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- INTRODUCTION

The human body contains about 10 cells, whose size, shape
and mechanical properties vary according to the capabilities of
the cell:

Size: The typical length of a cell is measured in microns: a red
blood cell is about eight microns in diameter, and many bacteria
are about one micron in diameter and several microns in length.
However, some cells, such as those transmitting signals from
the brain to remote muscles, may be a metre in length. Further,
there are compartments within cells as well as vesicles secreted
by cells, which are typically several tenths of a micron in
diameter.

Shape: Cell shapes span an amazing range from simple spheres
to highly dendritic nerve cells. A cell’s shape is not fixed for all
time, if for no other reason than to accommodate growth. For
example, a bacterium may elongate along its longitudinal axis
and ultimately divide into two independent cells. The red blood
cell must undergo strong deformation in its journey through the
circulatory system, particularly as it passes through capillaries
which may have a diameter less than half that of the blood cell.
In some cases, a cell can travel along a surface by "willfully”
changing its form, or can extend an arm in search of prey.

Elasticity: Cell shape is maintained, or changed, by several of its
structural components. A bacterium may have an internal
pressure of several atmospheres, and a multilayer network in
the bacterial cell wall both resists this pressure, and yet permits
the bacterium to grow. The red blood cell must have a shear
resistance which is sufficiently small so that the cell can deform
as it passes through a narrow capillary, yet is sufficiently large
so that the cell can recover its rest shape after passage. Cells
that can move on their own must have a dynamical internal
structure that can actively change the cell's shape as required.

What components of the cell are responsible for maintaining its
shape and/or providing its elasticity? Most bacteria, which are
low on the evolutionary totem pole, have a multilayered
network in their cell walls to resist rupture of the cell. More
evolved cells, which during at least part of their lifetime contain
internal compartments such as the cell's nucleus, have a
cytoskeleton composed of a network of filamentous material.
The cytoskeleton may be a full three-dimensional network, or,
in the case of human red blood cells, a two-dimensional
scaffolding attached to the plasma membrane that bounds the
cell.

In general, Nature tends to be economical, if not outright
parsimonious, in selecting the amount of materials needed for
the structural components of a cell. For example, the one or
more fluid sheets that make up the membrane encompassing
the cell are about 5 nm thick, the principal components being
dual chain lipid molecules arranged in the form of a bilayer. Yet,
a lipid bilayer, fortified by cholesterol and sundry proteins, is
both flexible enough to undergo strong deformations and robust
enough to do so repeatedly; in the case of the human red blood
cell, "repeatedly” means of the order 10° deformations in its
120-day lifetime.  Similarly, the cytoskeleton and other
structures in the cell are composed of biological chains, ropes
and tubes having diameters of just 8 to 25 nm; yet, such

networks can withstand pressures of up to many atmospheres,
in some cases.

In Sec. Il of this article, we introduce the reader to several
generic components of the cell that are related to its mechanical
properties. The operative word to describe most of these
elements is soft although in no sense should this word be taken
to mean weak. The mechanics of soft materials, being strongly
influenced by thermal fluctuations in some cases, are not
frequently covered in traditional undergraduate physics courses,
and so a synopsis of some properties of soft materials,
particularly isolated chains and sheets, is given in Sec. lll. The
chains are assembled into networks in Sec. IV, and used as an
interpretive guide to biological netwarks. Finally, it is important
to understand how networks fail: In biological systems failure
of the cytoskeleton may be an undesirable phenomenon
associated with disease, or it may be an action which we wish
to encourage, such as the induced failure of the cell wall of an
unwanted bacterium. Features of network failure are outlined
in Sec. V.

There are far more aspects to the structure and function of the
cell than will be presented in this article. The emphasis here is
on the elastic properties of the cytoskeleton - in essence, its
response to stress. Dynamical attributes of the cytoskeleton,
such as how it provides a highway for the transportation of
material within a cell, or how it dynamically rearranges to
change the cell shape, are omitted. Further, the adhesion of
cells to each other in a multicellular organism also is not
discussed. An introduction to the many characteristics of the
cytoskeleton not covered in this short review can be found in
the general references which follow Sec. V.

The application of classical and statistical mechanics to
biological systems is a young and rapidly evolving field of
research. New experimental techniques continually increase our
knowledge of biological structures and their response to stress.
Our theoretical understanding of the static and dynamic
properties of membranes has advanced substantially in the last
decade. This article describes only a few of the many biological
systems whose mechanical description either is available now
or should be forthcoming in the near future.

Il - STRINGS, TUBES AND SHEETS IN THE CELL

We begin with a few definitions from /ingua biologica, a
descriptive, elegant and vast language. In cells, a closed,
simply-connected surface provides a membrane that segregates
the cell's contents from its environment in a controlled way.
Inside the surface resides the cytoplasm, which comprises the
fluid cytoso/ and perhaps many smaller compartments called
organelles; the region outside of the cell is referred to as the
extracellular space. The cytoskeleton is a network of proteins
that lies within the cytoplasm. The cytoskeleton may extend
throughout the cytosol as a three-dimensional network, or may
be a two-dimensional network attached to the cytoplasmic side
of the cell boundary. Shown in Fig. 1 is the author's conception
of the approximately triangular connectivity of the two-
dimensional cytoskeleton in the human red blood cell.

Not all cells possess a network embedded in the cytosol. For
example, a bacterium has no nucleus and no cytoskeleton, so
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its internal structure is, in one sense, mechanically simple. Like
plant cells, however, bacteria have a multilayer cel/ wall to
resist the internal pressure of the cell. In Fig. 2, a cylinder with
hemispherical caps represents a simple bacterium like
Escherichia coli, a common bacterium of the intestinal tract.
Note that the two-dimensional stress (force per unit length) on
the cylinder's surface is anisotropic: the stress is PR in the ring
around the cylinder, but PR/ 2 along the axis of the cylinder,
where R is the radius of the cylinder and P is the pressure
difference across its surface. The skin of a hot dog under
osmotic pressure (i.e., overcooked) will tend to crack along its
longitudinal axis, rather than break into two pieces (like a pair
of sausages) because of this anisotropic stress.

[b]

Fig. 1 A computer model of the cytoskeleton attached to the
envelope of the human red blood cell. The highly contorted
strings joined together at six-fold junctions are tetramers of
the protein spectrin. [a] Network seen from the cytoplasmic
side of the brane. [b] A tion through the network.
The lipid bilayer, a flat plane in this simulation, lies below the

cytoskeleton in [b]. (From Boal, 1994).

The bacterial cell wall has one of several forms, whose naming
convention reflects their ability to retain Gram's stain. In gram-
positive bacteria (e.g., Bacillus subtilis), there is a single lipid
bilayer, surrounded on the outside by many layers of
peptidoglycan, the sugar/amino-acid network mentionned in
Sec. I. In contrast, gram-negative bacteria (e.g., Escherichia
coli) have two lipid bilayers separated by a periplasmic space
within which reside only a few layers of peptidoglycan. The
envelopes of archaebacteria have no peptidoglycan. It should

be emphasized that Figs. 1 and 2 are simplifications: there are
other proteins embedded in the bilayer and these may extend
into the cytoplasm, periplasm and extracellular space.

In summary, the structural elements of the cell are strings and
tubes of proteins present in the cytoskeleton (for example) and
two-dimensional sheets composed principally of dual chain lipids
arranged in a bilayer. The molecular building blocks of the
strings and tubes are amino acids, which are strung together to
form proteins. Nature uses 20 amino acids in construction, each
amino acid having both a carboxy! group (-COOH) and an amino
group (-NH,, except for proline, which has an NH group as a
member of a ring). These amino acids are not particularly large,
the smallest being glycine (NH, - CH, - COOH) with a molecular
weight of 75 daltons. However, the molecular weight of a
string of amino acids in the form of a protein molecule can
easily surpass 10° daltons.
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Fig.2 A sch ic repr ion of a bacterium, which typically

has a diameter of a micron. Seen in cross section, the
bacterial cell wall contains a few (gram negative) or many
(gram positive) layers of a peptidoglycan network whose
chemical composition includes sugars and amino acids.
Archaebacteria are exceptions to the rule, in that they have
no peptidoglycan.

The strings and tubes of the cytoskeleton are typically 8 to 25
nm in diameter, reflecting the way in which the proteins are
linked together to form the filament. Two of the thinnest
filaments are formed from the proteins spectrin and actin.
Spectrin is a principal component of the cytoskeleton of the
human red blood cell and auditory outer hair cells, to name two
examples. In the simulated red cell cytoskeleton shown in Fig.
1, each chain represents a spectrin tetramer, which is
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composed of two different kinds of spectrin monomers
(molecular weights of “220,000 and ~240,000 daltons). As
shown schematically in Fig. 3, the spectrin monomers are
probably intertwined to form the tetramer. The contour length
along each monomer is about 100 nm, although the average
displacement between the ends of the tetramer in the red cell
is about 76 nm because of its contorted shape (Byers and
Branton, 1985). Measured along the string, the mass per unit
length is 4600 daltons/nm.

100 nm

Spectrin dimer

Actin filament

48 nm

10 nm

Intermediate filament

25 nm

Hollow microtubule

Fig. 3 Sch tic repr of biological strings, ropes and
tubes present in the cytoskeleton. The thinnest filaments
include spectrin and F-actin, while the thickest are
microtubules of tubulin. Between these extremes are the
intermediate filaments.

Another flexible cytoskeletal string is actin, which is present in
many different cell types and may play various roles in the
cytoskeleton. The actin monomer is the protein G-actin (G for
globular), which is a single chain of 375 amino acids having a
molecular weight of 42,000 daltons. G-actin proteins can
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assemble to form a long string called F-actin (F for filamentous)
as illustrated in Fig. 3. The mass per unit length along the
filament is about 15,000 daltons/nm, a little more than 3 times
that of spectrin. Correspondingly, the actin filaments appear
stiffer than spectrin tetramers.

In contrast, the thickest filaments are hollow tubes of the
protein tubulin. Molecular tubulin has two subunits (a-tubulin
and Btubulin), each of which has a molecular weight of about
100,000 daltons. The dimer of this globular protein can
assemble into a hollow microtubule, which consists of 13 linear
protofilaments. In each protofilament, the tubulin heterodimers
are oriented a to B, as shown in Fig. 3. The overall molecular
weight per unit length of microtubule is 160,000 daltons per
nm, about ten times that of an actin filament, so that
microtubules are relatively stiff. Their abundant number in
nerve cells provides both strength and an internal transport
system to long axons.

Between these two extremes lie the intermediate filaments,
which can be formed from several varieties of proteins, and
whose structure bears some resemblance to woven rope. The
protein chains first form two dimers of coiled-coils, of length
about 50 nm (represented by the single black cylinder in Fig. 3).
Tetramers associate to form a rope of eight tetramers in cross
section, 10 nm in diameter, with an alignment also shown in
Fig. 3.

Although spectrin appears to play a rather passive role in the
cytoskeleton, actin and tubulin filaments are dynamic:

eGrowth Both actin and tubulin actively polymerize and
depolymerize in a cell, so that the length of a string or tube is
not static. The growth is not symmetric, in that the molecules,
and hence the filaments, are polar.

eMotion Each of actin and tubulin have a (different) family of
proteins that can "walk" along the string or tube. Myosin can
walk along actin, while kinesin and dynein can walk along
tubulin. Since actin and tubulin are polar, there is a preferred
direction to the walk. These molecular motors provide a
mechanism for protein ropes to glide past each other (e.g.,
muscle cells) and for transport of chemicals within a cell (e.g.,
nerve cells, in which neurotransmitter chemicals must be
constantly replenished).

Features of the growth and motion properties of tubulin are
explored in the article by J. A. Tuszynski in this issue.

The fluid membrane which bounds the cell is a self-assembled
lipid bilayer. Although the phospholipids that make up the
membrane have a heterogeneous composition, most of the
lipids have two hydrocarbon chains typically with 14 to 18
methylene groups. The non-polar hydrophobic chains prefer
their own company to that of water, while the polar headgroups
of the phospholipid are hydrophilic and prefer to be surrounded
by water molecules. Thus, in an aqueous environment, the
polar head groups align as a two-dimensional sheet which hides
the hydrocarbon chains from exposure to water. The situation
is illustrated in Fig. 4, where both the exterior environment of
the cell, and its cytoplasm, are aqueous. The assembly of
amphiphilic molecules (such as lipids) into monolayers is
discussed in the article by R. Desai in this issue.

None of the elements of the cytoskeleton attaches strongly to
the lipid bilayer. Rather, there are attachment proteins that
reside within the bilayer and provide the contact points for the




cytoskeleton. Some of these attachment points can be
complex, involving several different proteins in association, as
shown schematically in Fig. 4. Further, there are other proteins
present in the cytoskeleton that crosslink different filaments,
such as F-actin or microtubules.

The last structural element that we wish to introduce in this
section is the peptidoglycan network which is found in almost
all bacteria and whose chemical structure is illustrated in Fig. 5.
Along the x-axis of the figure, there are a series of sugar rings
which makes the network stiff in the x-direction. Transverse to
this are chains of amino acids. Given that the average distance
between the sugar chains is about 2 nm, the amino acids are
not likely to be stretched out as dramatically as shown in the
figure. Indeed, it has been found under some experimental
conditions that the equilibrium area of the network may be only
one third of the "stretched” area (see Koch, 1990). Of course,
this doesn't mean that the chains are flopping around: there
may be intra-chain interactions that cause the chains to fold up.
Depending on the type of bacterium, there may be only a few
or more than 20 layers of peptidoglycan. However, the word
"layer” could be misleading, since there may be significan
covalent bonding between adjacent glycan chains.

ctracellular
Space

Interior:
Cytoplasm

Lipid bilayers If ble from lecules that have
hydrophobic acyl chains and hydrophilic polar headgroups.
The cytoskeleton is attached to a lipid bilayer by a number of
proteins, some of which are bound within the bilayer. The
integral membrane proteins have hydrophobic segments that
match the surrounding acyl chains of the lipids.

Fig. 4

Il - FLEXIBLE CHAINS AND SHEETS

From Sec. ll, we see that the principal components of the
cytoskeleton or the bacterial cell wall are chains of varying
stiffness, frequently crosslinked into a two- or three-dimensional
net, and attached to a fluid sheet in the form of the lipid bilayer.
In this section, we examine some fundamental properties of
flexible chains and sheets, before moving on in Sec. IV to
construct networks of chains and to use them to interpret
biological systems.

Consider a simple model for a single polymer chain in which the
polymer is a set of NV vectors added tip-to-tail, each vector
representing a bond or monomer. We assume here that each
monomer has the same length a, and that the vector describing
a particular monomer / is a. The contour length, /,, along the
chain is then

- N .1

Amino
acid

Structure of a single layer of the peptidoglycan network
found in almost all bacteria. The network is stiff along the
axis containing the sugar rings, and soft in the direction of
the amino acid chains. (After Koch, 1990).

Fig. 5

and, as shown in Fig. 6, the end-to-end displacement, r,,, is just
the sum of the individual vectors, a;:

(l.2)

az
as
a4
ai
Fee

Fig. 6 End-to-end displacement, r,,, for a chain whose elements

have a common length and random orientation.

Taking the ensemble average over all chains with the same
number of monomers, /, the end-to-end displacement squared,
<r2>,is

<> = 5 %j <aea>. (11.3)
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If a given bond vector & can have any orientation independent
of any other vector &, then the ensemble average of a;a; should
vanish if i # j. Thus, the only terms which survive in the double
sum in Eq. (IIl.3) are the diagonal elements / = j, each of which
equal a%. For a freely jointed chain, then

<r, 2> = Na* (1.4)
Suppose that the chain were not freely jointed, but nevertheless
could intersect itself; an example would be a chain in which
neighbouring elements have a fixed polar angle (like C-C-C
bonds in an alkane chain) but are free to rotate azimuthally.
Even here, one finds that <r,2> = Nb? although the length
scale b is longer than that of the C-C bond (see Flory, 1953).
The scaling behaviour <r,.2> ~ A in Eq. (lIl.4) is referred to as
ideal scaling, and it applies to linear chains that can intersect
themselves. Note that, even if the chains are not allowed to
intersect themselves, the scaling behaviour is still universal,
although <r,,.2> no longer scales like V.

The length scale for scaling behaviour can be related to the
elastic properties of the chain. At any point along the chain, a
unit tangent vector « can be obtained from the derivative of the
coordinate position, R(s), with respect to the length along the
chain, s, by:

uls) = R/ 3s, (ll.5)
as shown in Fig. 7. If the chain is stiff, then & changes only
slowly in orientation with respect to s; whereas, if the chain is
highly flexible, then & changes rapidly. The simplest expression
for the bending energy of a continuous, flexible chain has the
quadratic form,

Evons = (Yy 1 2) | ds (Gulds)? (111.6)
where the integral runs along the contour length of the chain
and where Y, is the bending modulus of the chain (with units of
energy per unit length). For a chain described by Egq. (ll.6), the
orientation of the unit tangent vector becomes decorrelated
according to (see Doi and Edwards, 1986)

<u(s)eu(0)> = exp(-s/§), (.7)
where &, is the persistence length. In terms of the bending
parameter, Y,, the persistence length is

& = bY,

where b is the inverse temperature (k;7)" with kg representing
Boltzmann’s constant. Note that the persistence length is
temperature-dependent, as one might expect: at low
temperature, the persistence length tends to infinity.

(111.8)

= arc length

u(s) = unit tangent vector
at point R(s)
R(s)

Fig. 7 Relation between unit tangent vector, u, and position of

point, R, on a curve.

10 ctob
!
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For alkanes, the persistence lengths are in the range of 0.2 nm,
which is roughly the length of a covalent bond. Protein chains,
in contrast, have much longer persistence lengths; for example,
the persistence length of spectrin is 10 - 20 nm (see Stokke et
al. 1985; Svoboda et al., 1992). DNA has a still longer
persistence length, at 50-565 nm (Taylor and Hagerman, 1990;
Bustamante et al., 1994). From Eq. (lll.8), the ordering of
increasing bending resistance is: alkanes, spectrin, DNA.

The concept of persistence length can be applied to sheets as
well, by replacing in Eg. (l1.7) the tangent vector & from chains
with the unit vector » normal to the surface. The linear bending
modulus, Yj, can be generalized to a surface bending resistance,
ky, which has units of energy (see Deuling and Helfrich, 1976).
The expression for the bending energy of a surface in terms of
k, and the principal curvatures of the surface, requires more
explanation than we have space for in this article, so we
provide only the following observations as intuition for how the
persistence length depends on k,. The behaviour depends upon
the nature of the membrane connectivity - whether it is
polymerized or fluid.

Polymerized: Suppose that we were to take a set of highly
flexible rods and weave them together in a two-dimensional
fabric, welding fixed cross-links wherever the rods cross each
other. We refer to this as a polymerized network. If we try to
bend this network in an arbitrary way, then the network may
develop folds and creases in response to the imposed
deformation. The formation of folds and creases restricts the
configurations of the network so much that polymerized
networks are, in fact, flat on long length scales (Plischke and
Boal, 1988; see Kantor, Kardar and Nelson, 1986 for
membranes without self-avoidance).

Fluid: If you wrap a piece of aluminum foil around the tip your
finger, the folds and creases required for the foil to adapt to
your finger are obvious. If the foil were, instead, a two-
dimensional fluid, then the folds could relax away, leaving just
a uniform coating on your finger, as if you had stuck it into
(cold!) cooking oil. Thus, in contrast to polymerized
membranes, fluid membranes are not flat at long distances, and
their persistence length is approximately
& ~ a exp(-41fk, / 3) (111.9)
where a is an elementary length scale of the membrane. As
expected, Eq. (lI.9) shows that the persistence length increases
as the bending resistance k, increases at a fixed temperature.
However, the important difference between Egs. (lll.8) and
(I.9) is that the persistence length increases exponentially with
the bending resistance for a two-dimensional membrane, but
only linearly for a one-dimensional rod. A more detailed
discussion of Eq. (ll.9) can be found in the lectures by S. Leibler
in Nelson, Piran and Weinberg (1989); the scaling properties of
fluid membranes are presented in Kroll and Gompper (1992).

Measurements of k, for a number of systems have been
reported in the literature (see Evans and Rawicz, 1990, and
references therein). Single-component bilayers composed of the
types of lipids found in cells typically have bending moduli of
the order (0.4 - 1) x 10" J, which is 10-25 kT at room
temperature. Adding cholesterol to the bilayer at
concentrations found in red blood cells significantly increases
the bending modulus. With a bending modulus &, = 10 kg7 and
an elementary length scale 2 = 1 nm, Eq. (lll.9) gives an
estimated bilayer persistence length of 10° m. In spite of its
impressive size, this number should be interpreted only as




indicating that undulations in a bilayer are smooth, but not
absent, on the length scale of hundreds of nanometres.

IV - NETWORK ELASTICITY

Elastic moduli have been measured for both two- and three-
dimensional protein networks, as we present in more detail later
in this section. Compared to conventional solids or liquids, the
moduli are found be very small, reflecting the fact that protein
networks in cells have a low density of network junctions. To
provide a framework for interpreting the measurements, we
examine the moduli of two simple systems: an ideal gas and a
two-dimensional network of chains.

Ideal gas: The equation of state of an ideal gas held at a
pressure P has the well-known form PV = Nk, T, where N is the
number of particles contained in the volume V. The ideal gas
has a vanishing shear modulus, but has a non-zero volume
compression modulus, K, which can be obtained from the
change in volume as a function of pressure:

K, = -V @V /3aP). (IV.1)
Substituting the equation of state into Eq. (IV.1), the
compression modulus for an ideal gas is found to be equal to its
pressure, Ky, =P, or equivalently,

Ky = pkgT, (IV.2)
where pis the density of particles, N/V. The area compression
modulus K, for a two-dimensional ideal gas has a similar
expression, with the density © becoming the number of particles
per unit area, V/A.

Chain network in two dimensions: Eq. (l1l.8), shows that the
persistence length of a flexible chain decreases with
temperature: in other words, the chain shrinks with increasing
temperature. This effect is easy to demonstrate by heating a
rubber band with a hair-dryer. In turn, this implies that energy
must be added to a chain to stretch it, even if the internal
energy of the links in the chain is unchanged: flexible materials
are elastic by virtue of their entropy. The force required to
change the end-to-end displacement of a flexible chain is
proportional to the displacement from equilibrium, just as in
Hooke's Law, with a spring constant given by

kep = dky T / Na?, (IV.3)
where d is the dimension in which the spring is embedded and
the other symbols are defined in Eqg. (lll.4) (for further reading,
see de Gennes, 1979).

A network of flexible chains is also elastic. Consider the
triangulated spring network in two dimensions shown in Fig. 8.
The elastic moduli can be extracted by subjecting the spring
network to a set of known deformations and evaluating the
change in potential energy. At zero temperature, one finds

Ka = /3 k12 (IV.4)

and
w=1/3 ke, | 4, (IV.5)

where &, is the spring constant (see Boal, Seifert and Shillcock,
1993).

Eq. (IV.3) approximates the effective spring constant of a chain
in a network, so that two-dimensional networks of chains
should have elastic moduli of the order k37 / Na?, according to
Egs. (IV.4) - (IV.5). Replacing Na* with <r,?> [Eq. (ll..4) for
ideal chains] and noting that the density of network junctions,
p,is <r,2>" to within factors of‘two, then the elastic moduli
should be roughly

#~ Ky ~ pkgT,
similar to the ideal gas expression. Admittedly, this derivation
is a little crude, but simulations of self-avoiding chains show

that it is accurate to within an order of magnitude (see also
Chap. Xl of Flory, 1953).

N

(IV.6)

el

At zero temperature, a triangular network of springs in two
dil jions has a p modulus of V3 k,,/ 2 and a

shear modulus of V3 k14, where k,' is the spring constant.

Fig. 8

A commonly-used experimental technique for determining the
elastic properties of cells has been to subject the cell to a
known stress and then to analyse the resulting strain to obtain
the elastic moduli. Because of their simple internal structure,
red blood cells have been studied extensively; results for cells
from a number of species are given in Table IV.1. It should be
noted that a different technique, which measures long
wavelength fluctuation of a cell surface, gives a lower value for
the shear modulus of human red blood cells. The most recent
measurements investigate the red cell cytoskeleton under both
extension and compression (Discher et al., 1994).

Table IV.1 Shear moduli of red blood cells as measured by
micromechanical manipulation (Waugh and Evans, 1979).
Species Modulus Experiment (N/m)
Human 2D Shear 6-9x 10°
Opossum 2D Shear 8x10°

Turkey 2D Shear 4x10°%

Conga snake 2D Shear 7x10%

Painted turtle 2D Shear 10x 10°%

The magnitudes of the moduli are modest. The reason for the
small values is that the cytoskeletons of blood cells are fairly
loose, as one can see from the simulation shown in Fig. 1. It
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was suggested by Evans (1973) that the elastic properties of
the red cell cytoskeleton could be understood in terms of
polymer elasticity. If one uses the known density of network
junctions in the human red blood cell, then Eq. (IV.6) predicts
that the elastic moduli should be of the order 10° N/m.
Considering the approximations involved in gbtaining Eq. (IV.6),
this result is surprisingly close to the measured value. A
detailed simulation which includes steric interactions among
cytoskeleton elements etc. confirms that the shear modulus
expected within a polymer chain model for the human red blood
cell should be close to 10° N/m (Boal, 1994).

Measurements also have been made of the shear modulus of
isolated components cf the cytoskeleton, and results for actin,
fibrin, vimentin and microtubules are shown in Table V.2 (from
Janmey et al., 1991). For comparison, typical compression
moduli are shown for a liquid and an ideal gas at STP, although
the shear moduli of these fluids vanish. The moduli for the
protein networks shown in the table are small, reflecting in part
the small concentrations of protein (2% by weight) in the
samples. The concentration-dependence of the moduli has been
reported (Janmey et al., 1991) for all of the filament types
shown in the table, and compared with theoretical expectations.
Both F-actin and fibrin have shear moduli that grow as the
square of the concentration, a result expected for entangled
networks of flexible polymers (Clarke et a/., 1990). In contrast,
the shear modulus of microtubules grows like [concentration)'®,
a behaviour not too different from that expected for rodlike
polymers (see Doi and Edwards, 1986). Perplexingly, the
vimentin intermediate filaments show a modulus that grows like
the square root of the concentration, a result not described by
simple models.

Peptidoglycan networks in the bacterial cell wall also appear to
have a loose structure, in that they can be stretched by up to
a factor of three in area (Koch and Woeste, 1992). The
mechanical characteristics of peptidoglycan are currently under
active investigation. Recent measurements the elastic
properties of the sheath that surrounds cells of the
archaeobacterium Methanospirillum hungatei yield a Young's
modulus of (2-4)¢10'° N/m? (Xu et a/., 1997). This modulus is
relatively large, and suggests that the sheath can withstand
pressures of hundreds of atmospheres.

Table IV.2: Elastic moduli of three-dimensional networks at 2

mg/ml (Janmey et al., 1991). Fibrin is a protein that holds
blood clots together, while vimentin is an intermediate filament.

System  Modulus  Experiment (atmospheres)

Typical liquid 3D volume 10*
Ideal gas at STP 3D volume 1

Actin 3D shear 2.8x10°
Fibrin 3D shear 1.0x 10
Vimentin 3D shear 3.2x 10*
Microtubules 3D shear 3.4x 10"

V - NETWORK FAILURE

Nature rarely provides us with networks whose connectivity is
as regular as that shown in Fig. 8. In fact, uniform connectivity
may not be needed, nor even helpful, for the functioning of the
network in a cell. However, if the connectivity of a network is
too low (i.e., too few bonds per junction), then the network may
fail. For example, if the amount of spectrin protein in a red
blood cell is too low, then the cytoskeleton elasticity may not
be large enough for the cell to perform its function (for a
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review, see Mohandas and Evans, 1994). Thus, it is important
to understand the properties of depleted and irregular networks,
as well as regular ones. This takes us into the study of
percolation.

Consider the two-dimensional square lattices in Fig. 9, in which
bonds have been placed between lattice sites in a random
fashion. The population of bonds on the lattice as a whole can
be described by a parameter p, which is the probability that a
given bond site is occupied. If the lattice has a full complement
of bonds, then p = 1 and each site on the lattice has four-fold
connectivity. If no bonds are present, then obviously p = 0.
The two example configurations in the figure have values of p
intermediate between O and 1.

One attribute of a configuration is whether a continuously
connected path traverses the lattice. Such a path is absent in
configuration [a] of Fig. 9 (with p = 1/3), but present in
configuration [b] (with p = 2/3). For infinite systems, the
existence of a connecting path across the lattice is a
discontinuous function of p and there is a well-defined value of
p, called the connectivity percolation threshold p¢, below which
there is no connecting path. The connectivity threshold is
lattice-dependent: in two dimensions, p. = 0.5 for a square
lattice and p; ~ 0.35 for a triangular lattice. The two values of
p shown for a small square lattice in Fig. 9 bracket the
connectivity threshold.

!

ILI

e e o

p = 16/24 = 2/3
[b]

[ B ]

p = 8/24 = 1/3
[a]

Fig. 9 Percolation phenomena on a square lattice in two
dimensions. Configuration [a], with bond occupation
probability p = 1/3, is below the connectivity percolation

threshold, while configuration [b], with p = 2/3, is above
the connectivity threshold. In this particular example, no
bonds are placed along the edge of the lattice, so the
maximum allowable number of bonds is 24.

The elastic moduli also depend upon p: for p < pc, the network
is not connected and can support neither shear nor
compression, so that both « and K, vanish. However, the
presence of a connecting path at p > p. does not guarantee
that the network can resist deformation. Even though p is
safely above p. in configuration [b], there is only one
connecting path from left to right - which is not a lot of paths
to resist shear. It is found (Feng and Sen, 1984) that the
resistance to compression or shear vanishes below a distinct
threshold, referred to as the rigidity percolation threshold p,. In
general, pg is larger than p¢: in numerical studies of triangular
networks, g ~ d g, where d is the embedding dimension of the
network (Feng, Thorpe and Garboczi, 1985).




Once the percolation thresholds have been crossed from below,
the elastic moduli do not rise immediately to their values for a
fully connected network with p = 1. Rather, to a first
approximation, they rise linearly with p for p not too close to ;.
For example, the shear modulus is described approximately by
o) 1 dp=1) ~ (p-pa) 1 (1-pg)  Tforp »pg
(V.1)
#p) =0 forp < pg,
as shown in Fig. 10 (Note that the value of g, obtained by
fitting the linear regime of «(p) with Eq. (V.1) is inaccurate by
a few percent). Further discussion of the elastic properties of
networks with random cross links can be found in the article by
M. Plischke in this issue.

As stated at the beginning of this section, there are numerous
examples of cytoskeletons with irregular or reduced
connectivity. Examples of such two-dimensional networks are
the spectrin-depleted cytoskeletons of red blood cells found in
some individuals with a specific hereditary blood disorder
(Waugh and Agre, 1988). In these cells, the main component
of the cytoskeleton (spectrin) is observed to be reduced below
the normal value, and the shear modulus of these cells is
correspondingly lower. The range of the data is shown in Fig.
10, where it is seen that the measured values of «(p) / «(p=1)
do decrease roughly linearly with p, but not to the degree
expected from percolation theory. This does not necessarily
mean that percolation theory is inapplicable to spectrin-depleted
blood cells; it may be that the coordination of such
cytoskeletons is still relatively uniform, although less than six-
fold.

Predicted
modulus

Reduced modulus

0% 100%

Spectrin content

Fig. 10 Sch ic repr of the reduced shear modulus (« /
#,) as a function of bond occupation probability p at zero
temperature. The subscript 1 refers to the value of the
modulus at p = 1 (all bonds occupied). Both the shear and
compression moduli vanish at the rigidity percolation
threshold, p, which is larger than the connectivity
percolation threshold, p.. (The behaviour of «{p) close to p
= pg is more subtle than the simple linear form shown).
Displayed for comparison is the range of experimental
measurements of the shear modulus for spectrin-depleted
human red blood cells.
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