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Abstract

The smallest terrestrial cells have few structural elements: a fluid membrane to isolate the cell’s
contents, a very large molecule to carry its genetic information, and, often, a cell wall to offset the
osmotic pressure of the cell’s interior. There are few theoretical obstacles to constructing cells with
radii as small as 50 nm using the same molecular materials as are found in 300 nm mycoplasmas. The
energy required to bend a flat fluid membrane into the shape of a cell is comparatively small, such that
¢closed spherical shapes are energetically favored for radii greater than about 20 nm, depending upon
composition. Further, the membrane of a small cell could withstand the osmotic pressures typical of
many bacteria without the aid of a cell wall. However, it would be difficult to pack a genetic blueprint
with a hundred genes into a small cell using double-stranded DNA, whose rigidity permits only gentie
curvature on 50 nm length scales; rather, a small cell would employ most flexible molecules such as
RNA or single-stranded DNA.

Introduction

The human body contains about 1(1? cells—perhaps a hundred times the number of stars in the
Milky Way—although only about 200 different cell types are represented in this collection. A minimal
set of mechanical components is present in each cell to perform such tasks as isolating its contents,
maintaining its shape or, in some cases, facilitating its movement. The chemical composition of these
structural components does not vary strongly from one cell type to another, permitting us to understand,
in a somewhat systematic fashion, the architecture that nature has chosen for the cetl. Small cells, such
as bacteria, have a particularly simple construction:

* afluid membrane (and possibly a cell wall) forming the cell boundary,
* an interior fluid region likely at higher pressure than the cell's immediate environment,
* at least one large molecule carrying the cell’s genetic information.

Some questions that we might ask about the mechanical characteristics of these components are illus-
trated in Figure 1.

The properties of many of the cell’s structural elements are known as a function of their size. For
example, the filaments of the cytoskeleton (the molecular scaffolding that helps a cell organize its
internal compartments and maintain its shape) display a resistance against bending that grows rapidly
with their radius, just as rope is stiffer than string. Thus, we can predict, if crudely, the size of the
cytoskeletal components needed for a cell to function under various conditions. In addition, limits or
bounds exist on the minimum mechanical strength required of these components: for example, the fluid
membrane enclesing the cell must possess a certain minimal resistance against rupture on a time scale
appropriate to the cell’s lifetime.

Because a given structural element may play several different roles in a cell, a limit based solely on
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How strong is the fluid membrane enclosing the cell? Are additional
structures required to prevent the cell from rupturing?

::Can the interior of th
cell be pressurized?

What is the appearance of the
ell's filaments, such as DNA?

How much energy does it take to bend the membrane?

Figure 1. Some civil engineering issues facing the designer of very smal! cells.

a single mechanical characteristic may not truly reflect the complete architectural specifications of that
element. As an illustration, a membrane with a molecular composition providing good rupture resis-
tance may be so viscous that proteins are unable to diffuse readily within it. Thus, the actual molecular
composition of the membrane reflects not only the strict limit on its mechanical strength, but also a
softer constraint arising from the functionality of its constituents. Further, the limits are not inviolable
and should be regarded more as challenges to Nature. The constraints that we obtain here assume only
the most rudimentary architecture and the simplest chemical compositions. We make these assumptions
in the belief that the smallest cells arise early in the history of a planet and have not had sufficient time
to develop a complex architecture. However, there is nothing to prevent Nature from finding ingenious
strategies to circumvent mechanical constraints that strictly apply only to the most structurally simple
cells.

Viability of Very Small Cells

In this paper, we focus on just a few of the cell’s mechanical properties: the resistance of the
boundary membrane to bending and rupture and the elasticity of a cell’s filaments. We then discuss the
implications of these characteristics to the mechanical functionality of cells much smaller in size than
typical terrestrial cells. Our benchmark is a structurally simple cell of radius 50 nm. We demonstrate
that:

* Insimple models of fluid membranes, the bending energy of a spherical shell is independent of its
radius, so that it takes the same amount of energy to bend a flat membrane into a small spherical shell as
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a large shell. Whether such a cell is stable depends upon its energy compared to other configurations
such as a flat disk with a free boundary. The creation of a hole or a free edge in a membrane Tequires an
input of energy that is proportional to the length of the edge boundary. Except for very small membrane
segments, it is energetically more favorable for a membrane with a free boundary to close up into a
spherical shape, eliminating the boundary. The estimated minimum sphere radius arising from this
argument is about 20 nm.

* There is a minimum stress that a membrane can tolerate before it ruptures on conventional time
scales. Because the (surface) stress on a spherical shell is proportional to its radius, a small cell can
tolerate higher internal pressures than can a large cell for a given membrane composition, Thus, a very
small cell would not require a cell wall in order to function at the osmotic pressures typical of many
bacteria.

* The bending resistance of a filament rises rapidly with its radius, so that thick filaments are
relatively inflexible. Although a very small cell does not have sufficient volume to accommodate a
conventional cytoskeleton (whose elements may be 10-25 nm in diameter), even a filament of double-
stranded DNA would appear somewhat stiff on the scale of 50 nm. In order to code sufficient genetic
information in a linear sequence, small cells would need very flexible molecules with perhaps half the
mass per unit length of DNA, a requirement that is consistent with the idea that RNA or some other
single-stranded molecule is the evolutionary precursor of DNA as the genetic template.

Detailed Analysis

Membrane Curvature

All cells are bounded by a plasma membrane consisting of a bilayer of dual-chain lipid molecules
within which are embedded proteins and other molecules such as cholesteral. Bilayers are self-assembled
structures whose equilibrium configuration is spatially flat if the molecular composition is the same
within both layers. Such symmetric bilayers resist bending with an energy cost per unit area £ whose
simplest parameterization is

E=(Kk/D(1/R+1/R) 2+ K,/ (R R, ), (1)

where the constants « (bending rigidity) and k, (Gaussian curvature modulus) have units of energy [for
areview of more complete descriptions of bilayer bending, building on the original approach of Heifrich
(1973), see Lipowsky (1991)]. The quantities 8 and R, are the two principal radii of curvature
displayed in Figure 2. As an illustration, a sphere of radius R has R, =R, = R, while a cylinder has an
infinite radius of curvature along the axis of cylindrical symmetry. To find the bending energy of a
particular surface, one simply integrates £ over the entire surface: for example, a spherical shell has a
bending energy of 87k + 4n%;, independent of the shell’s radius.

What is the magnitude of the bending energy for typical cells? Lipid bilayers in terrestrial cells are
found to have x'=10-25 kT, where ky, is Boltzmann’s constant and 7 is the temperature [see Evans and
Rawicz (1990) and references therein]. The value of Kg 1s much less well known, but is expected to
have a similar magnitude as x. With k= x, the energy of a spherical shell is 127K Considering only
the contribution from x; the bending energy of a spherical cell would be 250-600 k. T. Although this is
not really a large amount of energy (recall that k,T is roughly the kinetic energy of an atom in a gas),
why would nature expend this energy to form a closed surface from an open bilayer sheet? To answer
this question, we examine how a bilayer might rupture,
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Figure 2. Principal radii of curvature for a saddle-like surface.

Membrane Rupture

The fluid membrane not only resists bending, but also resists in-plane stretching. Under tensile
stress, the membrane first stretches then ruptures once the area has expanded a few percent beyond its
unstressed value. The creation of a hole in a membrane likely involves reconfiguring the lipid mol-
ecules around the boundary of the hole in order to reduce contact between the aquecus medium sur-
rounding the bilayer and the water-avoiding hydrocarbon chains of the lipid melecules, which are
normally buried within the bilayer. In general, the orientation of the lipids at the hole boundary is
energetically unfavorable compared to that of an intact bilayer, so that there is an energy penaity if the
membrane has a hole or a free edge.

The boundary of the hole can be characterized by an edge tension A (energy per unit length along the
boundary), which has been measured to be in the 10-'! J/m range (for example, Fromherz, 1983); the
measured values are larger than the minimum edge tension for membrane stability estimated from
computer sirulations of membrane rupture (Boal and Rao, 1992). For example, the edge encrgy of a
flat disk of radius R, and perimeter 22R,, is Eg, = 2aR ., A. A membrane having this shape will be
energetically favored over the closed sphere considered above (E pnere = 1275 for k= 1) if Ry, < 6K7/A.
If the disk and the sphere have the same surface area then R phere = Ryi /2 (see Figure 3). Thus we expect
R, e > 36/ (after Fromherz, 1983). Using typical values of x ~ 15 kT and A = 101! I/m leads to
R here > 20 nm, a bound whose exact value depends upon the membrane composition. Experimentally,
one finds that pure bilayer vesicles (simple artificial cells in some sense) can be produced in the lab with
radii as small as 30 nm (Fromherz, 1983; Frisken, 1998, private communication). Once the membrane
has adopted a closed shape, the configuration could be further stabilized by the addition of lipids to the
outer layer, thus reducing the strain in the bilayer.

S

Edisk = Qﬂﬁdiskl Esphere = 8nx + 41'|:KG

Figure 3. Energetics of disks and spheres. The two shapes have the same areas if R phere = Rais2-
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Experiments on membrane fatlure find that typical bilayers rupture at tensile stresses of 1 x 102 J/m?
on laboratory time scales (Needham and Hochmuth, 1989). In cells, a (two-dimensional) surface siress
IT can result from the osmotic pressure difference P between the cell’s interior and its external environ-
ment. For a spherical shell of radius R, the stress and pressure are related by (Fung, 1994)

n=rr;2. (2)

Thus, a spherical shell of radius 1-micron can support a pressure difference of up to 2 x 10* J/m?, if the
two-dimensional bursting stress is 1 X 102 }/m? on laboratory timescales. However, many bacteria
operate at much higher internal pressures, ranging up to many atmospheres, where 1 atmosphere = 10°
J/m*. Most varieties of bacteria accommodate this pressure by the use of a cell wall.

Because the surface stress is proportional to R in Equation (2), a smaller cell would experience a
_ lower stress for a given osmotic pressure P. In fact, a bilayer alone could handle an osmotic pressure of
4 atmospheres for a cell with a radius of just 50 nin, so that very small cells would not need a cell wall
to function at moderate osmotic pressures. The absence of a cell wall would reduce the functional tasks
of the cell and hence climinate that part of DNA required to produce the proteins associated with cell
. wall construction. Alternatively, a small cell could choose to have a cell wall and increase the osmotic
pressure at which it operates. Because the osmotic pressure is directly proportional to the concentration
of proteins, ions, etc., then small cells could have a higher concentration of chemical reactants. Given
that the rate of chemical reactions is proportional to the product of the reactant concentrations, an
increase in the concentrations would result in an increase of the chemical reaction rates.

Flexible Filaments

The most evolutionarily advanced cells—cucaryotic cells—contain a filamentous cytoskeleton,
which helps maintain the cell’s shape, along with its other duties. Components of the cytoskeleton
frequently include actin, intermediate filaments, and microtubules, with diameters in the range of 10 to
25 nm. Compared to a typical eucaryotic cell diameter of 10 microns or more, the transverse dimension
of a cytoskeletal filament is trivial. Smaller cells such as bacteria, whose evolutionary origin predates
eucaryotes, do not contain a cytoskeleton, but may instead possess a strong cell wall surrounding the
pressurized bag bounded by a fluid membrane. Even bacteria, with a typical diameter of 1 micron, could
accommodate the size of cytoskeletal filaments found in eucaryotes. However, cells with a radius as
smal! as 50 nm would probably not have sufficient interior volume to permit a conventional cyto-
skeleton. '

The absence of a cytoskeleton within a small cell does not imply that there are no filaments present.
Cells must have some means of carrying hereditary information; the carliest cells may have used RNA
but today’s cells use DNA, both of which are linear molecules. Now, the visual appearance of a fiexible
rope, siring, or linear molecule depends on the length scale of observation. For example, a human hair
may be curly as seen by the eye on a length scale of centimeters, but a segment of the hair would seem
straight if viewed through a microscope on a length scale of less than a mitlimeter. A quantity called the
persistence length can be used to describe the straightness of a linear molecule. Figure 4 illustrates two
linear objects; part [a] is convoluted with a short persistence length while {b] is much straighter with a
long persistence length, Mathematically, the persistence length is a measure of the length scale over
which a curve undergoes a significant change in direction. The arrows in Figure 4b are about a
persistence length apart, as measured along the curve.

Now, double-stranded DNA has a persistence length of about 50 nm (Bustamante et al., 1994),
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(al [b]

Figure 4. Schemalic representation of strings with short [a] and long [b] persistence lengths.
The arrows in [b] are about a persistence len gth apart, as measured along the contour of the string,

meaning that a2 100 nm filament of DNA might look like the configuration in Figure 4b: it would appear
to be neither a straight rod, nor a tangled ball of thread. At 0.34 nm per base pair, a 100 nm filament of
DNA traversing the cell once would contain Just 300 base pairs, not a lot of genetic information. This
means that cells probably would have to be larger than 50 nm in radius to accommodate a moderate
amount of DNA if it were present as a random chain, It is more likely that small cells would use RNA
or another flexible molecule to carry genetic information, consistent with the idea that RNA predated
DNA in evolution. Many biopolymers display a persistence length that varies as the square of the mass
per unit length along the polymer, a scaling behavior consistent with the theoretical expectation that the
persistence length varies as the fourth power of the radius for uniform cylindrical rods (Doi and
Edwards, 1986; Landau and Lifshitz, 1986). Thus, a molecule with the same mass density as double-
stranded DNA, but only half the mass per unit length, would have a persistence length of one-quarter
that of DNA, just 13 nm. Witha persistence length closer to 10 nm, a long molecule couid be bailed up
in a cell of 100-nm diameter. Self-interactions along the molecule’s length, as might be expected for
RNA, would reduce the size of the genetic ball even further.
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