The cell’s Biological
Rods and Ropes

David Boal

Introduction

Despite a variety of shapes and sizes,
the generic mechanical structure of cells
is remarkably similar from one cell type
to the next." All cells are bounded by a
plasma membrane, a fluid sheet that con-
trols the passage of materials into and
out of the cell. Plant cells and bacteria re-
inforce this membrane with a cell wall,
permitting the cell to operate at an ele-
vated osmotic pressure. Simple cells, such
as the bacterium shown in Figure 1a,
possess a fairly homogeneous interior
containing the cell’s genetic blueprint
and protein workhorses, but no me-
chanical elements. In contrast, as can be
seen in Figure 1b, plant and animal cells
contain internal compartments and a
filamentous cytoskeleton—a network of
biological ropes, cables, and poles that
helps maintain the cell’s shape and orga-
nize its contents.

Four principal types of filaments are
found in the cytoskeleton: spectrin, actin,
microtubules, and a family of intermedi-
ate filaments. Not all filaments are
present in all cells. The chemical compo-
sition of the filaments shows only lim-
ited variation from one cell to another,
even in organisms as diverse as humans
and yeasts. Membranes have a more
variable composition, consisting of a bi-
layer of dual-chain lipid molecules in
which are embedded various proteins
and frequently a moderate concentration
of cholesterol. The similarity of the cell’s
mechanical elements in chemical com-
position and physical characteristics
encourages us to search for universal
strategies that have developed in nature
for the engineering specifications of the
cell. In this article, we concentrate on the
cytoskeleton and its filaments.

To understand how biopolymers func-
tion within a network, we review in the
next section the elastic properties of fila-
ments in isolation. The following sections
explore two-dimensional (2D) networks
of permanently welded filaments and
three-dimensional (3D) networks of per-
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manent and nonpermanent cross-links,
where we summarize several theoretical
results from spring networks that are
useful for interpreting biological sys-
tems. In the final section, we apply our
knowledge of these networks to a par-
ticularly simple cell: the human red
blood cell.

Polymers

In most cells, the cytoskeleton contains
at least two of the four principal protein
filaments:
= Spectrin is a single polymer with rigid
barrel-like sections linked by a thin
string, like pearls on a necklace. The bar-
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Mitochondrion

rels arise from attractive interactions be-
tween monomers, causing the string to
fold back on itself like a Z.

® Actin is a polymer of polymers. Actin
monomers, themselves a folded polymer
of amino acids, assemble into a protein
rope called F-actin (F for filamentous),
having the superficial appearance of two
strands forming a coil.

® [ntermediate filaments have a complex
hierarchical structure. Thirty-two indi-
vidual protein strands are intertwined
and bundled to form a hollow cylinder.
= Microtubules are composed of tubulin,
which comes in two varieties that can
form a heterodimer. The dimers can
assemble end-to-end successively into
linear protofilaments, 13 of which form a
hollow microtubule (in most cells).

The approximate diameters of the fila-
ments range from 8 nm (actin) to 25 nm
(microtubules), and their mass per unit
length varies by more than a factor of 10,
as summarized in Table 1.

In thermal equilibrium, flexible fila-
ments do not adopt a unique shape;
rather, they bend and twist as they ex-
change energy with their surroundings.
Consider the extreme situation in which
the filament is a chain of N identical seg-
ments of length b connected at unre-
stricted pivots, as illustrated in Figure 2.

Bacterium

Golgi
apparatus

Plasma
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Figure 1. (a) A thin section of the bacterium Escherichia coli, which is bounded by a
complex cell wall but has little internal structure (courtesy of Terry Beveridge).

(b) Layout of a generic animal cell, showing structural elements such as the plasma
membrane and the cytoskeleton as well as a selection of organelles (nucleus,
endoplasmic reticulum, mitochondrion, and Golgi apparatus). The bacterium from (a)

is reproduced in (b) to show its relative size.
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Table I: Approximate Diameter, Linear Density (Mass Per Unit Length), and
Persistence Length of Some Biologically Important Polymers.

Polymer Diameter
(nm)
Long alkanes 0.2
Spectrin (2 strands) .
DNA (2 strands) 1
F-actin ~8
Intermediate filaments ~10
Tobacco mosaic virus 18
Microtubules 25

Linear density Persistence length

(Da/nm) (nm)
~110 ~0.5
4,600 10-20
1,900 53+ 2

16,000 10-20 x 10°
~35,000
~140,000 ~1 % 10°
160,000 2-6 x'10°

Representing the length and orientation
of each segment by a vector b, the con-
tour length of the chain is L. = Nb, and
the end-to-end displacement vector is

m=§h. )

The ensemble average of oo Over all
chains with the same N is (r..2) =
2;2(b;-b)). In a random chain, the orien-
tation of any pair of bonds is indepen-
dent, such that the ensemble average of
b;-b; vanishes for i # j. Each of the di-
agonal terms (i = j) equals b, so that

{re”) = Nb*

The scaling behavior (r..”)"* ~ N'/*is re-
ferred to as ideal scaling, showing that
shape fluctuations dramatically reduce
the mean value of r.. from L. = Nb of
rigid rods. An excluded volume enforces
self-avoidance of physical polymers,
changing the scaling exponent from 1/2
to 3/5 in three dimensions.”

A measure of the stiffness of a chain is
the distance over which the orientation
of the bond vectors becomes uncorre-
lated. We denote the position of a chain
segment by its arc length s from one end
of the chain, and the orientation of the
segment by a unit vector t(s) = b;/b. The
quantity (t(s) - t(0)) measures the correla-
tion in the orientation of the chain ele-
ments as a function of arc length s, as
averaged over chain configurations. The
correlations decay exponentially with s as

(t(s) - t0)) = e e, (3)

where ¢, is defined as the persistence
length. A small persistence length implies
that the chain is floppy and changes
direction rapidly with increasing s. The
end-to-end displacement is related to
&by’

() = 28,1 —28,%(1 — ¢ 7"), @

(random chain). (2)
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Figure 2. Random configuration of a

flexible chain, demonstrating how the
end-to-end displacement vector re. is
related to the individual bond vectors.

which reduces to Equation 2 when
L.>> §,and &, = b/2.

A selection of results for protein fila-
ments is displayed in Table I. Spectrin is
clearly the most flexible element of the
cytoskeleton, with actin a thousand times
more rigid than spectrin, and micro-
tubules a further thousand times more
rigid than actin. This large variation in
the persistence length is not unexpected:
for cylindrical rods of constant density,
£, scales like the fourth power of the ra-
dius." Floppy chains are rarely found in
their fully stretched configuration: A
chain can sample a much larger number
of convoluted configurations than highly
stretched ones. Proportional to the loga-
rithm of the number of configurations,
the entropy of a chain is reduced, and its
free energy increased, as the chain is

stretched. This implies that a floppy
chain has elasticity by virtue of its en-
tropy, behaving like a spring with spring
constant

3ksT

b = Ne?

(ideal chains) (5)

in three dimensions. Equation 5 demon-
strates that the effective stiffness of the
chain increases with the temperature.

Two-Dimensional Networks

The membrane-associated cytoskele-
ton of the human red blood cell is a
prime example of a 2D biological net-
work. Composed of spectrin tetramers,
the erythrocyte cytoskeleton is highly
convoluted in vivo, but can be stretched
by about a factor of seven in area to re-
veal its relatively uniform four- to six-
fold connectivity,” as shown in Figure 3a.
The tetramers are attached to one an-
other at junction complexes with an aver-
age separation in vivo of about 75 nm,
much shorter than their contour length
of 200 nm. An example of a 2D biological
network with fourfold symmetry is the
lateral cortex of the auditory outer hair
cell, consisting of inequivalent filaments
(thought to be spectrin and actin) joined
at right angles.®

To describe the mechanics of these
networks, we briefly recall a few results
from the theory of elasticity. Under
deformation, the change in position
of a given element of an object is repre-
sented by a displacement vector u, which
varies locally on the object. The ener-
getics of the deformation lies in the
strain tensor u;, which is related to the
rate of change of u with position x by
w; = 1/2[0u;/ox; + ou;/ox;] for small de-
formations. In Hooke’s law materials, the
change in the free-energy density A%
upon deformation is quadratic in 1, and
has the form’

K,
AF = 7“(”,.‘ + 1)
+ “{(”_T“w) + Zu,,,z} (6)

for isotropic materials or triangular net-
works in two dimensions, where K, and
e are the area-compression modulus and
2D shear modulus, respectively.

Spring networks show how macro-
scopic measures of elasticity, such as K,
and g, can be related to the microscopic
properties of a material. Consider a uni-
form network of springs, with spring
constant k,,, connected together at six-
fold coordinated junctions to form trian-
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Flgure 3. (a) Drawing of a spread erythrocyte cytoskeleton, copied from an electron
microscope image (from Reference 5). (b) Computer simulation of the equilibrated
cytoskeleton, in which each spectrin tetramer is represented by a single polymer
chain, linked at sixfold vertices, and attached at their midpoints to a flat

computational bilayer.

gular plaquettes. At low temperatures,
this network obeys’

3k . m
K. = 2 Rsp 14— i
. ( 2 )( \«»sks,,) ande: (A
3k, V3Tl
=|—==).(1- , 3
K ( 4 >< k) i

when subject to a 2D stress II, demon-
strating that the elastic moduli are pro-
portional to the spring constant. Be aware
that not all of the physics of these net-
works are properly expressed by Equa-
tions 7 and 8: The network is observed to
collapse when the compressive stress ex-
ceeds a certain threshold.*” Other inter-
esting properties predicted for these
networks include

B a negative Poisson ratio under a cer-
tain range of tensile stress, meaning that
the network expands laterally when
stretched longitudinally; and

® a negative coefficient of thermal ex-
pansion at low temperatures.”

A qualitative expression for the shear
modulus (or compression modulus) of
floppy chains can be obtained from Equa-
tion 8, which states that u ~ k.,. We

saw earlier that ideal chains behave

like springs, with an effective spring
constant given by Equation 5, namely,
A\}. ~ kyT/Nb®. Furthermore, the linear
size of a single polymer is roughly
(Nb?)¥2, according to Equation 2, so the
number of chains per unit area p is of the
order of 1/Nb*. Thus, we expect

u~ pkgT (ideal chdins). 9)

A somewhat more rigorous, but still not
exact, treatment of ideal chains'"'* also
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yields Equation 9. We now apply the con-
cept of entropic elasticity to a particu-
larly simple cytoskeleton.

As measurc_d by micromechanical ma-
nipulation,” the shear modulus of the
human erythrocyte is 6-9 X 10 ° J/m?,
although measurcmnnts based upon
thermal fluctuations' give lower values
for . Regarded as a network of ideal
polymers,'® the spectrin network of the
red blood cell would be expected to have
~ 3% 107°]/m? from Equation 9, within
a factor of two of experiment. However,
we should not be misled into believing
that all aspects of cytoskeleton elasticity
are entropic. The auditory outer hair cell
has a 2D cortex with a filament density
somewhat higher than the erythrocyte,
but a measured'® shear modulus a thou-
sandfold larger than the nominal value
of p kyT. The cortex includes actin, which

Semi-
dilute

Dilute c*

EZE’E.’!L(g@ %
ky &I 1)

Stff

is stiff on small length scales and should
make an energetic contribution to the
elasticity.

Three-Dimensional Networks

Actin, intermediate filaments, and mi-
crotubules, in isolation or together, form
a variety of 3D networks. In some cells,
specific proteins bind the filaments to-
gether with some degree of permanence,
while in others, the filaments may be
entangled, but not permanently cross-
linked. How do we represent the elastic
properties of 3D networks? For isotropic
systems, the change in the free-energy
density associated with deformation has
a similar form to Equation 6,

NS

5.‘511mm->3 (10)
3

where the two elastic parameters are the
volume compression modulus Ky and
the 3D shear modulus p. Our theoretical
toolkit for these moduli includes the ap-
proximate relation'"'* u ~ p kyT, which
applies to cross-linked networks, en-
tangled networks (at intermediate time
scales), and rigid rods (at short time
scales), where p is now the effective
number of filaments per unit volume.
Solutions of polymers without cross-
links must behave like fluids when
observed over long time scales: The poly-
mers can wiggle past each other due to
thermal motion as the system deforms in
response to an applied shear. However,
on short time scales, the network may
offer resistance to an applied strain or
stress, a behavior referred to as visco-
elasticity. As illustrated in Figure 4, poly-

C**

Concentrated

rods \ /
Isotropic Nematic
Figure 4. Generic behavior of polymer solutions as a funcuon of f/lament
concentration, which increases from left to right; ¢* ~ L., ¢**~ (DL¢ 2
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mer solutions can be classified into
several concentration regimes, each with
different viscoelastic characteristics.’
Consider a solution of stiff rods of length
L. and diameter D. In the dilute regime
at concentrations below ¢* ~ L.73, the
rods are sufficiently separated in space
that the solution’s viscosity is close to
that of its solvent. At the other extreme,
the filaments strongly overlap and inter-
twine in the concentration regime above
c** ~ (DL, forming isotropic or ne-
matic phases, the latter having long-
range orientational order. Between c*
and ¢** lies the semidilute regime, char-
acteristic of many biopolymer solutions.

How do we formally describe a mate-
rial whose response to an imposed stress
or strain is time-dependent? Commonly,
the frequency-dependence of the elastic
response is measured by subjecting the
material to an oscillating strain of the
form u,,(t) = u}, sinwt, where u', is
the amplitude of the strain and o is its
frequency. The stress/strain relationship
for this situation has the form'”

Oy = Uy G'(w) sinwt
+ 13y G"(w) coswt, (11)

where o, is the shear stress. The func-
tions G'(w) and G"(w) are called the shear
storage and shear loss moduli, respec-
tively, and are measures of the energy
stored (and recovered) or lost during a
cycle of the system. As w vanishes, G’
and G"/w become the shear modulus and
viscosity, respectively; for true fluids, G’
should vanish at w = 0.

The behavior of the storage modulus
as a function of frequency depends upon
the nature of the viscoelastic material, as
illustrated in Figure 5. Dilute solutions
display the smallest storage moduli, as
might be expected from their near-fluid
behavior. In contrast, concentrated poly-
meric solutions have storage moduli
typical of hard plastics, of the order of
10° J/m®. Semidilute solutions range be-
tween these extremes, displaying little
resistance to shear at small  but a high
resistance at large w and, for some sys-
tems, slowly varying behavior at inter-
mediate w, referred to as the plateau
region. At each frequency range, differ-
ent shear-relaxation modes can take
place during the oscillation of the applied
strain. At short times, only local molecu-
lar rearrangements occur, while over long
times, large-scale motion of the polymer
as a whole is permitted. At intermediate
times, the moving section of the polymer
may have a length comparable to the dis-
tance between entanglement points, which
behave like fixed, if transient, cross-links.
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Figure 5. Schematic representation of
the storage modulus G'(w) as a
function of frequency  for three
sample concentrations: dilute,
semidilute, and concentrated.

We now turn to experimental meas-
urements of biofilament solutions with
and without permanent cross-links. Sev-
eral types of filaments have been puri-
fied and reconstituted into networks
whose properties can be studied under
a broader range of conditions than are
found in a cellular environment. Alter-
natively, networks can be probed in the
cells themselves, for instance, by inject-
ing fluorescent markers that allow the
local response of the cytoskeleton to be
imaged. We consider only reconstituted
networks here; guides to recent work on
cellular networks can be found in Refer-
ences 18 and 19.

Actin filaments can be permanently
cross-linked by several actin-binding
proteins, resulting in a shear storage
modulus that is independent of frequency.
In two inequivalent experiments,*?! G’
is measured to be ~20 J/m?® at actin con-
centrations of the order of 1 mg/ml and
~50 cross-linking sites per actin mono-
mer, an order of magnitude larger than
the nominal value of pkyT, demonstrat-
ing that the network has both energetic
and entropic contributions. However,
when the cross-links are weak or easily
disrupted by thermal fluctuations,?*?
G’ is a strong function of w and may
explore a range of values less than the
nominal value of p kyT. Cross-linked spec-
trin networks also exhibit a frequency-
independent G (at small w) that grows
linearly with spectrin concentration.”

The behavior of actin networks with-
out permanent cross-links has been the

subject of some controversy, although re-
cent measurements appear to be con-
verging.**"¥ Many studies find that the
shear storage modulus is independent of
frequency at 10" < w < 10 rad/s, sug-
gesting that the filaments are sufficiently
entangled to behave like a cross-linked
network on time scales long compared
with many cellular time scales. However,
the measured values of G' in the low-
frequency range depend rather strongly
on preparation conditions:***” fresh actin
has G’ of the order of 0.5-1.2 J/m” at actin
concentrations of 1 mg/ml, although G’
rises by an order of magnitude as the
actin ages. However, the behavior of the
plateau modulus?-2 is more subtle than
just pkgT: G’ increases with concentra-
tion as p'*~. This concentration depen-
dence is in agreement with theoretical
expectations®-* of semidilute solutions
of semiflexible filaments, which predict a
scaling of p””. At higher actin concentra-
tions, the filaments adopt a nematic phase
(see Reference 31 and references therein).
The viscoelastic behavior of micro-
tubules and vimentin (an intermediate
filament) has also been examined.*
These solutions are observed to be much
stiffer than their nominal value of pkgT,
having G’ in the range of 2-3 J/m’ for
filament concentrations of 2 mg/ml,
with little frequency dependence. The
concentration dependence of G' varies as
¢"* for microtubules and ¢”* for vimen-
tin; the scaling of the microtubules is not
very far from that of rigid rods, but the
weak concentration dependence of vi-
mentin solutions is not understood.

The Whole Cell

We now apply our understanding of
flexible networks to one of the mechani-
cally simplest cells with a cytoskeleton,
mammalian red blood cells, which de-
rive their shear resistance from the mem-
brane-associated cytoskeleton consisting
predominantly of spectrin tetramers,
as described in the section on “Two-
Dimensional Networks.” The energetics
for many deformations of interest here
originate in the cytoskeleton, and the
bending energy of the membrane is not a
significant contributor. The fact that the
interjunction spacing is so much less
than the contour length of the tetramers
suggests that the elasticity of this cyto-
skeleton is of entropic origin."”

Many of the elastic properties of the
spectrin cytoskeleton can be captured™
by representing it as a quasi-2D polymer
network, as in Figure 3b, having of the
order of 20 polymer segments per spec-
trin tetramer. This is computationally
viable for a membrane patch, but pro-
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hibitive for a whole cell. Replacing the
chains by effective two- and three-body
interactions between network nodes**
permits the simulation of whole cells, as
demonstrated in Figure 6. Figure 6a is a
bright-field microscope image of an os-
motically swollen red blood cell as it is
drawn up a micropipet by suction.” Fig-
ure 6b is an image of the density of the
membrane-associated cytoskeleton, to
which fluorescent molecules have been
attached, showing how the cytoskeleton
becomes ever more dilute, and hence less
visible in the image, as it is stretched up
the micropipet.” Figure 6c is a computer
simulation, which does a reasonable job
of reproducing the observed response of
the cytoskeleton, with suitable choice of
network conditions.

Summary

The mechanical rigidity of cells is pro-
vided by networks and mats of filamen-
tous proteins and other compounds
which form the cell wall and cytoskele-
ton. These materials span an enormous
range of deformation resistance: Net-
works of actin at physiological concen-
trations have a compression resistance
several orders of magnitude /ess than the
air we breathe, while a thin layer of pep-
tidoglycan permits some bacteria to op-
erate at pressures of the order of 20 atm.
The elastic properties of these soft mate-
rials have both energetic and entropic
origins, and their theoretical treatment
uses concepts from classical and statisti-
cal mechanics.

Although our knowledge of the static
and dynamic characteristics of biological
materials is incomplete, it is nevertheless
sufficiently advanced that quantitative
predictions can be made for the behavior
of such structurally simple cells as mam-
malian red blood cells, mycoplasmas,
and some bacteria. The list of problems
that are likely to be the subject of contin-
uing scrutiny over the coming decade is
very long, and would include
® cell dynamics, such as locomotion and
division;

m the failure of the bacterial cell wall, in-
duced by antibiotics;

= the formation of simple cells early in
the Earth’s evolutionary history; and

B the mechanical and electrical interac-
tion between cells and semiconductors.
As this list demonstrates, the joy of work-
ing in this field of research is its strong
multidisciplinary nature and its wealth of
fundamental and applied problems, sure
to keep many of us busy for years to come.
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Figure 6. Deformation of a human red blood cell as it is drawn up a micropipet
approximately 1 um in diameter. (a) A bright-field microscope image of the cell and
the pipet, and (b) a fluorescent image showing the density of the cytoskeleton.*
(c) A computer simulation of the same type of deformation.*
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