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Phase transitions and anisotropic responses of planar triangular nets under large deformation
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Responses of triangular networks in large reversible deformation are studied analytically at zero temperature
and by Monte Carlo simulatien at nonzero temperature. Exact expressions for the elastic strain energy at zero
temperature are derived for several models in which the network potential energy depends oa either the length
of the network element (i.e., central force interactions) and/or the area of each network triangle. For aets of
Hookean spring eletnents having a nonzero force-free length, cubic terms arise in the strain energy through the
sixfold symmetry of the network, and thereby break the symmetric response at small strain. Because of the
symmetry of the two-body potential and the anisotropy of the network, pure compression of the Hookean
spring net leads to a martensiticlike phase transition at all finite temperatures studied. Networks of elemental
tethers or springs that have a zero force-free Iength balanced against a three-vertex potential energy that rises
with decreasing triangle area {to emulate volume exclusion in polymer networks) do not undergo a phase
fransition, although inclusion of a maximum tether length (to model the polymer chains’ contour limits) reveals
a stmple but distinet type of triangular net anisotropy. [S1063-651X(97)10104-0]

PACS number(s): 03.20.+i, 87.22.Bt, 68.60.Bs, 64.70.—p

L. INTRODUCTION

A remarkable feature of planar structares with local six-
fold symmetry is that they can appear mechanically isotropic
regardless of other intrinsic properties (see, for example, Ref.
[1]). Elastic sixfold structures thus can be assembled from
identical elements having arbitrary interactions, and yet such
structures require just two isotropic maierial constants (e.g.,
shear modulus and compressibility) to describe their re-
sponse adequately within at least some small regime of
strain. This fact is especially pertinent to understanding a
range of sixfold siructures including ultrasoft cell membrane
cytoskeletons [2-4] and certain thin, nanostructured
. Cg-symmetric sheets [3]. Such siructures raise the natural

question: under what conditions and in what ways does the
"mechanical response begin to reflect more of the underlying
sixfold symmetry?

The present work focuses on triangulated network models
under large, elastic deformation. As a partial motivation for
this study, mesoscopic views of real cell membrane cyto-
skeletons in deformation show them to be capable of sustain-
ing very large strains, including very large compressive
strains [3]. In the conventional thinking about elasticity as an
energy expansion in a strain measure, large deformation in-
troduces higher-order terms which are associated with a
range of phenomena. One of the most remarkable and long
studied is the martensitic transition which refers to a struc-
tural, reordering transformation in which no atomic diffusion
is thought to occui [6]. Many such transitions, useful for
smart materials [6], are held to be strongly first order becaunse
of cubic strain terms in the free energy [7]. However, in
some of the driven martensitic transitions, particularly those
in which meoderately large displacements {~ 10% strains) oc-
cur, diffusion may not be completely absent {8]. Unlike non-
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covalently bonded systems, the networked systems analyzed
here are permanently tethered together, and strictly maintain
their connectivity and topology, by explicit construction,
even at infinite femperatures. Thus all geometric transforma-
tions of the network occur in the absence of long-range dif-
fusion.

Triangulated networks are assembled from linear ele-
ments or bonds joined at sixfold junctions [Fig. 1(a}]. The
linear elements are infinitely thin hard rods in the sense that
they are not permitted to overlap except at the sixfold verti-
ces [9], At this microscopic level, energetics could be a func-
tion of {i} the distance between vertices {i.e., central force
interactions), (ii) the area of a triangle circumscribed by el-
ements, and/or (iii) the angle between elements such as in a
Keating potential [10]. In this work we consider only the
simplest, nearest-neighbor examples of the first two types of
interactions, the latter of which has been examined only in
other contexts [11]. Also, whereas similar networks fluctuat-
ing in three dimensions have been studied in efforts at un-
derstanding aspects of thermal bending uadulations and
plane-projection elasticity [12] in addition to so-called
stretching ridges arising in bending {13], only in-plane mo-
tions of the network junction points or particles are permitted
in the present studies. At least one unusual material feature, a
negative Poisson ratio, is already known to arise when a
moderate isotropic tension is applied to such planar triangu-
lar nets of (i) Hookean springs having nonzero resting
lengths or (ii) network elements having only & finite maxi-
mum length (i.e., square-well potentials) [9].

Before outlining the format of the present paper, we first
very briefly introduce what may be the most interesting find-
ing in this work. A simple, planar triangular network of
springs of fluctuating length S is once more considered. The
elemental energetics are, in this case, assigned the
innocuous-locking Hookean forme &= %ksp(S —S0)%, where
kgp 1s the fixed spring constant and Sy is the fixed rest length.
Under a compressive network pressure P, a discontinuity
appears in the average network area, {4} [Fig. 1{b)] over a
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FIG. 1. Finite-temperature simulations of Hookean spring net-
works under zero stress or compression. {a) Sample configuration of
an unstressed Hookean spring net (N=12%; P=0; kgT/kyS5= 5
in a periodic box (dashed line). The underlying gray rectangle with
sides (S VN) by [(¥V3/2)S5N] defines the zero-temperature arca
Ap_o=N(v312) Sﬁ‘ (b) Low-temperature isotherms on the compres-
sion half of the plane. Temperatures given under each set of curves
are in dimensionless uniis of kBlespsg. Squares indicate simula-
tions that were started in the above rectangular state, Triangles in-
dicate simulations that were started in a state where the loag side of
the box was 133 (SovN), and the short side was 0.5
[(VEIZ)SG\/J-V_]‘ The system size for the Jowest temperature of ﬁ
was N=42. The system sizes for the iemperature of 35 were N
=62 {crosses) and N= 82 {circles); hysteresis was minimal for
these two system sizes, The system sizes for the temperature of 55
were N=82 (inner loop) and N= 16" (outer loop). The system size
for the temperature of $ was N=24%; a system of size N =122
showed undetectable hysteresis. The inset figure gives, as a function
of temperature, the stress-free area (A}, scated by Ar—o. Corre-
sponding to ideal gas behavior as described in the text, the slope of
the heavy ling is % Lines through the simulation data are drawn to
guide the eye.

wide range of fixed temperatures 7= kspsg.f ky (where kg is
Boltzmann’s constant). These results are obtained by Monte
Carlo simulations in which each of N nodal particles of the
net is moved within the plane according to the usual Boltz-
mann weighting scheme [9]. The geometry (area and shape)
of the periodic box, as conjugate fo a set pressure, is allowed
to fluctuate through collective, affine motions of the nodes.
Detailed features of the noted phase transition, such as hys-
teresis, are elaborated upon in the remainder of this paper
along with an effort to rationalize the phenomena within the
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FIG. 2. Sample deformation of a plaquette paraliclogram from
the reference configuration where all elemental lengths are 5.

context of more general models and mean-field ideas includ-
ing large deformation elasticity and Landau theory. Parficu-
lar attention is given to anisotropic responses which arise
from the sixfold symmetry of various network models in-
cluding one class of Hamiltonians which is introduced as an
effective representation of a triangular network of self-
avoiding polymer chains. '

The format of the paper is as follows: first, formalisms
and definitions of large deformation elasticity as applied to

- triangular networks, including geometric and energetic ideas,

are enumerated in Sec. IL Then, as the first of three specific
models within a general class of Hamiltonians, the Hookean
spring net is thoroughly studied in Sec. III at selected tem-
peratures from zexo to infinity and, most notably, under com-
pression. In Sec. IV, square-well networks which lack an
intrinsic energy scale are studied by both simulation and
mean-field methods. Section V introduces and discusses a
model closely related to both previous models, but intended
to capture distinguishing features of cell membrane cytosk-
eletons. Conclusions are summarized in Sec. VI

Ii. PRELIMINARIES: ELASTICITY
OF TRIANGULAR NETS

Large deformation elasticity [14—16] subsumes the more
specialized and well-studied theory of infinitesimal deforma-
tion (see, for example, Ref. [1]), and proves useful here
Application, in Sec. TL A, of some of large deformation elas
ticity’s simplest tenets o the homogeneous deformation o
triangular networks serves to identify key concepts. Afte
first introducing expressions pertinent to network geometry
general aspects of the C¢-network response, including zero
temperature energetics, are elaborated upon in Sec. 11 B for :
particular class of network Hamiltonians. Two calenlationa
methods are used in our study of networks under large de
formation: mean-field approaches are given in Sec. I C
while computer simulation techniques for periodicall
bounded networks at non-zero temperature and stress ar
outlined in Sec. I D.

A. Network deformation

A reference configuration for the deformation is taken t
be a unit plaquette with linear material elements all of lengt
|r;j| =Syt (Fig. 2). In deformation, the plaquette is mappe
affinely into a new configuration constrained only by z- (r
Xry)>0 (i#j#k; no sum on indices of vectors), where
is the normal to the plane and definitions of the neares
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neighbor vectors should be apparent from the figure. The
in-plane deformation map I' takes the form x,=T Xz
(a,B=1,2; sum on repeated indices of tensor components)
and, by the definition of affineness, the four components of
the tensor T are taken to be spatially uniform. The notational
convention employed for deformation and stress variables
[14—-16] is that lower-case letters, including indices, refer to
the space of deformed configurations, while capital letters
refer to the undeformed or reference configurational space;
as the same set of basis vectors is used throughout this work,
this convention here serves primarily to emphasize what con-
figurational space, deformed and/or undeformed, a stress or
strain quantity belongs to. For simplicity, we designate «
:Fll'! bzru, C:I‘ZI'! and d:].—‘zz. The dista.nces
[el= (e w) ' (i# ) between the particles of Fig. 2 be-
come

il'01|= %Sret{( —at bﬂ)2+ ( - C+d1@)2}ln:
|rosl =3 S e (@ + BV3Y?+ (e +dv3)*]'72, (0
vzt =S eda®+ 12

Setting ¢ =0 merely removes a pure rigid body rotation. The
density of particles relative to the reference configuration,
with one particle per plaquette, may be shown to be p
=1/detI'. A stretch tensor A also may be defined through
A%?=TTT, so that the roots of the eigenvalues of A2 gives
surface stretches A; in principal directions. The conventional
Lagrangian strain tensor E= 3(A*~1T) [1,14], contains a qua-
dratic term missing in the infinitesimal elasticity theory but
essential to keep in large deformation. Components of E are
En=3@*+c?—1), Ep=§b*+d*—1), and E=E,
=ab+cd. In a biaxial deformation, off-diagonal strain com-
ponents vanish, so that selecting the x and y axes as the
principal directions leads to b=c~=0, A;=a, and A,=4d.
The stretches may then be approximated by the principal
strains E; and E, as A;=1+E;—3E2+3E2+ - |

The reference configuration of Fig. 2 can tile a plane and
thereby give C, symmetry. An irreducible representation for
this symmetry group [17] may then be formed from three
combinations of the strain components:

m=i E,
1

7}225 (Ep—Ep), 2)
73=Ey;.

Each #; may later be considered a possible order parameter
in a Landau theory [17]. Altogether, the »; form a basis for
exactly four independent combinations of deformation mea-
sures invariant to transformation of the planar reference state
{18,

L=t E=1y,

L=detE={7i—§ 53— 75, 3)
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IS=E11[(E11+3E22)2_ 12E%2]:277?_3 h 7?%“‘“‘/02773

— 6950+ 72v2),
L=Ep[3(E—Epn) ' ~4EL]=2m(3 73~ 2m). -

The latter two invariants are clearly of order E®, and are
particular to the Cg symmetry. Also, the linear combination
(27y+47,+ 1) is necessarily an invariant simply equal to
1/p% and may thus be used in place of either I; or I,.

B. Network response: Hamiltonian
and zero-temperature elasticity

Typically, the elastic free energy per reference volume or
area is assumed at the outset to be a Taylor expansion in a
suitable deformation measure such as the Lagrangian strain
(see, for example, Ref. [1])

- 1
W=W(T,E)=C4pE,p+ Tl CuscoEanEcp

1
+ .3_7 CapcnrrEsgEcpEgrt - . )

As in a Landau theory, a reduction in terms is often achieved
by using symmetries of the undeformed structure to stmplify
the strain energy to a polynomial in invariants, an approach
quite general even for large deformation [18)]. An isotropic
elastic surface is an important example that has an energy
written exclusively in terms of J; and 1.

For the present analysis, simple interaction potentials ad-
mit a more microscopic starting point than Eq. (4), Networks
are assembled from n-monic springs (n even, #=2 is har-
monic), each having a spring constant kg, (>0} and a resting
length S, (=0). Also, each triangle of adjacent springs ef-
fectively may have a potfential energy dependent on the tri-
angulated area. Superposition of these two energy storage
modes leads to a general class of discrete system Hamilto-
nians

1 net nat
= 21 %: n kel (035 1) = So]" + 37 % F(A et/ Ay}
(5)

In this expression, the deformed triangle area is given by the
three-vertex quantity A;;= 3|r;;Xry/, and the reference &i-
angle area is A= (V3/4)Sh; Thus p=A /A, is a spa-
tially independent constant in a homogeneously deformed
network. Figure 3 shows some of the potential forms repre-
sented by Eq. (5).

In the zero-temperature limit, the average state and other
properties are just those, in this case, of perfectly ordered,
homogeneous networks. That is, any given plaquette con-
figuration is assumed to be representative of a homoge-
neocusly deformed net. Within this limit where ensemble av-
eraging is frivial, and in terms of the elemental lengths and
the relative density, an exact expression for the elastic strain
energy per reference area is
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FIG. 3. Dimensionless tether potentials vs dimensionless bond
length. Leftmost panel; examples of n-monic tether poteatials in
which $=8/Sp, (Un)keSi/ksT=1, and f(A,/A;;)=0. Right-
most panel: effective tether potential when Sy=0, S=5/5.4, n
=2, SepS2dksT=1, and f(A,/A,;,) is taken to be 1/5” by assum-
ing equilateral triangles.
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The relevant energy scale is &S 2 /ksT, a ratio which goes
to infinity in the 7= 0 limit. In this limit, specification of the
various microscopic parametess z, kg, etc. allows one to
determine the exact form of the strain energy in terms of
desired strain variables, notably invariants of Eq. (3). The
tensions (force per length) arising within a network in a
given state of strain are then readily calculated from T,
=p T ,co0W/oT ¢, and a two-dimensional internal pressure
is identified as P=— 7. With A as the area of either a
plaquette or full network, the compression modulus is then
K= —~AdPIdA. Appendix A elaborates some useful simpli-
fications in biaxial deformation.

C. Nonzero pressures and temperatures in mean field

In terms of an applied surface pressure P at zero tempera-
ture, the Gibb’s free energy per reference area, G
=@G(T,P), should generally be minimized at equilibrium, in

(b)
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the absence of other constrainis. It is simply the Legendre
transform of a strain energy density

Groo=W+Pip. (7)

Note that the last term is just the appropriate pressure-area
work [for an analysis of martensitic transitions using Eq. (7),
see Ref. [19]]. As a function of the biaxial deformation vari-
ables ¢ and d, Fig. 4(a) shows the (1/p) surface, which, in
Eq. (7), is just the P-scaled second term added to W.

For temperatures greater than zero, configurational fluc-
tuations of the representative plaquette (Fig. 2) may be
evaluated more rigorously via a partition function Zp. The
model is still a homogeneous net mean-field, model and
amounts to an integral over the configuration space (or at
least the imporiant segions) mapped out by the plaquetie’s
fluctuating sides. In terms of the coordinates of particles 2
and 3:

ZPZ J. X3dX3J’ dyzdxzexp[(—H+ Px3y2).~’kBT}. (8)

Of pote, the expression for Z, published previously [9] had
an incorrect weight for x5. Zp is readily reduced to the one-
dimensional integral for a fluctuating equilateral triangle by
integrating over & functions at y,=(v3/2)x; and x,= 3x5. In
special cases (see Sec, IV A), the fluctuating equilateral tri-
angle model can be evaluated analytically; numerical inte-
gration is otherwise straightforward. The free energy G=
—kyT InZp, as well as thermal averages including the aver-
age area per plaquette, (A}=(x3y,), may readily be deter-
mined.

Importantly, in the above mean-field models, every
plaquette of a network is forced to be the same, hence all
interplaquette correlations and stress gradients are explicitly
neglected. This restriction is absent in network simulations.

D. Nonzero pressures and temperatures
by Monte Carlo simulation

As described briefly in Sec. I, full network simulations
can be conducted by Mente Carlo methods over a large tem-

. i ]
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% = 2 0 ' 1 ' 2
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FIG. 4. Sirain energy contours at zero temperature as a function of the biaxial deformation variables ¢ and d. The energy scale is
arbitrary. () Pressure times area. (b} Hookean spring model. (c) Polymer net model. The dashed cusve in (b} approximates the transition
trajectory to the a-axis boundary when compression is applied to the Hookean spring model; a saddle-point barrier energy lies midway

between the two endpoints.
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perature range 7> (. Nets are placed in a periodic box of
reference dimensions Ly XLy: an M XM amay of N=M?
vertices has a rectangular reference size Ly=M{V3/2)S ¢
XKLy=MS8,. In biaxial deformation, a=L, /Ly and d
=L,/Ly. Both the positions of the vertices themselves, as
well as the box shape and dimension, change during the
Monte Carlo simulation. Each attempt to move a particle to a
different position, or change the value of L, or L,, or the
angle between the sides, is accepted or rejected according to
the usual stress ensemble Boltzmann weight. The same basic
procedure has been used previously to determine average
properties, e.g., (A}, and fluctuation properties, e.g.,
K, tkyT={AY ({A%)—{A}?), of networks uader isotropic
tension [$]. Further details on algorithms and methodology
can be found in Appendix B of this paper and the appendices
of Ref. [9].

III. HOOKEAN SPRING NETWORKS

In this section we focus on Hamiltonians of Eq. (5), where
So>0 and f(p)=0. We report results for several values of
the power-law exponent n, but give most atteniion to
Hookean spring networks which are defined by n=2 (see
Fig. 3). It is further assumed for now that Sp=25 .

A. T=0 deformation energy

For this Hookean spring network, the T=0 strain energy
surface (with b=¢=10) is shown in Fig. 4(b): note the dis-
tinctive asymmetry about the line a=d. In biaxial deforma-
tion, the implicit square root in the exger strain energy of Eq.
(6) is expanded [29] about the reference state of (a=2Xx,)
=(d=n5)=1 to yield

W/koV3) =4 (3B, +2E Epy+3E5,) — #(11E +9E},
+3E} Byt 9ELE ) + O(EY). ©)

Anisotropy is evident at third order (e.g., unequal coeffi-
cients for £3, and E3,). It follows that there must be a cubic
term it 7,. Indeed, in terms of the #'s [Eq. (2)] or
Cs-invariants [Eq. {3)] and for a completely arbitrary defor-
mation

W=3Kni+ 502 m3+4m}) — § (ke3[4 77 +2v2 7]
+ 12995+ 240 w3 — 12VEm, 73]+ O(EY)
=Ko+ 01— A1) — 5 (keV3)

X[91, (12— 45,)+ 2151+ O(EY), (10)
In Eg. (10), the surface bulk and shear moduli are identified
at P=0 {superscripts demote T=0) as K2= XCimn
+Cup =LA +2uN+ A ]=3kv3, and 4'=3Cyy
—Cyyp) = ik ¥3. These give kY u’=2, a well-known re-
sult for two-dimensional (2D} triangular nets of harmonic
springs. Hence the symmetry at the order of the quadratic
strain in Eq. (%) is captured in Eq. (10) with an isotropic
surface response; i.e., the quadratic terms are accounted for
with I, and I, [30]. Third-order terms in strain arise from
I, as well as 1,, but these contributions are always symmet-
ric (i.e., permutable in E;,); the invariant I+, characteristic of
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the sixfold symunetry of the network breaks the symmetric
response at this order, and is directly responsible for the
presence of the term 73, Of importance to analyses in Sec.
IV and in contrast to developments above, the imeducible
quadratic form of the strain energy for a planar structure of
C, symmetry generally has four rather than just two distinct
coefficients in

~ 1 1
W= 57 Cuni + 21 Coankry+ CrimEnEa

+2C1ENL+ O(EY). (11)

B. Phase frausition in compression

It has been shown [0} that, at low temperature, a spring
network under tension is well described by a mean-field
model in which all springs have the same length §=|ry|
=|rg| =|rgsl, ie.. equilateral triangles. The zero-
temperature surface bulk and shear moduli in this mean-field
model are given fully as a function of pressure by

V3
Kfjfksp=7 {14 P1V3ky}, (12a)
v3
;.tofkspz—i— {1-v3Piky}, (12b)
while the zero-temperature area per iriangle is
(A= (V3I&)SH{1 + PIV3k 1 (12¢)

From Eq. {12a), K® vanishes at the isotropic tension
—kypv3, and the network area expands without bound
asymptotic to this tension.

Keeping in mind the key assumption that Egs. (12} apply
to homogeneous networks of equilateral triangles, the infini-
tesimal shear modulus x° is seen to vanish under compres-
sion at P=ky, V3 and §=25,. However, if one now con-
siders microstates other than equilateral triangles, then, at a
much smaller compression of P*= (\/EI‘S)ksp the free energy
will be minimized with a network area of zero, such that the
value of the pressure-area contribution vanishes. Each
plaguetie becomes a line. Just below P¥, the ground-state
plaquette is an equilateral triangle of side £8; just above
P*, this changes to a “‘crushed’” isosceles triangle with two
sides of length S, and one side of length $S,, as shown in
Fig. 5(a}. In the combined free-energy surfaces of Figs. 4(a)
and 4{b}, which together represent Eq. (7}, the ground state is
shifted from the symmetric configuration a=4=1 at small
P to the global energy minimum at d=0, ¢=3 when the
pressure exceeds P*. Importantly, at the transition and when
b=0, (i) 5, does not change, (i) 7, is a® in the equilateral
state and 4a” in the crushed state, and (iii} #, is O in the
equilateral state and (v2/4)a? in the crushied state. Thus 7,
is the candidate order parameter most appropriate to this
transition. Note that the crushed state is a “*boundary state’
with nonzero gradients in strain energy.

The T=0 energy surfaces defined by the progressive ex-
pansion in Eq. (10) show that the quadratic terms in the
strain, i.e., the isotropic terms, make the crushed state a glo-
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FIG. 5. C4—~C; transition of Hookean spring model at zero tem-
perature. {a) The ground-state plaguette is an equilateral triangle
above P* and a ‘‘cmshed”’ isosceles triangle below P*. Numbers
refer to the length of the indicated side scaled by Sy. (b) Free
energies of the plaquette under compression.

bal minimum [see Fig. 5{b)] under suitable compression. The
crushed state is threefold degenerate {(a,b,d): (%,0,0),

£0,=(2#3)]}, rather than sixfold, as determined through
the asymmetry of the Cg4 invariant I5. Furthermore, given
the 1}% term in the energy that results from [, this
symmetry-breaking crushing transition must be a first-order
transition in the context of a Landau theory [17]. This may
be expecied to hold true regardless of temperatore since, near
the transition, the most important 7, contributions to the free
energy sum to

AP, D)+ B(P. Ty g+ C(P,T) g3 ++++ . (13)

and since A{P,T) but not R{P,T) will vanish at the transi-
tion. In the (P,7) plane, the phase boundary should thus
appear like the liquid-solid or isotropic-nematic lines in lack-
ing a critical point at any finite (P,T).

In many martensitic transitions, density changes occur
without driving the transition, but they nonetheless cleariy
signal the transition [19], For the current Hookean spring
model, area versus pressure isotherms crossing a coexistence
region were described at the outset with Fig. 1(b). At low
temperature, the transition pressure for the discontinuous
martensitic-like transformation is modeled well (Fig. 6) sim-
ply by destabilizing the ‘‘crushed’” phase with the free-
energy (entropy) change for an ideal gas of network nodes.
Thus, in much the same way as was done in early models of
polymer networks {20,21], the vertices are considered a gas
of fluctuating nodes, so that

Grso~Groo+t poksT Ing. (14)

The quantity pgy 1s the number of nodes per area at zero
pressure and temperature, i.e., N/Agp—g. This ideal gas en-
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FIG. 6. Phase boundary in the pressure-temperature plane for
Hookean spring networks under compression. The arrow points to-
ward a data point at kBlegpS§= 1. The dashed lire refers to the
T=0 model, where an ideal gas entropy has been added. The solid
lines through the simulation data are drawn to guide the eye. The
two inset sample configurations of a large Hookean spring net at a
moderately high temperature (N =482; k,T/ kspS%: 1) are shown at
pressuges just below and just above the transition (P/k,=1.8 and 2,
respectively); the periodic box is hidden from view.

tropy change term, it may be remarked, also can be derived

~ as the O(T) term [22] in the equilatéral triangle version of

Zp reduced from Eq. (8). Motivation for this approximation
is provided in part by the apparent randomness in the sample
configurations of the network near the transition as shown in
Fig. 6. .

Although the mean-field expression for equilateral tri-
angles provides a reasonably goed description of the network
area under moderate tension for low temperatures, network
compression is more difficult to predict quantitatively even
with the more general partition function of Eq. (8). As an
example of the difficulty, the inset to Fig. 1{(b) for (A}, vs
temperature demonstrates a feature atypical of solids: the
stress-free area decreases as the temperature is initially in-
creased from zero. Near kBT;’kspSé%O.Q,, a minimum is
reached, and, above this temperature, network area grows
asymptotic to the linear scaling expected of ideal gas behav-
ior, Such a negative coefficient of thermal expansion at small
temperatures is well known for pure ice near zero K [23],
and is also expected of a 1D polymer under a near-zero
force [24]. The single-plaquette, mean-field integral of Eq.
(8) shows the same qualitative behavior. The initial down-
ward trend in area seems due to the very ‘‘open’’ low-
temperature structure, like the H-bonded networks in ice,
which allow for a predominance of internal thermal motions.
Entropic filling of interstitial voids reverses the trend in these
spring networks, and gives way eventually to an ideal gas of
network nodes in the high temperature limit.

Networks at infinite temperature (k,=0) can be investi-
gated only for P>0. Simulated networks in this limit show
that P(AYN=kpT[1+O(1/N)], K,=P, and the Young’'s
moduli vanish (V=282 122, 20%, 24%, or 30%). This implies
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FIG. 7. Hookean spring networks under compression at high
temperatures, (a) and (b} area and Bain-type order parameter, re-
spectively, at kpT/kS5=5 for N=48? (squares) or 8> (triangles).
(¢) and (d) Elastic moduli as a function of pressure at kT, HcspSﬁ
=1 for N=64%. The configuration space is threefold degenerate,
and the simulation time needed to move among the degenerate re-
gions is large. Hence our ensemble is constructed from post-

relaxation steady states which fluctuate about one of the three de- -

generate regions. Y., and ¥, in {(d) are essentially ¥, and ¥y
except for the last data point, which is reversed. The solid lines
through the simulation data are drawn to guide the eye.

that the three-particle constraint z-(r;Xry)>0- does not
contribute to the average internal virial; ideal behavior is
expected here because there is no excluded volume (nor at-
traction)} with this signed-area steric interaction between in-
finitely thin tethers. In spite of the ideal gas behavior at high
temperature, the consiraint on the signed area is crucial to
stability against network collapses at P=0: a ‘‘phantom’’
network (lacking the signed area constraint) collapses at the
remarkably low temperature of kBT!kspS%~ 1/20 [25],

We have shown above that the phase transition to the
crushed state is present at T=0, but is absent at infinite tem-
perature. At intermediate temperatures, between zero and
kgT/ kspSﬁﬁ(}.l, distinct hysteresis loops in the network area
define a coexistence region [Fig. 1(b)], and the hysteresis
increases with system size, consistent with the first-order na-
ture of the phase change. For fixed T, the transitions, even
from metastable states, also sharpen with increased network
size. Away from the transition region, finite-size effects are
negligible. All of these effects can be seen in Fig, 1(b). Par-
enthetically, if one calculates a Hookean spring constant
from the in-plane ‘‘shear modulus’* often attributed to the
red cell cytoskeleton [4], ignoring all questions of appropri-
ateness, the relevant isotherms are among those betweean
knT/kyS5= 75 and g [26]. Phase trausitions, hysteresis, and
all the associated difficulties are quite prominent in this tem-
perature range. At still higher finite temperatures, the change
in network area across the transition is found to be a very
small fraction of the unstressed area and is difficult to detect
even for large systems [Figs. 7(a} and 7(c)]; however, ac-
cording to the Clausius-Clapeyron equation, both A4 and the
entropy change across the transition can be small but cannot
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vanish (in the thermodynamic limit) when the phase bound-
ary’s slope dP*/dT is finite, as seen in Fig. 6. Indeed, the
transition is better identified by a deviation from zero of the
Bain-type order parameter 1—{a)/{d} [Fig. 7(b)] [6.7],
which is related to #,. Furthermore, while the transition
from Cg is always marked by the vanishing of u° as the
quadratic coefficient A(P,T) for 73, the symmetry breaking
to C, is also characterized by divergences in the inverse
Young’s moduli, Cj;j,=C5,, coincident with a growing
nonzero difference in their values [Fig. 7(d}]. This is consis-
tent with the disparity in the quadratic order terms of a C,

- energy {Eq. (11)].

We conclude this section by returning to the general form
of H in Eq. (5) which admits »-monic springs (Fig. 3}. It is
found at T=0 that the crushing transition described above
for Hookean springs (n=2) also occurs for larger 7, up to at
least n=40. The smallest, stable equilatesal triangle has an
elementat length $/S, of § (n=2) which decreases quickly
and levels off at ~3 (n=40). Further investigations of the
properties of n-monic springs at nonzero temperatures will
not be reported here.

1V. SQUARE-WELL NETWORKS

In the limit of the exponent » approaching infinity, the
n-monic Hamiltonian [with S;>0 and f{p)=0 in Egs. (5)
and (6}] looks like a square well (Spe=2S8, as n—x),
wherein the stretching energy of a spring rises rapidly from
zero as the spring length exceeds some constant S, [9].
With the pure square-well model, there is no intrinsic energy
scale, and the properties of the network depend on the ap-
plied pressure and the presence- (or absence) of self-
avoidance. The limits to the Zp integrations of Eq. (8) are
precisely defined for square-well potentials, and the proper-
ties of the single plaquette can be determined exactly at P
=0:

Zp=%(127—9v3) (15a)
7 16 9v3
<S)O!Sm”:2(ﬁ+%u %")/Zp=0.609”.,
' (15b)
(AYo/Amax= 351Zp=0.261..., (15¢)
VY
Ka,o'SﬁmfkgT=,§—3(W—- -8—) / Zp=7.589... .
(15d)

These average and fluctuation quantities are in remarkable
agreement with simulations of the full network which yield
(53078 nax=0.604, (A)y/Apgx=0.247, and K,=8.5+0.5.
Furthermore, the probability distributions for either the sides
or areas of triangles in a network are found to be very similar
in shape to those of a single plaquette. These results suggest
that neighboring triangles in a square-well net, after an en-
semble average, are nearly invisible to each other.

A. Compression

Square-well nets share some, but certainly not all, features
of harmonic nets [9]. A harmonic spring network with the
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FIG. 8. Area as a function of pressure for square-well network
and single plaquette mean-field models. The inset compares results
for compression to ideal gas behavior where P{A)=Nk,T. Several
network sizes, from N=12? to 647, were used over the entire range
of compression, and indicated no particular size dependence.

same K, o and {8}¢/S.ax as Egs. (15b) and {15d) would be

expected to have a temperature in the range kpT/k S 2272 to
4, Such a spring network would show a transition at
P52, JkgT of order 20. However, simulations of square-well
networks under an applied pressure exhibit no transition for
compressions up to at least PSZ, /kzT=80, where
{A}/{A)y~0.060 (Fig. 8). For comparison of these numbers
to a Hookean spring model, the Cq—C; transition at the high
temperature of kpT7kg,Sp=1 occurred at (A}/{A)o~0.11.

Of greater importance, square-well networks under sig-
nificant pressures (PS> /ksT=20) exhibit ideal gas behav-
ior: P{AY~NkgT (Fig. 8, inset) and K =~ P. At these pres-
sures, the probability of a tether being within {0% of $,, is
exceedingly small. Thus, as with the k,,=0 Hookean spring
net, the only intrinsic length scale in the net (S, here} is
unimportant under high compression. Indeed, for a similar
reason, the one-dimensional form of the mean field Z, [Eq.
(8)], i.e., considering only equilateral triangles, also yields
ideal gas behavior in the high compression limit:

{Ay=(kgT/P)[1+ /(1 —eX)]—=kgT/P as P—+ow

(16a)
K,=PH1—[x/(1=e[1 - eX+ xeX[/[ 1~ eX+eX]}

—P as Po+w, (16b)

In these equations x = PA . /kgT, where A, =(V3/2)S>_.
Graphical comparisons of simulated nets and the single-
plaquette models are made in Fig. 8.

B. Amisoiropy

Despite the evident lack of symmetry breaking or collapse
under compression, the square-well network, like the
n-monic nets, still exhibits anisotropies. Under uniaxial ten-
sion in the X or Y directions stretch as a function of uniaxial
tension for square-well nets displays distinct asymptotes
{Fig. 9). The ratios of the maximum to initial lengths in the X
and Y directions are S,.,/5, and 2.5 maxf\gSO, respectively;
hence the maximum strain in the X direction is smaller than
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FIG, 9. Stretch in the ¥ or X direction, when uniaxial tension is
applied to square-well networks in either one of these directions.
The slope near zerc uniaxial tension gives a single Young’s modu-
lus, in close accord with that determined by fluctuations at P=0.
The solid lines through the simulation data are drawn to guide the
eye.

that in the ¥ direction simply by the ratio (v3/2). This an-
isoiropy is a very simple but general consequence of tether
limits in the triangular geometry.

V. THREE-BODY ENERGETICS: “FLORY NETWORKS™

Sections III and IV dealt with networks having strictly
two-body interactions constrained only by the requirement
that the three-body signed area of each plaguette not change.
We now generalize this to include a less trivial form for the
three-body interaction term in the Hamiltonian of Eq. (3).
Such an interaction may help provide a very elementary rep-
resentation of quasi-two-dimensional, cytoskeletonlike trian-
gular nets assembled from lirear polymers rather than simple
springs [26]. With the assignment S;= 0 and n =2, the initial
term of the Hamiltonian [Eq. {(5)] becomes Gaussian, and, in
neglecting the explicit summation over the network vertices,
therefore polymer-like [12,21,27]. The effective spring con-
stant kg, would be dependent on monomer number, tempera-
ture, ete, Furthermore, monomers of the polymer chains flue-
tuate locally, it is envisioned, to fill the mnterstitial A, of the
ret. As in the typical Flory argument [27], correlations are
neglected in assuming that such filling is spatially uniform
within each triangle. This assumption leads to a nonzero
three-body term f(p) #é 0 and the name *‘Flory-polymer net”’
or simply “*Flory net.’

. In cheosing S0, n=2, and f(ﬁ)vbo the exact strain
energy of Eq. {6) appears expressible strictly in terms of
isotropic surface quantities irA® and p,

W= (kypV3) SA+ £(P), (17

Derivatives of the first term yield w= p0=ksp\/§‘ It proves
convenient now to define the invariants J,, J,, and J for-
mally by simply replacing E with A? in Egs. (3), e.g., J;
=trA?=(a?+ c2+b>+d%). Each invariant of the set J; van-
ishes when the deformation map is the null tensor rather than
the identity so that, in the case of no applied stress, p=1 and
J,=2. Figure 4{c) shows the strain energy surface for this
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model in biaxial deformation with a particular choice for
F(p) elaborated below. The symmetry about a=d is a ge-
neric feature of Eq. (17). For comparison to Hookean
springs, Fig. 3 {right-hand side) maps the same sum of ener-
gies into an effective elemental potential.

Toward assigning f(p), we assume that the osmotic pres-
sure 11 in the polymer net depends on local monomer density
as II=11(p), and that the constraints of network connectiv-
ity condense the network sufficiently into the nondilute poly-
mer melt regime to give

f(p)=Bip+B,p?+const. (18)

If the dominant osmotic term in this is the By term, then a

batance of chain elasticity against excluded volume {¢ la -

Flory polymer chains) allows one to determine B, = 3k, 52,

and K)=2kyv3 at P(p=1)=P,=0. Hence K% u’=2 so
that, at this order, the network looks very much like a net-
work of Hookean springs. However, this Flory net is rigor-
ously isotropic in its mechanical responses. These features
appear consistent with simulations of cytoskeletal polymer
nets tacked to a bilayer wall [27] within the approximate
range 0.5<p<2.5, in spite of the very gross simplifications
of our Flory net calculation. Additionally, recent experiments
which reveal red celi cytoskeletal network deformations [3]
have been shown to be fit reasonably well, at least by axi-
symmetric continvum analyses, with an isotropic strain en-
ergy expression which can be built in part from Egs. (17) and
(18). In [3], the strain energy is denoted as K, instead of
W, and a function g{g)~ 1/p® is included:

Ep=sp(AT+AD) + B 1p+e(p). (19)

The first term is just the 2D form [4] of the classic 3D rubber
¢lasticity strain energy, which merely includes )\% in the sum
over squared stretches, as established by Flory and others
(for example, [16,20,21]). The shear modulus g in these lat-
ter microscopic theories is given by the product of kzT and
the number of chains per area (2D) or volume (3D); in such
a case, the spring constant appropriate for the mesoscale tri-
angular Flory nets is kg= w/v3.

Importantly, because S;=0 in the Flory net elements,
there is no symmetry in the elemental energetics, and there-
tore no discontinuous *‘crushing’’ transition in these types of
nets (Fig. 10). Any decrease in network area is continaously
opposed by a soft-core repulsion reflecting the fluctuating
monomer inferactions. However, in positive tension (P<0}
the area of this harmonic Flory net along with the length of
each linear element increases without bound asymptotic to a
finite tension Py_o=kyV3(p*— 1)}~ —k V3, just as with
nets of Hookean springs [9] [note that Eq. (12¢) is equivalent
t0 Proo=keV3(p>—1)] and harmonic potential 2D ring
polymers [28]. Considering, then, that basic linear elements
of physical networks like the cytoskeleton are often poly-
mers which have a maximum length §,,,, ., there should be a
limit to the stretching of nets, similar to our square-well net-
works. This effect is certainly observable in a recent cyto-
skeleton computer simulations [26]. We therefore assume
here that the free energy stored in the length of each “‘poly-
merlike’” element can be approximated by an expansion be-
yond the Gaussian term to give the effective Hamiltonian
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For freely jointed polymer chains in three dimensions, the
familiar inverse Langevin function approach [16] yields ¢,
=1 $3= 5, etc. To third order in the invariants of A2, the
strain energy is

WikgV3) =37+ 5 #5(S24 82, ) (3T3+7)
+ 35 Ga(Shd o) 9T — 54T 1 Ty + 20 5) + -+

| 2 S ST |5 @1

The anharmonic terms in ry;-r;; stabilize a network under
positive tension {e.g., Fig. 10). The ¢, term is the first to
introduce the third-order invariant J5, so that, like the
square-well networks in uniaxial tension, these anharmonic
Flory nets are anisotropic at and above this order, The virial

- coefficient of the density function may now also depend on

the higher-order terms and, though this dependence falls off
quickly with large S, /S, issues of convergence need be
considered. In the end, the anisotropy introduced by
“‘polymer-length™ limits and the absence of a g(p)~ 1/p?
term in Eg. (21) distinguish it from the simpler, isotropic
expression [Eq. (19)] already used to fit the red cell experi-
ments [3]. This anisotropy, it should be emphasized, makes it
impossible to rigorously apply the aforementioned axisym-
meiric analyses to nonhomogeneous cell deformation.
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Vi, CONCLUSIONS

The large deformation, in-plane responses of several per-
fect triangular network models have been determined. For
nets assembled simply from central force springs
(force-free length>0), a discontinuous transition under
compression is demonstrated, in which the C, symmetry of
the network is reduced to C,. No transition under compres-
sion is observed, however, when this force-free length scale,
which sets a symumetry in the interaction potential, is elimi-
nated and when one of the following apply: (i) T— + 903 (it}
the continuous potential is replaced with a square-well; and
(iii) the elemental elasticity is balanced against local, mean-
field sterics, to mimic a polymerlike net. For conditions 6y]
and (i), the limiting behavior in compression is that of an
ideal gas which can reflect only the signed area constraint.
For the models of {iit), the compression limit leads to a non-
ideal gas determined by the assumed form of supplemental
sterics. In spite of such rotationally invariant limit states,
nonsymmetric responses of triangular nets are more typical,
and the phase transition is but one manifestation of this.
Uniaxial tension of triangular nets with any sort of maximum
tether length also clearly leads to an anisotropic response
with the associated odd-order elastic constants. To uncover
these effects experimentally, the phase transitions and
anisotropies in some of the sixfold structures listed at the
outset of this paper comprise the logical next step.

Note Added. After submitting this manuscript, we re-
ceived a preprint from Wintz, Everaers, and Seifert, who also
observed a collapse transition in 2D triangular networks.
They used a fixed area ensemble, and their equation of state
agrees approximately with ours over the range of network
areas reported in their paper: Ap /A r=p>>0.5, where A, is
the network area. The phase transitions seen in our own
simulations of Hookean spring nets in a fixed pressure en-
semble extend below this range, as shown in our Fig. 1(b).
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APPENDIX A

Considering a biaxial deformation, the exact strain energy
density of the large class of nets represented by Eq. (6} re-
duces to
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Tensions in the network may then be calculated from T
=(1/\,)oW/an; and Ty=(UN)dWidh,. As an aside,
simple shearing in a continuum sense may appear removed
upon setting b=0; however, material shearing still can be
isolated in a state where A=X,=1/A,, a siate referred to as
pure shear. For this state, a shear strain may be identified,
though not uniquely, as E,=$(A>— 1/A?) [4]. By calculating
a shearing tension T,=3|T,— T 5], a shear modulus in large
deformation elasticity can be obtained as pu=T7,/E;. With
this choice of E,, the proper infinitesimal identification of
the shear modulus generally can be regained in the small
strain limit. For the strict Hookean spring network, it is ap-
parent that A and X\, do not permute in the strain energy
expression Eq. {22); such 2 network is therefore anisotropic.

APPENDIX B

An ensemble of configurations is generated by the Monte
Carlo procedure for each chosen combination of parameters
such as N, kg, and P, Typically, the ensemble represents at
least 2 X 10° moves per particle after the system is allowed to
relax from ifs initial configuration. Of course, successive
configurations in the ensemble are correlated, and so the
number of statistically independent configurations is consid-
erably less than two million, depending on system param-
efers. The ensemble is used to calculate averages such as the
area {A) directly, and to calculate the elastic moduli indi-
recily through lowest-order fluctuations. The moduli also
were obtained from full strain-strain correlations as a check
on the accuracy of the technique. With Hookean spring net-
works, the average energy per nodal particle in nets under no
stress was essentially two times k37 and, by calculating the
in-plane virial stresses, we observed that T — { Tiney = 0. For
simulations of uniaxial tension, stress was applied to just two
parailel faces of the periodic box and collective moves made
accordingly. We estimate that the uncertainties in ensemble
averages such as (A) are less than 1%, and that the uncer-
tainties in the moduli are less than 5%. Further details on
algorithms and methodology can be found in the appendices
of Ref. [9].
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