patches: A variety of materials
have shown the ability 1o polymerize, many
examiples of “which can br, found in Rings-
Cddort {1988y o
Two-dimensional m,;wmks also are exam-
~ples. of polymerized membranes, These net-
works nged. nor be "salid” in the chemical
sense-—they  only need to have a two-
dimensional structure and fixed connectivity

resuiting -in shear resistance. An example of

a polymerized nefwork is the spectrin cyto-
skeleton of the red blood cell {(see Alberts er
al., 1989). The ervthrocyte plasma membrane
consists of three regions: the lipid bilaver
forming the cefl boundary, the glvcocalix ex-
terior to the cell, and the cvtoskeleton on the
interior or evtoplasmic side of the mem-
brane. Tetramers of the spectrin protein
“{with a comtowr length of about 200 nm)
Jorm a two-dimensional network with largely
riangular connectivity at the junction points
‘of the spectrin tetrameres, The network is

FIG. 5. Bchematic drawing: of a. section through an
. MoS, monofayer. Such monolayers are formed by
Frst intercalating the butk material with reactive ions
such as lithium, and then adding a solvent such as
water that undergoes a reaction with the intercalant.

loose, with o rean separation between the
junction. complexes of 70 noi- A schematic
representaticn of t}w'utoﬂ\e feton from .a
compuler simulation is’ shown in ‘Fig. 6, in
which view (a) is perpendicular to the bi-
laver and view {(b) is. along the bilaver plane.
The bilaver lies belovw: the vtoskeleton i
view (b). The in-plane shear moc%uhm of this
network, as neasured - by the micropipette
experiments, is (6-9) ¢ 107 Fim?, although
other experiments based on longswavelength
fluctsations have yvielded Jower values.
There is no reason 1o .expect that all polv-
merized membranes or networks have uni-
form connectivity. For example, the ervthro-

- evte cytoskeleton has. approximately sixfold

connectivity at its junction vertices, but the
Fraction of sixfold. vertices is not 100%:, and
the connectivity of & given spectrin tetramer
may not be fixed: There may be detachment
and reattachment of spectrin, even if the rate
is very slosww. Further, there ave hereditary

by

FIG. 6. Computer simulation of the membrane-agso-.
ciated cytoskeleton of the human erythroayie, (a) The
network ssen from the cyloplasmic side of the mem-
brane showing the sixiold. connectivity of the: cyto-
skeleton. (b} A section through the cyloskéleton. The
lipid bilayer, not shown in {b}. liss below the cytoske- . .
leton,
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diseases in which the spectrin concentration
is depleted, resulting in incomplete networks
and red cells with reduced elasticity (Mohan-
das and Evans, 1994).

1.3 Multilamellar Systems

One technique for vesicle production in-
volves the swelling of multilayer (or multila-
mellar) stacks of dried lipid. Similar to, but
much slower than, the production of inor-
ganic monolayers by exfoliation described in
Sec. 1.2, the invasion of water laterally
through the stack forces the individual mem-
branes apart. Not all bilayers in this proce-
dure become separated from each other, and
some remain in multilamellar structures. The
bilayers in multilamellar systems are not al-
ways tightly bound to each other; there may
be solvent trapped between lamellae, or sev-
eral stacks of membranes may be linked by
a single membrane. It is also possible to
obtain more untform multiple layers of ma-
terial through the Langmuir-Blodgett tech-
nique (see Gaines, 1966). Small multilamel-
lar stacks of membranes can be produced by
the less gentle techmique of applying high-
frequency mechanical vibrations to lipid/sol-
vent dispersions (sonication—see Fromherz
et al., 1986).

Part of the interest in multilamellar sys-
tems is the study of adhesion between bilay-
ers. In some systers, thermal fluctuations of
a membrane may prevent two membranes
from adhering. These phenomena are treated
in more detail in Sec. 6.

2. ELASTICITY

2.1 Deformations and the Strain Tensor

In one formulation of continuum mechan-
ics, force is replaced by stress, and displace-
ment is replaced by strain. Stress and strain
can be represented by tensors, with the
stress tensor having the dimensions of an en-
ergy density, while the strain tensor is di-
mensionless. In the statistical mechanics ap-
plications here, we use only the strain
tensor; the reader interested in the more
general formulation of continuum mechanics
is referred to Fung (1994), Landau and Lif-
shitz (1986), or MECHANICAL PROPERTIES OF
SoLips. '

Consider the deformation of a two-dimen-
sional square as shown in Fig. 7. Two-di-
mensional defermations are used here for di-
agrammatic simplicity; the notation is three
dimensional. Two positions, marked by a
and b on the undeformed square, define a
vector dx. A stress is applied to the square to
change its shape and the points a and &
move to new absolute positions, changing
the vector dx to dx'. Vectors u, and u, de-
scribe the displacement of positions a and b
from the undeformed to the deformed state.
The coordinate system does not change with
the deformation.

Adding a constant displacement u to all
positions on the object simply results in a
transiation of the object. In Fig. 7, the direc-
tion and magnitude of u vary locally, and the
change of u with x provides a description of
how vectors x at different locations on the
object change with respect to each other. In
our example, the vectors dx and dx’ are re-
lated through

dx' =dx + u, — u,, (1)

which can be written in the infinitesimal
limit as

dxi = dx; + 3% (ufox))dx;, 2)
i

where the components of each vector are in-
dicated explicitly by the subscripts i and j.

The square of the length between neigh-
boring points, di?, changes under the defor-
mation to

Lih
b
dx cx
a

ug

FIG. 7. Change in vector dt to ox’ during a shape-
preserving deformation. The initial object is shown on
the left, while the deformed object is shown on the
right. The initial position vector dx is superimposed
on the deformed object to show the changes more
clearly.
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dit =4+ 2 2 €, (3)
Ly
where
Efj=%[2&+% ﬂﬂ] @)
dx; 0x; E0x; ox;

is the strain tensor. For deformations suffi-
ciently small that terms quadratic in /3%,
can be neglected, then the strain tensor can
be approximated by

1 fou; ou;
G = {2 . 2) )
Bx] axi

2.2 Elastic Moduli

Objects may deform in response to ap-
plied forces that, in general, may have com-
plex orientations with respect to the object.
For example, while an object may have a
simple cubic shape, the forces on the object
may be at oblique angles with respect to the
surface of the cube. A spatial compenent of
an applied force can be written in terms of
the stress tensor oy via Z;0us;, where s is a
vector whose magnitude is equal to the sur-
face area to which the force is applied and
whose direction is normal to the surface.

A spring is a simple example of a
Hooke's-law object in which the strain (the
displacement from equilibrium) is propor-
tional to the stress (the applied force).
Hooke's law can be generalized to the stress
and strain temsors defined above, although
the single spring constant must be replaced
by more complex proporticnality constants.
One way of writing Hooke's law is

@y = p% CijpaCpar (6)

where the constants ¢, are the elastic con-
stants and have units of energy density, In
principle, there are 36 elastic constants for
three-dimensional materials, but if the elastic
energy is a quadratic function of the strain,
as it is in Hooke's law, then the maximum
number of independent constants is 21, Fur-
ther, the number of independent constants
depends on the symmetry of the system,
with isotropic systems having only two elas-
tic constants.

We now consider an isoiropic system in

more detail. The change in free-energy den-
sity of deformation, AF, can be expanded in
powers of the strain tensor, and the lowest-
order terms in the expansion are quadratic
in e. Two independent scalar combinations
of € are available: the squared sum of the di-
agonal elements, (tre)?, and the sum of the
elements squared, 3. If we assume that
the deformations are small, then AF can be
written as

AF = (M2)(tre)® + p 2, €. (7

The constants A and u are called the Lamé
coefficients, of which p is the shear modu-
lus. The compression modulus X can be ex-
pressed in terms of the Lamé coefficients by

K, = A + p (two dimensions), (8a})
Ky = A + 2u/3 (three dimensions). {8h)

Both K and g must be positive, or else the
system could spontaneously deform by a
shear or compression mode. The Lamé coef-
ficient A is not constrained to be positive,
and systems are known in which A is nega-
tive.

A further quantity of interest is the Pois-
son ratio gp, which is a measure of how
much a material contracts in the transverse
direction when it is streiched in the longitu-
dinal direction. The geometrical definition of
op is then ¢, /e, for a deformation u, in
the x direction that results in a displacement
u, in the y direction. Poisson’s ratio can be
expressed in terms of elastic constants by

op = (Ky — Ky + w)
(two dimiensions), (9a)

(three dimensions). (9b)

As an application, we consider a triangu-
lar network of springs in two dimensions, as
shown in Fig. 8 The elastic moduli can be
found by evaluating the energy change of a
specific deformation and comparing the re-
sult with Eq. (7). At zero temperature, one
finds '

Ky = J3ky,2 (10)

and
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\V4

A\

FIG. 8. Triangular network of springs in two dimen-
sions.

w = J3k,i4 = K2, (11)

where k,, is the spring constant. Note that
both moduli are independent of the un-
stretched spring length. The Poisson ratio for
this network is then

(12)

i

op =

This sign of the Poisson ratio indicates that
when the network is stretched in one direc-
tion, it contracts in the transverse direction.
Many solids have a Poisson ratio of about %
in three dimensions. Some networks under
tension are predicted to have a negative
Poisson ratio.

2.3 Bending Resistance

The compression modulus is a measure of
the free-encrgy change when the elements of
a structure are forced closer together under
pressure, or pulled further apart under ten-
sion. When the membranes illustrated in
Figs. 3 and 5 are forced to bend, say about
an axis pointing out of the plane of the dia-
gram, then elements on one side of the mid-
plane are forced closer together, while ele-
ments on the other side move farther apart.
The free-energy change associated with the
bending deformation is a measure of the
bending resistance.

Just as with the shear and compression
deformations of Secs. 2.1 and 2.2, we first
need to develop a geometrical description of
the bending of a surface. Following the ap-
proach of Safran (1994), we begin by review-

ing the description of a curved line. In a co-
ordinate system external to the line, each
point on the curve is specified by a vector R,
as in Fig. 9. The distance in space dl be-
tween two points separated by an infinitesi-
mal arc length ds is then

dR(s)

p. ds, (13)

dl:‘

where [R| represents the length of vector R.
The unit vector normal to the curve, n, is
proportional to the second derivative of the
position vector:

(14)

where C is the curvature.

Now, the above description must be gen-
eralized for a two-dimensional surface em-
bedded in three dimensions. Consider the
surface shown in Fig. 10. Each point on the
surface is specified by a height h(x,»), which
is a function of the fixed coordinate system x
and y. In the figure, there is only one surface
element for each (x,y) pair—there are no
overhangs, and A(x,y) is single-valued. We as-
sume that the membrane of interest is suffi-
ciently flat that this representation, referred
to as the Monge representation, is valid.

The figure also shows vectors n normal to
the surface. At each point (x,¥), the normal
has coordinates

nxy) = (—df,—ah 11 + AL (15)

X

FIG. 9. Coordinates of a curve. The arc length s is
the coordinate along the curve, while R is the posi-
fion of a particular point on the curve, as measured
with respect to an external coordinate system.
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hx.y)

X

FIG. 10. Coordinates of a surface. Each element on
the surface is described by its height A(x,)) above
the xy plane. Normals 1o the surface are indicated by
bold arrows,

where 4, is 8/6x. While there is a unique cur-
vature associated with a given point on a
line in Eq. (14), the curvature on a surface
has a direction dependence that reflects the
orientation of the vector dR along the sur-
face:

C = —~{dR-dn)/(dR-dR). (16)

Clearly, one has to establish a set of direc-
tions along which to evaluate the curvature,
and the method of choice is to comstruct a
curvature tensor C such that

dn = dR-C. (17

The eigenvalues of C are referred to as the
principal curvatures, which we denote by ¢,
and C,. Note that there is no reguirement
that C; and C, have the same sign: a saddle
point, for example, has principal curvatures
of opposite sign.

The curvature tensor provides the geomet-
rical description of a bending deformation,
much as the strain tensor describes compres-
sion and shear in Sec. 2.1. Further, the free
energy can be written as a function of the
principal curvatures, as is done for the strain
tensor in Sec, 2.2. The curvatures are usually
written in the combinations (C; + (,)/2 and
CC,;, which are the mean curvature and
Gaussian curvature, respectively, Expressed
in terms of the principal curvatures, the
leading-order terms im the free-energy den-
sity for bending, F, are

F = ((k/2)0C, + C; — 200 + k,C.Cs, (18)

where k;, is the bending rigidity and k, is the
Gaussian rigidity. The addition of the param-
eter Cp, referred to as the spontanecus cur-
vature, allows for situations in which the
membrane intrinsically bends to one side.
The Gaussian rigidity is often omitted from
expressions for the free energy in situations
where the topology of the surface is closed,
since the integral of the Gaussian curvature
over a closed surface is a topology-dependent
constant. The shapes of closed surfaces sub-
ject to bending resistance, as in Eq. {18), are
discussed in VESICLES AND BIOMEMBRANES.

2.4 Elasticity and Fluctuations

The elastic moduli are introduced in Sec.
2.2 as terms in an expansion of the free-en-
ergy density. This approach is useful in ste-
tistical mechanics problems, since the weight
accorded to a specific configuration in an en-
semble is exp(— BE), where E is the energy
of the configuration and 8 is the inverse tem-
perature {kgx7)~'. Statistical mechanics pro-
vides a description of the elastic moduli
based on ensemble averages.

Consider the isothermal compression
moadulus, Ky, as an example. The physical
definition of Ky is

14

K= ~vap (19)
where V is the volume of the system and P is
the applied pressure. In an alternative ap-
proach that emphasizes the fluctuations in
the system at nonzero temperature, the
Gibbs free energy is expanded about the
equilibrium value at a fixed pressure (Reif,
1965):

AG = G(T/) - G(Veq) = (V - Veq)zll(zvquV)’
(20}

where V, is the equilibrium value of the vol-
ume. The corresponding partition function
can be evaluated analytically, since the
weight for a given volume V is proportional
to exp{—BAG). As a result, the compression
modulus also can be expressed as

BEy = (VY((V%) — (V)), 2D

where (V) is the ensemble average of V.
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A formally identical problem to this is the
relation between the fluctuations in the
length of a spring and the spring constant
k,,. The expression analogous to Eg. (21) is

ﬁksp = ((12> - (1)2)—1’ (22)

where ! is the length of the spring. Note that
Eq. (22) is independent ‘of the unstretched
spring length.

3. FLEXIBLE CHAINS

3.1 Ideal Chains

Linear and branched chains provide an
intuitive introduction to the geometrical and
elastic properties of membranes. We pause
to assemble a number of results from poly-
mer physics that will put the behavior of
membranes in context.

The simplest geometry of a single polymer
chain is one in which a chain element, or
monomer, is freely jointed and can assume
any orientation irrespective of the orienta-
tion of its neighbors. The conformations of
the chain are equivalent to a random walk if
the chain elements are permitted to intersect
each other. Consider the situation in which
the elements of the chain are represented by
vectors a;, each of which has the same
length a. A chain with N segments has a con-
tour length aleng the chain of Na. Of interest
is the end-to-end displacement vector r,,, il-
lustrated in Fig. 11, which is just the sum of
the individual vectors: r,, = Z;a;. The ensem-
ble average over all possible conformations
at fixed N yields the well-known result

() = Na*. (23)

ai
fee

FIG. 11. End-to-end displacement r,, for a chain
whose elements have a common length and random
orientation.

Thus, the end-to-end displacement grows
with contour length like N2, Other geomet-
rical quantities, such as the radius of gyra-
tion, also scale like N'2,

Consider now the slightly more compli-
cated problem of chains with a fixed polar
angle # between successive segments ¢ and {
+ 1, such that

a;-a;, = —a’ cosé, (24)

where the convention is that 8 = 0 if neigh-
boring segment vectors a; point in opposite
directions. Although the polar angle between
segments is fixed, the azimuthal angle is not,
and the segments are free to rotate around
one another. As shown in Flory (1953), the
end-to-end displacement of this chain at
large N is

{2y = Na*(1 — cosé)/(1 + cos0). (25)

The important feature to note in Eq. (25)
is that the end-to-end displacement scales
like N2, in spite of the restrictions on the
chain’s conformations. In fact, the N2 scal-
ing is found for all chains on sufficiently
large length scales, so long as the chain path
can cross itself. It is then useful to introduce
the idea of an effective bond length » which
reflects the length scale at which the chains
appear to be ideal; that is, ¢Z) = Nb® The
effective bond length has the same order of
magnitude as the persistence length, which
measures the length scale over which the
spatial orientation of the monomers is cor-
related [see Eq. (43)]. For the restricted ori-
entation situation of Eq. (25), the effective
bond length is

b = al(l — cos®/(1 + cos@)]”z.. (26)

In alkane chains (the hydrocarbon chains
present in soap, for example), @ is close to
the tetrahedral angle of 109.5°, and the effec-
tive bond length is ﬁa, according to Eq.
(26), or about 0.2 nm. Their rigidity and
monomer size dictate that protein chains
have considerably longer effective bond
lengths, several nanometers or more, de-
pending on the protein. Of course, steric in-
teractions prevent physical systems, such as
proteins, from intersecting themselves, and
so their behavior is not described fully by
ideal-chain scaling.

3.2 Self-Avoiding Chains

While the “ideal chains” of Sec. 3.1 may
intersect themselves, physical systems have
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an excluded volume that enforces self-avoid-
ance of the chain. This steric interaction
among the chain elements is important for
chains in one-, two-, and three-dimensional
systems. Consider the simple situation in
which a chain lies along the x axis. Self-
avoidance forbids the chain from reversing
on itself from one step to the next, so that
the end-to-end distance must be just the con-
tour length Na. But Eq. (23) shows that (.,
scales like N'? for ideal chains, independent
of embedding dimension. Thus, we conclude
that in one dimension, self-avoidance of the
chain dramatically affects its scaling proper-
ties. The same conclusion can be drawn for
chains in two and three dimensions.

A simple model for the length-scaling ex-
ponent of self-avoiding chains was proposed
by Flory (1953). The calculation evaluates
the power-law dependence of the free energy
on the effective chain size » and number of
segments N at both large and small ». Mini-
mizing the free energy yields r as a function
of N. Since our goal is to extract the scaling
exponent, we do not pay close attention to
nurnerical factors like 4#/3, and we use r to
represent the effective size of the chain, as
characterized by an end-to-end length or a
root mean square radius. Also, our model
chains have no explicit energy scale other
than the temperature. Following de Gennes
(1979), the behavior of the free energy is
evaluated in two regimes:

1. Short distances. Steric repulsion between
the chain segments causes the chain to
swell compared to an ideal chain. The re-
pulsive energy experienced by one seg-
ment through its interaction with other
segments is proportional to the concen-
tration of segments, roughly N#? for a
chain in a d-dimensional space. Thus, the
total repulsive energy experienced by all
N segments is proportional to N%/r¢. Now,
the repulsive energy also will be propor-
tional to the excluded volume of the seg-
ment-segment interaction, which we
characterize by a parameter v,,. Taking
the excluded volume as a hard-core inter-
action, then the energy scale of the inter-
action is set by the temperature %g7.
Thus, the steric contribution to the free
energy should behave like

F = kgTv, N/, 27)

where all constants have been absorbed
into v,,.

2, Long distances. As a chain is stretched,
the number of configurations that it can
adopt at a fixed end-to-end distance de-
creases rapidly. As shown in Sec. 3.4, the
probability of finding a given end-to-end
distance r for an ideal chain decays expo-
nentially as exp(—dr?/2Na?), where a is
the elementary segment length. Recalling
that the entropy § is proportional to the
logarithm of the probability, then to
within a constant

Sty = —dr?{2Na?. (28)

The entropic contribution to the free en-
ergy at long distances can be found through
F = E — TS. Combining Eqgs. (27) and (28)
and discarding overall normalization con-
stants, the free energy of the self-avoiding
chain behaves like

F = kgTv N*#* + kpTdr*/2Na?. 29)

This expression shows that there is a penalty
for pushing the chain elements close to-
gether (small #), and there is a penalty for
stretching out the chains (large ). The value
for 7 that minjmizes F can be found by tak-
ing the derivative of Eq. (29) with respect to
#, holding other quantities fixed, and this
value scales like

P NPT, (30)

The scaling behavior of Eq. (30) is expected
for any length scale r that characterizes the
linear dimension of the system as a whole,
such as the end-to-end distance r,, and the
root mean square radius of the system
((r2)"/A/6). The exponent on the right-hand
side of Eq. (30) is called the Flory exponent.

The systems discussed thus far in this sec-
tion are linear chains. Chains with side
branches, referred to as branched polymers,
have different scaling with system mass N
than do linear chains, since branching will
add monomers to a given position along the
chain. Because - a branched polymer has
more than two ends, the end-to-end displace-
ment is replaced as a measure of the poly-
mer size by some other quantity such as the
radius of gyration R,, defined by
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Ré = 2 (ri - rc.m.)z: (31)

where r.,, is the center-of-mass position of
the chain and the sum is over the positions
of the segments. The radius of gyration for
branched polymers is found to have a scaling
form

(RZ) =~ N>, (32)

The branched-polymer scaling exponents are
smaller than the self-avoiding walk expo-
nents, being 0.64 and 0.5 in two and three
dimensions respectively, compared to 0.75
and 0.59 for self-avoiding walks. The scaling
exponents for linear and branched polymers
are summarized in Table 1.

In real polymers, the chains may be rigid
because of bond-angle restrictions, and there
may be attractive van der Waals interactions
between monomers. What effects do these
interactions have on scaling behavior? As
shown in Sec. 3.1, making chains stiffer only
increases the persistence length of the chain;
it does not change the scaling behavior in
the large-N limit. Of course, for small N the
introduction of rigidity may change the ap-
pearance of the chain configuration substan-
tially. The situation is different if there is at-
traction between chain elements. If the
attraction is strong enough, then the chains
collapse to a dense phase in which the chain
size scales like N2, For example, self-avoid-
ing walks in three dimensions without at-
tractive interactions scale like N3°, but for
strong attraction they scale like N¥?. The
transition between the two scaling regimes is
a phase transition and occurs at a tempera-
ture {or attraction strength) called the @
point.

3.3 Self-Avoiding Rings

Let us close our linear chain to form a
loop in two dimensions, which will serve as
a two-dimensional vesicle. Closing the chain

Table 1. Scaling exponents 7 for the scaling law
{R®) ~ N*" for ideal or random walks, self-
avoiding walks, and branched polymers as a
function of embedding dimension 4.

Configuration d=2 d =3
Random walk 172 12
Self-avoiding walk 3/4 0.59
Branched polymer 0.64 1/2

introduces a new characteristic, namely, the
enclosed ring area, as well as the conjugate
thermodynamic variable of pressure P. The
parameter space of the rings then includes
bending rigidity, van der Waals attraction,
and pressure.

We consider the effects of each parameter
in turn, with the others set equal to zero.

1. Rigidity. The presence of rigidity changes
the persistence length, but not the asymp-
totic scaling behavior at large N, although
the scaling behavior at finite N is nontriv-
ial.

Pressure. Defining

i

AP = Pigge — Pausside (33)
then at AP > 0, the ring is always inflated
at large N and the scaling behavior is (R}
~ N2 and (4} =~ N°. At zero pressure, the
ring should behave like a self-avoiding
walk, with R2) ~ N*? and (4) ~ N*7.
When the outside pressure exceeds the in-
side pressure (AP < 0), the ring belongs
to the branched polymer family but is not
dense. For the ring to lock like a
branched polymer, it must have little en-
closed area, so that (RZ) ~ N'2% and (4) =~
N.

3. Attraction. If the attraction between
monomers on the chain is strong enough,
then the configurations may become
dense, and (R} = N and (A) ~ N. This is
similar to the @ point of linear polymers.

A summary of the scaling exponents is given
in Fig. 12 for two-dimensional rings simul-
taneotisly subject to pressure and atiraction
(Boal, 1991).

3.4 Chain Flasticity

There are comparatively few configura-
tions in which an ideal chain is fully
stretched: The most common configurations
are ones in which the chain is highly convo-
luted. Since entropy is proporticnal to the
logarithm of the number of configurations,
then another way of stating this observation
is that the entropy of the chain is reduced,
and the free energy is increased, as a chain
is stretched. This implies that the chain has
elasticity arising from its entropy.

To find the relationship between the elas-
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PRESSURE

ATTRACTION

2

DENSE

FIG. 12. Phase diagram for two-dimensional self-
avoiding rings subject to pressure and attraction.
There may be considerable finite-size scaling effects
near the phase boundaries.

ticity of an ideal chain and its geometry, we
consider the distribution of end-to-end vec-
tors r,. Let us break up the three-dimen-
sional distribution inte three one-dimen-
sional distributions. The x component of the
end-to-end displacement, r,,,, is just the sum
of the individual monomer segment lengths
projected onto the x axis: 7, = Zg;,. For
ideal chains, a;, is uncorrelated with a;, .,
and the situation is the same as the one-di-
mensional random walk with steps of vari-
able size, In the continuum limit, the proba-
bility of finding a one-dimensional walk with
end-to-end displacement between x and x +
dx is just

px)dx = (2mNa*/d)~? exp( —dx*2Na*)dx,
(34)

where p(x) is the probability density {proba-
bility per unit length) and d is the embed-
ding dimension. This distribution is normal-
ized to unity and has expectations

() = | wp()dx = 0 (35)
and
(2.0 = | wpxdx = Nar3 (36)

for the x component of the end-to-end dis-
placement vector in three dimensions.

Equations (35) and (36) can be used with
Eq. (22}, which relates the spring constant to
the fluctuations in spring length, to obtain
an expression for the effective spring con-
stant of the chain:

kg, = dikgTiNa®. (37)
P

Equation (37) shows that the effective stiff-
ness of the chain increases with 4 and the
temperature 7. The elastic behavior of the
chain is entropic in origin, since there is no
potential-based restoring force at the micro-
scopic level.

4. FLUCTUATING MEMBRANES

4.1 Fluid Membranes

The lipid bilayer component of a cell's
plasma membrane is a fluid in the sense that
it cannot resist an in-plane shear. In the ab-
sence of bending rigidity or in-plane shear
resistance, fluid membranes can assume con-
voluted shapes and are, in a sense, the two-
dimensional analogs of freely jointed chains.
The geometry of membranes can be de-
seribed using similar scaling relationships to
those used to describe linear and branched
chains (see Secs. 3.1-3.3).

Closed configurations, such as spherical
or torcidal geometries, have a larger number
of scaling observables than do open configu-
rations. An example of a closed fluid mem-
brane with the topology of a sphere is shown
in Fig. 13. If the membrane had a suff-
clently large value for k,, then the spherical
shape would be obvious, but in fact, the
membrane shown in Fig. 13 has &, = 0. The
shape is reminiscent of a branched polymer,
in that the enclosed volume is proportional
to the area, rather than the area to the 3
power expected for a sphere. An analysis
performed via computer simulation confirms
that closed fluid membranes obey the same
branched polymer scaling as self-avoiding
surfaces (Kroll and Gompper, 1992):

R ~ A1, (382)

(V) ~ A\ (38b)

The generalized Flory exponent [see Eq.
(30)] for self-avoiding surfaces is
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by Kantor-in Nelsow ef -al, 1989). I;-q:.mtmn
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“membrané in three dimensions, But this scal-
ing behavior has beent seen only for moder-
ate’ system . sizes, Tt idwrf fems:
“mermbranes with bu‘idmﬂ vesistance alst be-
long to the
though the distance ot which: the asymptotic
scaling beliavior becomes apparent. increases
with k. -Again, -
chains with i}mzdmh resistance - deseribed in
Sec. 3.1, R )
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~short- compared 107 the - persistence length,

can be trented using the Menge. representa-
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class ol i Branched polymers; al-. -

this is like-the scaling of

CFG. 13, S-ample.honﬁguxation from.
co-acomputer simulation of a-fluid -
.- .membrane - with. spherical topology. -

o grete. points: hard beads linked to-
. gether by tethers of a maximal ex-
- tension. The beads are not attached
%0 a fixed set of neighbors, but can
~fjgrate through the membrane.

'ihx, iiuutmumh increase w;ih tnmpfwmmxg

and svstem.  size. I c,omrast the mean

- sguare | vindulations at an mterf’me domi-
“nated by surface tension. (between water and
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. T comparison, the Fourier components of

the height of an interface dominated by sur-

face tension scale like (J%) ~ Tig®. Experi-

mental observations of membranes under
tension arve. vonsisterit with the . undulation

“spectrum of By, (42] (see references in. M(}—
_ haﬁdas and Evans, 1994). :

“Because of surface undulations,: ‘the nor-
mals to the surface n(r) are correlated only
at “short distances. That is. the product-of
two nermals decays with displacement T as-

The surfate, which has no bending.
- resistance, i represented by dise
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temperature -fluctuations of @ membrane
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Nelson et al, 1989} '
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is the inverse temperature (k7075 The nu-
merical Tactors in the exponential dcpes}d on
the method used for the caleulation. What is
~important about Eq. (44) is that the persis-
tence tength is exponential in the hu}dmg ri-
gidity.

The petsistence length of a chain séts the
fength scale above which bending résistance
and other geometrical constraints are suffi-
cientdy unimportant that the chain confor
mations are described by a random walk.
Another way of saying this is that the effec-
tive bending . resistance of. the chain de-
creases. with the increasing lengih scile on
-which the resistance is. measured, The behai-

for of fluid sheets can bie viewed in the same -

- bending modufus &y,
decreases with the increasing length scale of
the. systerm. Again, pcm:rba{wn rheon con-
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way, that the effective

Ai»m{“ fw,{f - (3 477‘&'&1;) n(!m*)j ) _{45}

where L is the lerigth séale of interest (sce
19849,

leetures by Leibler in Nelson er ol

4.2 Polvmerized Membranes

Polyrerized  membranes  and . networks
have fised connectivity, by which we niean
that a given clement of the membrane has &
fixed sel of nelghbors, as distinet from fluid
membranes in which an element can diffuse
through . the membrane. The shéar vigidity

imparted by fixed connectivity results fn comn-

straints on the configuration. space of the
membrane, which, in turn, affect. its scaling
behavior, The shape of the fluid membrane
in Fig. 13 easily can be seen to be different
from the shape of the polymerized mem-
brane in Fig. 14: The fluid membrane is con-
voluted whereas the polymerized membrane
is flat. _

Scaling - analyses “of
miembranes show that

open  polvmerized

(R3) ~ A, (462)

Iy ~ A% {46h)
where A is the contour area (or mass) of the
membrane and { s the roughness exponent.
The mean hC{U&IL height 4% in Eq. (48b)

- measures the thickness of the membrane and
is the smallest eigenvalire of the membrane’s

ingrtia. tensor.. First measured to be 0.65 =
.05 (Plischke and Boal, 1988), -the rough--
ness - exponent. obtained from recent comm-

puter simulations is close to the field-then-

retic. prediction of .59 (Le Dm;sxdi ~and
Radzihovsiy, 19923,

The polvmerized membrane in Fjg 14'1s
flat"in spite of the fact that it has no local
beriding resistance: &, = 0. The membrane
becomes  increasingly rigid at long length

scales because of geometrical constraints im-

FEG,. 14. Sample configuration from
- & computer simulation of an epen .
polymerized membrang with re fo-
¢al bending resistance. As in Fig.
13, the surface is represented by
discrete points; hut here, the beads
“are attached to a fixed set of neigh-
bors.
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posed by polymerization. As experimentation
with aluminum foil will convince the reader,
an initially flat polymerized membrane can-
not even approximate the configuration
shown for the fluid membrane in Fig. 13
without extensive folding of the surface, and
such folding is strongly suppressed by en-
tropy. Thus, the effective bending resistance
ky, o6 of a polymerized membrane should in-
crease with length scale L, rather than de-
crease as found for fluid membranes. Several
calculations show that k. diverges like
L2728 ~ 198 (gee Nelson er al, 1989).

Although the bending resistance of a poly-
merized membrane increases with L, other
in-plane moduli are expected to decrease
with I because of undulations. Calculations
of the in-plane area compression modulus
and shear modulus both show moduli that
vanish at large L, as, for example,

o~ L7462 708 (47)

Most of these predictions have been con-
firmed by computer simulation. Further, the
Poisson ratio of polymerized networks is pre-
dicted to be universally equal to —3 (Le
Doussal and Radzihovsky, 1992).

Experimental tests of the analytic and
simulation results thus far have addressed
whether polymerized membranes are flat,
and not all of the measurements are in
agreement. One set of measurements on the
isolated two-dimensional cytoskeleton of the
red blood cell indicates that the network is
flat on long length scales. Other work on in-
organic monolayers does not support this
finding.

4.3 Membranes under Stress

The membranes discussed in Secs. 4.1
and 4.2 are isolated, in the sense that they
are not subject to external stress nor do they
interact with a medium or with other mem-
branes. However, a complete description of
physical membrane behavior must include
the characteristics of interacting membranes.
In this section, the effects of compression
and tension on membranes will be described,
while interactions between membranes are
presented in Sec. 6.

4.3.1 Closed Fluid Membrancs
Closed fluid membranes with spherical topol-
ogy (a computational vesicle) subject to pres-

sure have been simulated both for surfaces
whose elements are plagueties on a lattice
and for triangulated surfaces that are not
constrained to lie on a lattice, and whose
connectivity can evolve with time (as in Fig.
13). Both rings in two dirmensions (Sec. 3.3)
and fluid vesicles in three dimensions obey
branched-polymer scaling under compres-
sion, but only vesicles show branched-poly-
mer scaling at zero pressure. Depending on
the vesicle mass, the scaling may remain
branched-polymer even if the pressure inside
the vesicle moderately exceeds the pressure
outside; however, at large pressure differ-
ences, there is a transition to an inflated
state.

4.3.2 Open Membranes at a Wall The
interaction between a membrane and a wall
has been investigated for two situations: a
sheet forced against a flat surface by pres-
sure and a sheet confined between two flat
surfaces. The presence of the wall removes
the divergence in the fluctuation spectrum of
fluid membranes observed at long wave-
lengths [Eq. (42), see Safran, 1994]. The be-
havior of polymerized membranes near walls
can be used to determine the roughness ex-
ponent,

4.3.3 Planar Membranes under Tension
Observed at sufficiently short length scales,
membranes under tension, or membranes
with bending resistance, are relatively flat.
The elasticity of a planar, polymerized net-
work of springs under tension has been in-
vestigated by simulation. At zero tempera-
ture, the in-plane elastic moduli vary with
stress o as

Kk, = (31212)(1 — o/3'2k_), (48a)
i P

ke, = 3724X1 + 320ik,,), (48b)

where positive ¢ corresponds to a network
under tension and kg, is the spring constant
of an individual spring. These expressions,
which have Egs. (10) and (11) as their zero-
stress limit, predict that the Poisson ratio of
the network becomes negative when ofk,, >
J3/5. At finite temperature, in-plane fluctua-
tions increase the moduli above their zero-
temperature values.
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5. SYSTEMS WITH DEFECTS -
5.1 Percolation Phenomena

The networks and membranes  topically
found in Nature are not thé idesl, tniform
systerns  that “are | considered

Rather, they may be" chiemically inhomoge-
neous andior may confain siructural defects.
Two examples of defegtive membranes and
networks are mentioned i Sec. 1.2 partially

polymerized. mnmimcm 50 whick polvmicrts

Zation is random or lo fived, and spectrin-
depleted-ervibroeyte gyt akdem inwhich the

coordination of some’” }umm;} u}mpl:.xu.
fold; .Furtiwl dL- N

may be miieh less: than's
fouts: may 'duclop in otharwise
bmrl(_ ' :

subject

ihure Thce.c SETHC-
0% are arlactive

arei” ol %tudn in xmmn _a1:z¥1tr.hcinj(,a als
~ithough the Anwestigation of systems: with' de-
tects dutu bank mon, 1h¢m a wmum .1.0_

. deudl
One: u,w
from: u)mpumtmz}al studies of defective sys-

tems is. that . of percolation Consider the [wc)w'

.-dlmensmrml wigngulared network shown i
Fig. 15, in which the light grayv “bonds” are
Huid (as in Fig. 13), while the white “bonds”
-~ ave polymerized and connected 1o-a fixed set

ins Sec 4,

Imding' '

mdigl ummpi ;hdl emu*g&d'

Cenr atthe
Ctration in the mixed-composition network of

of vertices (as In Fig. 14 If most or all of
the bonds are thuid, then the shear modidus
of the network vanishes, There must be a
reasonable . concentration - of | polvmerized
bonds present before the network - exhibits
shear resistance. Compurter . simulations of
svsiermns such as this have shown that

L. there is a well-defined - concentration. re-
ferred to ad the rigddity pereolation thresh-
old p,, kxbo\/g \\hu,h mm orks tesist ahuar
and

2. thereis a \WI? dnﬁm‘d concentration, ié-

ferred to as the consectivity percolation
_threshold p,, above which a connected se-

gquence of polvmerized bonds wmpiemh,
traverses the network,

where p mav be ddmed as the Fraction  of

~polymerized ‘bonds present in the network

compared- to the fully. polvmerized network,

Aor which p= 10 In Fig. 15, p is greater than
-pocand aeintercupted  paths. of polvmerized
-bonds can be seen in both the w and v direc-
“titiss There are-many examples in which the

connectivity and rigidity thresholds are dif-
ferent (Thorpe, 1986}

520 i)efeciivé TwowDimensiﬂ-nal Networks

Conpectivity and rvigidity percolation og-
same polymerized bond concen-

FiG. 15 Sample - configuration of

 partially  polymerized ..mﬁmbrane
with . polymer . bond - fragtion p,
0.5, viewed  perpenidicular. 10 the
membrane plane, The fiuid bords
are. gray, while the po?ymenzed
bonds are white, -
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Fig. 15, namely, p, = p. = 2 sin{(«/18) =
0.35 expected for triangulated networks in
two dimensions. However, if the fluid bonds
of Fig. 15 are completely removed and not
replaced by polymerized bonds, thus leaving
open holes in the membrane, then the mem-
brane is floppier and p, increases to about
%, while p,, of course, remains the same.
The mixed-composition (fluid/polymerized)
networks with no open holes have higher
rigidity at a given polymerized bond concen-
tration than the single-component (polymer-
ized only) networks with holes because of
the presence of isolated pockets of fluid that
canmot diffuse past the polymerized regions.
Single-component bond- or site-diluted net-
works have been studied in both two and
three dimensions, and p, is typically found to
be d times p, in the systems studied, where d
is the embedding dimension (Thorpe, 1986).

Once the rigidity percolation threshold
has been crossed from below p,, the elastic
moduli do not rise itnmediately to their val-
ues for a fully connected network. Rather, to
a first approximation, the shear modulus
rises linearly with p — p,

(492a)
(49b)

(p - pJA1 —p)forp>p,
0 forp <p,,

wlp)ip(p = 1)

where, again, p = 1 for a fully polymerized
network.

Both the mixed-composition and bond-
depleted networks may be candidates to de-
scribe various partially polymerized net-
works. Consider the model erythrocyte
cytoskeleton of Fig. 6, in which the chains
represent the specirin tetramers of the cyto-
skeleton and give the model network its elas-
ticity [see Eq. (22)]. In some hereditary
blood diseases, the ervthrocytes have a lower
spectrin concentration and may be examples
of bond-diluted, single-component networks
{(but not mixed polymer/fluid networks since
there is no trapped fluid component to the
cytoskeleton). The shear modulus of these
depleted cytoskeleta is found to decrease lin-
early as the spectrin content is reduced, as
expected qualitatively from Eq. (49a). Al-
though data are not available for highly de-
pleted cytoskeleta (such cells are not viable),
the extrapolated value for p, is much lower
than p, ~ % of a bond-depleted triangular
network. This does not necessarily indicate
that percolation - theory is inapplicable to

spectrin-depleted erythrocytes; it may be that
the coordination of such cytoskeleta is siill
relatively uniform, but less than sixfold.

5.3 Defective Membranes in Three
Dimensions

Bond-depleted networks in two dimen-
sions possess reduced in-plane rigidity, as
described in Sec. 5.2. When allowed to fluc-
tuate out of plane into the third dimension,
defective networks have fewer geometrical
constraints and may adopt configurations in
which one region of the membrane passes
through a hole in another region. It is
known that phantom polymerized mem-
branes, in which the surface is free to inter-
sect itself, are not flat but highly crumpled if
k, = 0 {see lectures by Nelson in Nelson et
al, 1989). Are bond-depleted membranes
also crumpled?

The flatness characteristics of two types of
bond-depleted (but otherwise self-avoiding)
network have been investigated. In one case,
bonds are randomly removed from a poly-
merized triangulated network, as described
in the previous section on percolation. This
type of network is observed to be flat for any
p > p.. In contrast, the geometry of a bond-
depleted network known as a Sierpinski gas-
ket is found to be described by the Flory ex-
penent in Eq. (39).

A different defect structure is one in
which network connectivity is uniform, but
the interactions between junctions are vari-
able. For example, the interaction strength
or geometry of the intervertex potential
might vary randomly across a network, cor-
responding to a glassy ground state. Simula-
tion studies of systems with randomly vary-
ing interactions are challenging, because the
network ground states are difficult to deter-
mine uniquely, and because many configura-
tions must be sampled to construct accurate
ensemble averages. Thus far, the tempera-
ture dependence of the membrane phases
between the ground state and high-tempera-
ture configurations has not shown novel be-
havior in the limited studies of inhomoge-
neous networks with glassy ground states.

6. INTERACTIONS BETWEEN
MEMBRANES

6.1 Interactions between Rigid Surfaces

The interactions of flexible membranes,
particularly biological systems, involve forces
of several different origins. Although this ar-

£
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ticle focuses on effects arising from thermal
fluctuations, it is important to appreciate the
type and suength of chemical; entropic, and

. other components of membrane interactions. |

Here, we brieflv review several features of
the forces between rigid surfaces, before dis-
cussing the effects of undulations in Seecs.
6.2 and 6.3. A more exténsive {reatment of
these forces can be found. 11’1 ismeiac_hvxh
(1992}, '

6.1.1 van der Waals Forces " Attractive,
but refatively weak in’strength, van der
Waals forces may extend several nanometers
asway from o surface. Thé interaction arises

from- fhictuations in charge distributions at

the atamic level: A quadituin. mechanical fluc.
tuation-that results i a dipole’ moment in
onte alom indiees & dipolé morment in a see-
“ond atom. Thits, an’ attractive  dipsle-dipote
inters
“présent. botvesn: wtoms - with no- pérmanent
~dipolé momerts. The-van der Waals energy
'pa.x*_umt-au_rfue_amd between tworrigid sur-
faces with separation s decreases like s % at
‘modest . separations, and like s7*% at large
sapdrcmom

B2 I)ouble Ldyer Forces - As iniro-
duced in Sec. 1.1, fluid membranes typically
have a- pnlar heg Ldgmup exposed 1o a polar
solvent: Many. polar groups can dissociate,
leaving. a’ charged region surrounded by
counterions in the neighboring solvent, as il-

lustrated in Fig. 16: In other sifuations, head -

" FIG, 18, Double layer at the bounéan/ of & fpid

maonelayer with a solvent.

stion - driven by fluctuations  can he

membranes. )
~also may undergo thermal fhuctuations, ri-

groups may be - capable of adsorbing ions
frony the solvent. Consequerily, the mem-
brane may carry a surface charge, which, to-
gether with the counterions in soluiion, con-
stitute an. electric double laver, Double-layer
forces, which have been investigated theoret-
ically and experimentally, are longer ranged
than van der Waals forces, and are predomi-
nantly repulsive. The energy per unit surface:
area for the interaction between two double.
layers decays exponentially with separation.
6.1.3 Hydration Forces - The polar head
groups of amphiphiles in a - free biomem-
brane. are surrounded by solvent mulecules,
whichk may be "hound” in the sense that the.
amphiphile and solvent have a strong mutual
attraction. These solvent molecules must be
removed if two membranes are to approach
each other closely, suggesting that there i a
repulsive hydration force associated with the

hydrated amphiphile (the word “hvdration”

refers to water as a solvent). The pressure re-
guired (o force bilavers toggther at- smalt in-
terlaver separation s is approximaiely expo-
nential, expl~sis.), and sy is found to be in
the 1-3-nm range (Rand and Parsegian,
1989). The range of the hvdration force is
thus of the same fagnitude as the atlractive
var der Waals force or repulsive thevmal
fluciuations of the bilaver-itself,

6.1.4 Steric Interactions Al of - the
above forces may apply to vigid or flexible
However, Hexible membranes

sulting in a repulsive steric miteraction be-
tween.a rigid wall and a membrane or bes
tween - membranes  themselves,  Membrane
components, such as proteins, that -extend
into the selvent may give rise! to additional
steric interactions that are short-r mgefd com-
pared to undalations but are more repulsive
than undulations at small length scales.

The combined van der Waa s and double-
layer forces comprise the DLVO theory (Der-
jaguin and Landau, 1941 Verwey and Over
beek, 1948) of colloidal stability, As we have
indicated, there may be several short- ranged -

- inferactions present in biomembranes in ad-

dmcm to the DLVO forces,

6.2 Entropic Repulsion of Fluctuatmg
Membranes

The JdCd that membmne Huctuations re-
sult in repulsive interactions. has support
from several experimental observations:
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1. vesicles composed of certain lipids show
increased binding when their surfaces are
under lateral tension;

2, in some situations, repulsion between
lipid bilavers is reduced when one of the
bilayers is attached to a rigid substrate;
and

3. interbilayer repulsion may increase with
temperature.

There are several fluctuation modes for a
membrane, including out-of-plane undula-
tions and fluctuations in membrane thick-
ness. Here, we consider undulations, whose
importance was pointed out by Helfrich
(1978}, and refer the interested reader to Is-
raelachvili (1992) for a discussion of other
fluctuation modes.

Consider a stack of #n membranes as
shown in Fig. 17, in which each membrane
is taken to be parallel to the xy plane on av-
erage. A set of n functions is needed to de-
scribe the displacement of the membrane
stack in the z direction. We label these func-
tions yr,(x,y) to show explicitly their x, ¥, and
n dependence, and we assume that they are
single valued as in the Monge representation.
If the membranes are equally spaced on av-
erage, then

J do(x,y) drdy = ns, (50)

where s is the average spacing between sue-
cessive membranes and where the n = 1
membrane has an average height s above the
xy plane. One can change the functions to
regain a more familiar form by introducing a
set of height functions 4, (x,v)

FIG. 17. Cross section through a membrane stack it-
lustrating intermembrane repulsicn arising from ther-
mal fluctuations. The average separation between
successive membranes is s.

hn(xiy) = (."In(xvy) — 118§, (51)

such that jh,(x,¥) dxdy = 0. For gentle un-
dulations, the energy density of the rmem-
brane stack is

1= [[E)S G h?

+ (eyi2) 2 (s + h,w)z] dxdy,  (52)

where k.. + h, . is the mean curvature of
the nth membrane and %, is the bending
modulus [see Eqs. (14) and (18)]. For nota-
tional simplicity, the xy arguments have been
omitted from Eq. (52). .

Compared to Eq. (18), the new feature of
Eq. {52} is the elastic modulus B, which rep-
resents the intermembrane repulsion. Hel-
frich (1978) uses a self-consistent argument
for obtaining B by (1) determining as a func-
tion of B the difference in the free energy
per unit volume Af, between the many-mem-
brane and single-membrane systems, and (2)
imposing the elasticity relationship

FAf,
a5

B =3 , (53)

to the free emergy found by procedure (1).
This method yields {(Safran, 1994)

B = 36/ Bkgs*. (54)

and a corresponding difference in the free
energy per unit area Af;, = sdf, of

Afy = 37 Bps®. (55)

There are two aspects of the free-energy ex-
pression in Eq. (55) worth noting. First, the
5% dependence of the entropic repulsion is
the same as that of the van der Waals inter-
action between rigid surfaces at moderate
separations. Second, the repulsion increases
with temperature. Both of these features are
consistent with observations I and 2 listed at
the beginning of this section. Helfrich {1978)
estimates that the repulsion from undula-
tions is about % of the van der Waals inter-
action in magnitude for egg lecithin mem-
branes.

A mean-field approach that avoids the in-
troduction of the modulus B has been used

B
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by Evans and Parsegian (1986) to obtain the
undulation modes analogous to Eq. (42) and
the free-energy density Af,. At large separa-
tions, their expressions have the same func-
tional forms as those obtained by Helfrich
and illustrate the substantial shift in the free-
energy density across the 2-3-nm range in s
arising from undulations.

6.3 Unbinding Transition

Fluctuations cause membranes to repel
each other, and the magnitude of the repul-
sion increases with temperature. In princi-
ple, such fluctuations can overcome an at-
tractive interaction between membranes that
might be sufficient to bind them at low tem-
peratures. Indeed, bilayer membranes have
been observed to dissociate from a closely
bound membrane stack over a very narrow
temperature range (see Lipowsky im Lip-
owsky and Sackmann, 1995).

Since van der Waals interactions decrease
more rapidly than s~2 at large separation s,
then, for the purpose of investigating mem-
brane binding, it is sufficient to use a square-
well potential to represent the attractive in-
teraction between two membranes:

Vis) = —Ufor0<s < s,
Vis} = Ofors > s, (56)

where U and s, are positive parameters
that set the energy and length scales of the
potential. At zero temperature, the mem-
branes are confined to distances less than
Smax: a8 dictated by Eq. (56). At temperatures
greater than zero, the membranes repel but
do not unbind until the transition tempera-
ture T* given by

T~ (kepUsa) ', (57)

which predicts that the more rigid the mem-
branes or the stronger their attraction, the
higher the unbinding temperature.
Systematic calculations have shown that
the unbinding transition is continuous and
that the mean separation diverges with tem-
perature like |I' — T*|7! as the transition is
approached from below 7% For representa-
tive lipid bilayers, the estimated theoretical
unbinding temperature varies by 50% about
room temperature, depending on the mem-

brane rigidity. Whether the suppression of
thermal undulations is responsible for the
tension-induced adhesion observed experi-
mentally remains to be seen. Recent calcula-
tions, based on a description of the steric
interaction that encompasses both the rigid-
ity-dominated and tension-dominated re-
gimes, show that the applied tension must be
very large to permit tension-induced adhe-
ston of fluid membranes (Seifert, 1995).

GLOSSARY

Cytoskeleton: A two- or three-dimen-
sicnal protein network in a cell’s interior.

Erythrocyte: A red blood cell; human
erythrocytes are structurally simple since
they do not have a nucleus and their cyto-
skeleton is connected only to the plasma
membrane.

Fatty Acid: A carboxylic acid (-COOQH)
with a long hydrocarbon chain, found in nat-
ural fats and oils.

Fluid Membrane: Two-dimensional sys-
tem with no resistance to in-plane shear.

Lipid: A small water-insoluble molecule
with one or more hydrocarbon chains.

Lipid Bilayer: A double layer of oriented
amphiphilic molecules; in biomembranes,
the lipid bilayer is fluid.

Monolayer: A sheetlike structure with a
thickness of one molecular unit.

Persistence Length: Length scale at
which the relative orientation of chains or
surfaces is uncorrelated.

Polymerized Membrane: Two-dimen-
sional system with resistance to in-plane
shear.

Protein: A macromolecule composed of
one or more polypeptide chains (amino acids
linked by peptide bonds); actin, spectrin, and
tubulin are examples of proteins that form

two- and three-dimensional networks in
cells.
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