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The Earth formed as a planet about 4.5 billion years ago (Ga)
and until about 3.8 Ga, its surface was ceaselessly pounded by
gravitationally captured material [1].  The impact of meteorites
and asteroids, with dimensions of meters to kilometers, frac-
tured and heated the emerging land masses, in some instances
releasing enough energy to vaporize an ocean several thousand
meters deep.  What form of life could
have survived, let along thrived, in
such an environment?  If the answer to
this question is "none", then how long
after the end of these hadean times did
recognizable life emerge? Not long!

Graphite in ancient rocks in Greenland
(3.8 Ga) show isotopic abundances
consistent with biological processes [2].
The oldest candidates for fossilized
cells discovered yet [3] are dated at 3.46
Ga.  Although these microfossils are
not as mechanically complex as the
eukaryotic (nucleated) cells of our bod-
ies, neither are they just inflated
spheres.  Unless life originated else-
where in the universe, such that Earth
was the lucky recipient of perhaps bil-
lions of years of experimental evolu-
tion performed before the formation of
the solar system, then cell design and construction must be sim-
ple and robust: given an appropriate environment, life would
arise on Earth or elsewhere in a time scale short compared to
the lifetime of a "garden-variety" star [4].

This article is about Nature's building code.  By considering the
construction of man-made buildings and bridges, we can
extract some architectural principles that are relevant to the
building of a cell.  Knowing the objectives of the design, a mini-
mal set of construction materials and methods can be formulat-
ed.  Of course, cellular designs must satisfy more constraints
than those imposed on office towers which need not compete
with each other for physical survival (although one could argue
that similar economic principles govern the longevity of a
building - an edifice that is maladapted to its environment is a
candidate for demolition and replacement).  Here, we develop a
partial inventory of the simplest designs for obtaining a speci-
fied set of cellular shapes and functions.  As this catalogue is
verified and extended, it will provide us with a tool for assess-
ing candidate structures for extraterrestrial organisms, a task of
increasing importance as the National Aeronautics and Space
Administration (NASA) continues its efforts to bring Martian
rocks to Earth.

STRATEGIES FOR HOUSE CONSTRUCTION
Let's think for a moment about the appearance of houses in our
local neighbourhoods.  My part of the world is still dominated
by stucco bungalows, while the city where I grew up, several
thousand kilometres to the east, was once characterized by two-

storey Georgian row housing.  Although the appearance of
these houses is rather different, the construction principles, and
the economic forces from which they arise, are similar.

Construction materials - Most of the building materials of a
conventional house must be readily available.  If not obtainable in

near finished form, the materials must
at least be produced at low cost to be
economically competitive.  Further, the
materials must be specialized according
to task: say, bricks for walls, wooden
planks and beams for floors and glass
for windows.  Where the materials are
subject to stress or failure, they must be
easy to repair.

Design - The design of market housing
must be easy to implement in order to
minimize labour costs.  The simpler the
design, the fewer blueprints are needed,
and for much of the modernist era, the
more appealing the appearance.  "Less
is more" is an often-quoted aphorism of
Bauhaus architect Ludwig Mies Van der
Rohe.  The design must also be adaptable
to changing market demand; for exam-
ple, the design could allow for a change

of room sizes during construction, as requested by a purchaser,
or could allow for renovation long after purchase.

Construction Price remains an important determinant of hous-
ing sales, and so construction methods that are cost efficient in
labour and materials tend to be the most common.  Cost efficien-
cy in labour translates into designs that require little assembly
(the ideal of self-assembly is not within reach).

Scanning back over the previous three paragraphs, we see that
the italicized words apply equally well to the design and con-
struction of cells as they do to mass-market housing.  There are
obvious exceptions for specialized buildings, and this will apply
as well to the two hundred different cell types of the human
body, for example.  Let's now examine how each feature - mate-
rials, design and construction - appears in Nature's building
code.  A more detailed treatment of these topics can be found in
Ref. [5].

CONSTRUCTION MATERIALS

Filaments
Most construction materials in the cell can be classified as fila-
ments or sheets.  We'll deal with filaments first, although they
need not appear in the simplest of cell designs.  By "filament"
we mean a structural element that is narrow in two spatial
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dimensions, and long in the third, like a rod or a rope.  What
used to be a common example of the use of rods and ropes for
efficient construction are the rigging and masts of a sailing
ship.  Reflecting Newton's third law, the rods and ropes are
arranged in tension-compression couplets, with the masts
being compression-bearing elements while the ropes are ten-
sion bearing.  From a design standpoint, this is much more
materials efficient than attaching the mast to the hull of the
boat with boards or other rigid elements to prevent the mast
from twisting or falling.

Cells make use of a variety of protein filaments for structural
elements, the four most common are displayed in Table 1.  For
actin and tubulin, individual globular polymers (each less than
10 nm across) are joined together to form what looks like a
multistranded rope, while for spectrin, the filament resembles
many beads on a string, where the "bead" is a region in which
the string has folded back on itself locally in the shape of the
letter z.  When so folded, each spectrin string is about 100 nm
in length.  The table illustrates that the diameter of structural
filaments is in the range of a few to 25 nanometers.  This is just
what we would expect for the common forces present in the
cell, as can be established by the following calculation.  If a rod
of length L is subjected to a pair of compressive forces F at each
end, directed along the axis of the rod, it will buckle when F
exceeds [6]

Fbuckle = π2YI /L2, (1)

where Y is the Young's modulus of the material and I is the
moment of inertia of the cross section; for a solid rod of
radius R

I = πR 4/4. (solid rod) (2)   

Typical forces in the cell from molecular motors are 5 pN, a
typical filament length is 5 µm for a cell diameter, and the
Young's modulus of a typical biomaterial is 109 J/m3 (com-
pared to steel at 2x1011 J/m3).  Putting all this together shows
that a biofilament would need a radius of 11 nm to avoid buck-
ling under common conditions in the cell, fortuitously close to
the microtubule radius of just over 12 nm.  Thus, microtubules
provide the stiffest structural element generally needed by the
cell, and they can be ganged together to provide extra strength
for special situations.

Other biofilaments are much less rigid, as can be seen by their
persistence lengths in Table 1; the persistence length ξp charac-
terizes the length scale over which a filament bends.  If we
denote the tangent vector to a curve (or filament) at a location s
along the arc by t(s), then we expect the dot product of tangent
vectors at neighbouring positions on the curve to be close to
one. This product decreases towards zero, perhaps changing
sign, as the separation increases and samples the twists and
bends of the shape.  Averaging over separations ∆s = |s1- s2|
along the filament, one expects the correlation between tangent
vectors to decay exponentially as [7]

<t(s1) C t(s2)> = exp(-∆s/ξp). (3)

The persistence lengths of the common biofilaments displayed
in Table 1 span an impressive range, allowing just a small
number of filament types to play a variety of structural roles.
The reason why the persistence length varies so strongly can be
found in standard polymer textbooks [7], which establish that

ξp = YI /kBT (4)

for a rope undergoing thermal undulations at temperature T.
The fact that ξp scales like R4 underlies the dramatic range in
ξp for a modest range in R.

Membranes
Before the twentieth century, the walls of larger buildings gen-
erally had two purposes: to bear the load of the roof and high-
er storeys and to isolate the interior of the building from its
environment (weather in cold climates, enemy attack...).  This
strategy is not particularly efficient in materials, as can be seen
by comparing to the design of hot air balloons, which appeared
in the 1800s.  There, a thin membrane isolates the contents of
the balloon, and a stress-bearing rope network reinforces the
membrane as needed.  This idea of separating the stress bear-
ing function from the isolation function became common in
twentieth century architecture with the introduction of curtain
wall construction - where the load bearing components are
columns and the wall is a glass "membrane" attached to the
floor plates.  An early example of this is the Fagus factory of
Bauhaus architects Walter Gropius and Adolf Meyer built in
1911.  Materials efficiency is vital to the cell, which has to syn-
thesize its own molecular building blocks, so it's no surprise
that the cell adopts membrane plus network designs.

For cells, the membrane is based upon the lipid bilayer - a
back-to-back sandwich of lipid molecules [8].  Lipids such as
the dual chain phospholipids of our cells have a hydrophilic
head group which lines the outside of the sandwich facing its
aqueous environment, and a pair of hydrocarbon chains, which
are hydrophobic and form the interior of the sandwich.  The
bilayers of modern cells have a thickness d of about 4 or 5 nm,
although their chemical composition is heterogeneous.  Now, a
two-dimensional sheet like a bilayer has several mechanical
parameters which, by means of simple models, can be related
to d and the surface tension γ of one leaflet of the bilayer in an
aqueous environment.

Area compression resistance KA This parameter is the two-
dimensional analogue of the three-dimensional bulk modulus
and describes how the free energy density, F, changes when
there is an area change ∆A:

∆F = KA (∆A / A) 2 /2, (5)

where ∆A / A is the area strain.  With a little model-building,
one can show that [9]

KA ≅ 4γ. (6)

Filament diameter (nm) persistence
length (Inm)

spectrin few 10 - 20

F-actin 8 10-20 x 103

intermediate filaments ~10 variable

microtubules 25 1-6 x 106

TABLE 1
CHARACTERISTICS OF COMMON STRUCTURAL FILAMENTS

IN THE CELL (FROM REF. [5])
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Aggregation threshold
The phospholipids in our cells have predominantly two hydro-
carbon chains, rather than single chain fatty acids (see article by
Katsaras et al.).  The reason for this choice of construction mate-
rial lies partly in the efficiency with which dual chain lipids can
be assembled.  To quantify this, consider the behaviour of an
aqueous solution of lipids in the dilute and concentrated
regimes.  In the dilute regime, dispersing the lipids individually
throughout the solution is favoured by entropy: many spatial
configurations are available to the few lipids in solution such
that TS is larger than the energy released should they bind into
small clumps.  In the concentrated regime, there are lipids
everywhere, and they can form large aggregates with consider-
able energy release, outweighing the loss of entropy from their
removal from solution.  The concentration at which the disperse
phase is favoured over the condensed phase is referred to as the
critical micelle concentration or critical aggregation threshold
(micelles are small aggregates of lipids, with their hydrocarbon
tails in the interior and the polar headgroups coating the sur-
face).  The threshold concentration is proportional to [15]

[threshold] ~ exp(-EBIND / kBT), (11)

where the binding energy per lipid is roughly EBIND ~ [area]Cγ.
For an idealized lipid molecule of cylindrical shape, radius R
and length d/2, the area exposed to water is

[area] ≅ 2πR / (d/2). (12)

This tells us that for a single molecule of fixed d, dual chain
lipids are more deeply bound than single chain lipids and
therefore have a lower aggregation threshold.  The exponential
decay in the aggregation threshold implied by Eq. (11)  is seen
experimentally, as summarized in Ref. 9.

From the evolutionary standpoint, Eq. (11) indicates that dual
chain lipids will be used in membrane formation more efficient-
ly than single chain lipids: a higher concentration of single
chain lipids must be achieved than what is needed for dual
chain lipids.  Of course, the pathway for synthesizing single
chain lipids may be shorter than for dual chain, so perhaps cells
had a higher concentration of single chain lipids earlier in the
Earth's history.

Adhesion
Humans are aggregates of 1014 cells, a suitably impressive num-
ber considering there are about 1011 stars in the Milky Way.
Clearly, the construction of multicellular organisms depends
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Bending resistance κb Sheets can be characterized by two prin-
cipal curvatures, C1 and C2, which are the reciprocals of the
local radii of curvature.  For example, the radius of curvature
of a sphere is just its radius R, and C1 = C2 = 1/R everywhere
on the surface.  The simplest expression for the bending energy
associated with the deformation of a surface that is flat in its
native state is [10]

∆F = (κb /2) I (C1+C2) 2 dA + κg I C1C2 dA, (7)

where κg is the Gaussian bending resistance.  The integral
IC1C2dA is independent of the shape of the surface for a given
topology and can be ignored in some situations.  Again, with
some model assumptions, one finds

κb ∝ KAd 2 ~ γd 2, (8)

where the second step follows from Eq. (6).  The proportionali-
ty constant depends on whether the sheet is uniform, or loosely
connected leaflets as in a bilayer [9], and has a value less than
unity, commonly quoted at 1/24 [11].

Edge tension λ When a membrane is punctured by a hole, its
energy generally increases.  Defining the boundary of the hole
to have a length R the change in the membrane energy caused
by the hole is [12]

∆E = λ R (9)

for large holes.  If the membrane were made of a solid material,
then the creation of a hole would expose the hydrocarbon
chains of its lipid molecules to water, corresponding to λ = γd.
However, it is possible that the lipids reorganize themselves at
the hole to connect the inner and outer leaflets, so a section
through a horizontal membrane would look like ⊃, where the
line indicates the locations of the lipid headgroups.  In this
case, the edge tension would be given by λ = πκb / 2d, which
can be reduced to λ ≅ γd /4 if relations (6) and (8) hold.  In
either picture,

λ ~ γd. (10)

Holes need not be circular, and the sampling of oddly shaped
holes reduces the free energy from expression (9) by TS, where
S is the entropy of the ensemble of holes.  Thus, we expect the
membrane may become unstable against the proliferation of
holes as the temperature rises, a conjecture found by simula-
tions [13] to occur at λ ≅ κBT / a, where a is the characteristic
length scale of the hole (for example, its inplane persistence
length).  Taking a to be greater than the membrane thickness,
the instability is predicted to occur at λ < 10-12 J/m.  In con-
trast, the measured [14] values of λ lie an order of magnitude
above this at 10-11 J/m.

Like Goldilocks and the three bears, there is a region for each
of these mechanical parameters that is "just right" for the cell,
given its composition and competitive environment.  In addi-
tion to the mechanical parameters, we also need to consider
membrane permeability, which increases linearly with thick-
ness.  To simplify the discussion, let's reduce the number of
variables to just γ and d by using the model results (6), (8) and
(10).  Table 2 shows how the cell should behave at extreme val-
ues of γ and d:  The boundaries of what constitute "too fragile"
or "too thick" are not straight lines, and depend upon the cell's
environment.

small values large values

γ large KA, hard to stretch small KA, easily stretched

d high permeability
(loses nutrients)

low permeability
(starves)

γ C d small κb, floppy membrane 
small λ, ruptures easily

large κb, stiff membrane
(harder to divide)

TABLE 2
QUALITATIVE BEHAVIOUR OF A CELL EXPECTED

FROM ITS MECHANICAL CHARACTERISTICS
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sensitively on the nature and strength of the adhesion forces
between cells.  One can imagine at least two mechanisms for
adhesion, which will be referred to as site-specific and generic
here.  Site-specific adhesion can arise from proteins on neigh-
bouring cells that can dock with each other.  The resulting
bond is not as strong as a covalent bond, but may have an
energy exceeding 10 kBT, or require a force of 50 pN to break at
zero temperature (see Ref. [16] for a discussion of the meaning
of bond breaking forces at finite temperature).  In contrast,
generic forces arise even between pure bilayers without
embedded proteins just because of their charge distributions.
This does not mean that the bilayers must be oppositely
charged: they can carry the same charge, but be separated by a
polar solvent.  The theory for such forces is well described in
standard sources (for example, Refs. [9] and [17]); under com-
mon conditions, the energy density of such generic forces is in
the range 10-5 J/m2 at equilibrium separations.

What adhesion energy is expected for a pair of cells, assuming
a contact area of 5 µm2?  For site-specific binding at
100 bonds/µm2 and 15 kBT per bond, the adhesion energy is
3x10-17 J.  The corresponding number for generic binding at
10-5 J/m2 is 5x10-17 J, of similar magnitude.  Assuming that the
cell volume is not so large that the membrane has been pulled
tight, is the adhesion energy enough to deform the cell?  Based
on Eq. (7), the energy required to bend a membrane into a
sphere of radius R is 8πκb, ignoring the contribution from the
Gaussian rigidity.  At κb ~ 20 kBT, this bending energy is 2x
10-18 J, an order of magnitude smaller than the adhesion ener-
gy.  In other words, the adhesive forces are generally strong
enough to deform a cell if there is sufficient contact area.

Membrane ripples
In describing the forces between membranes, we have invoked
a picture in which the interacting surfaces are planar.  This is
not generally the case, because of the softness and fluidity of
lipid bilayers.  Just like soft polymers wiggle and squirm
because of thermal fluctuations, so do membranes, although
their detailed behaviour depends on whether they can resist
inplane shear deformations.  Polymerized membranes, which
can resist shear, do undulate although they are flat on long
length scales, meaning that their average inplane size scales lin-
early with their physical length.  A metaphor would be a piece
of paper that has been wrinkled by a fine mist of water: the
inplane size is the length of its shadow on a flat table top, while
the physical length is the distance along the paper following its
ups and downs.  To give this metaphor some mathematical
clothes, define the table top as an xy reference plane and define
the vertical displacement of the paper as its height h(x,y), which
obviously depends on the table-top co-ordinates.  For a poly-
merized membrane of size L x L when pressed flat, the project-
ed length of the paper along the x-axis is linearly proportional
to L.  The mean height <h> scales like L 0.65, meaning that the
ratio of the transverse height to the longitudinal dimension
vanishes as L goes to infinity (see Chap. 6 of Ref. [5]).

Fluid membranes do not behave like this because they have no
resistance to inplane shear: they are not like a sheet of paper
but rather like the coating on your finger after it is dipped in
syrup.  Thus, they can adopt an arbitrary shape without the
folds and creases of a shear-resistant membrane.  They have a
finite persistence length just like flexible polymers.  To describe
the undulations of a membrane, define the local mean curva-
ture Cmean by

2Cmean = - (M2/Mx 2 + M 2/My 2) h(x,y). (13)

The more violently the height rises and falls with x or y, the
larger its second derivative.  From Eq. (7), the bending energy
is proportional to the square of the curvature through

∆E = 2 κb I Cmean
2 dA, (14)

ignoring the Gaussian contribution.  After some mathematics,
the persistence length can be shown to be [18]

ξp = [molecular length] x exp(4πκb / 3kBT), (15)

where [molecular length] is the molecular length scale of the
membrane's components.  One important thing to note about
Eq. (15) is that the persistence length increases exponentially
with the elastic parameter κb, whereas the persistence length of
a polymer increases linearly with the Young's modulus, Y in
Eq. (4).  As one might expect, the thermal fluctuations in the
height

<h 2> / A ~ kBT /κb (16)

grow with temperature.

This rounds out our discussion of the basic mechanical features
of the cell.  We have omitted topics like cell locomotion and
division for the sake of keeping this article focused on the sim-
plest design and construction available to cells (see Ref. [19] for
an introduction to cell motion).  Having described generic
attributes of the cell’s construction materials, let's now turn to
the question "what designs are available for a given cell
shape"?

CATALOGUE OF DESIGNS
The mechanical components described above can give rise to
an impressive variety of cellular shapes and sizes.  If composed
solely of a fluid membrane, the cell boundary can have a shape
that is easily deformed in response to its environment or dur-
ing the final stages of cell division.  However, this ease of
deformation also tells us that some mechanisms or structural
elements, like networks, must be employed if the cell is to have
a largely fixed shape.  In other words, the boundary is not like
a sheet of wood that can be sawn or bent into a particular
shape: the thermal fluctuations of Eq. (16) and the changes
caused by random external forces can both be significant.  The
designs that are described in this section incorporate at least
the fluid boundary of the cell, and a minimal number of extra
components as needed to attain a given shape.  The energetics
of the shape then involve at least Eq. (7).  

Spheres
The fluid membrane bounding a cell is easily bent and unable
to maintain a shape on its own.  However, even a cell whose
only structural element is a membrane can attain a spherical
shape by possessing an osmotic pressure difference ∆P across
its boundary, thus keeping its volume at the maximal value
permitted by the membrane area, 

Vmax = A 3/2 / (6 √π). (17)

In principle, even the slightest elevated osmotic pressure will
generate a sphere (assuming that the enclosed volume can
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shape (with spherical topology) compared to a sphere with the
same surface area, or

vred = 6 √π V /A 3/2. (25)

Numerically solving Eq. (7), one can show that the energy of a
shape rises from the mandatory Esphere at vred = 1, to about
twice Esphere at vred ≅ 0.6.  Now, an energy of 2Esphere is the
deformation energy of two spheres touching, the ultimate prod-
uct of the cell division process.  Before jumping to the conclu-
sion that this is the point at which a cell must divide, note that
the reduced volume of two identical spheres is 1/√2 or 0.71,
notably higher than 0.6.  In other words, a pure bilayer cell can
safely pass below vred = 0.71 without dividing, which would
cost energy to achieve.

Extensive studies [22] have been made of the shapes of synthetic
vesicles (pure bilayers of controlled composition) and the red
blood cell, whose sole structural components are a membrane
and its attached two-dimensional protein scaffolding.  Such sys-
tems have been taken through a large range of vred, past the
biconcave equilibrium shape of the red cell at vred ≈ 0.6 towards
bowl-like shapes (stomatocytes) at very low vred.  These shapes
can be stabilized either by controlling the enclosed volume, or
by modifying the equilibrium curvature of the bilayer.  For
example, if the chemical composition of the inner and outer
leaflets is inequivalent, the bilayer may have an equilibrium
curvature which is not zero, referred to as a spontaneous curva-
ture, Co.  The presence of spontaneous curvature modifies the
κb part of Eq. (7) to read [23]

∆F = (κb / 2) I (C1+C2-Co)2 dA. (26)

One can see that a positive value of Co, corresponding to
"inward" bending, reduces the bending energy, perhaps below
Esphere depending on its magnitude.

Spherocylinders
Many bacterial shapes are approximately cylinders capped at
each end by hemispheres (called spherocylinders by some
researchers).  Defining the cylindrical part to have a length L
and radius R, for an overall length of L + 2R, the deformation
energy of the membrane having such a shape is

Espherocylinder - Esphere = πκb (1 - RCo)2 (L/R), (27)

according to Eq. (26).  For membranes with zero spontaneous
curvature, the energy of a spherocylinder is higher than one of
the ellipsoids of revolution; however, the deformation energy
vanishes if Co = 1/R.  It is difficult to imagine how a fluid bilay-
er alone can preferentially form a spherocylinder rather than an
ellipsoid; in most bacteria, the shape arises from the presence of
the cell wall used to strengthen the bilayer against rupture.  In
modern bacteria, the wall itself is compositionally anisotropic,
with strong glycan (sugar) chains running around the girth of
the cell and floppy protein chains running longitudinally and
linking successive glycans.  This composition permits the bac-
terium to grow without compromising the strength of the wall,
as suggested by the tensor form of Eq. (21).  Although the sur-
face stress is equal to ∆P / 2R isotropically at the end caps, it is
∆P /R around the cylinder and ∆P / 2R along its length.  This
anisotropic stress is familiar from boiled sausages, which split
longitudinally when they absorb too much water.
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accommodate it) but some systems may be less than spherical
at T > 0.  The size of the sphere may be constrained by the
properties of the membrane material.

Small spheres A homogeneous lipid membrane will be
under stress when bent into a spherical shape: the headgroups
and hydrocarbon chains will be displaced from their equilibri-
um density.  Using Eq. (7), the bending energy associated with
the spherical shape is

Esphere ≡ 8πκb, (18)

where the Gaussian term has as usual,  been omitted.  If the
spherical shape is to be stable, this energy must not exceed the
energy of a flat membrane with a circular edge, 2πRλ according
to Eq. (9).  Because the energies of the flat and spherical shapes
depend differently on the radius R, there is a minimum radius
Rmin below which the flat state is favoured, namely [20]

Rmin = 4κb / λ. (19)

Invoking the relationship λ = πκb / 2d, which led to Eq. (10),
we have

Rmin = (8/π) d. (20)

This is not an especially dramatic bound, predicting only Rmin
= 10 nm for bilayers of thickness d = 4 nm.

Large spheres A more useful bound on cell size can be
obtained by considering the stress that the membrane must
bear at elevated osmotic pressure.  For surfaces with principal
curvatures C1 and C2, the law of Laplace [21]

∆P = (C1+C2)τ, (21)

relates the pressure difference ∆P across the membrane to the
two-dimensional stress τ it experiences.  For spheres, this leads
to

τ = R ∆P / 2. (22)

Fluid membranes rupture at just a few percent strain, for which
the corresponding surface stress can be obtained from

τ = [strain] C KA. (23)

Eqs. (22) and (23) can be combined to determine the maximum
radius at which the bilayer can sustain a given ∆P. Taking 3%
strain at failure and KA = 0.2 J/m2 as common values, then

Rmax ≈ 10-2 / ∆P, (24)

where R and ∆P are in MKSA units.  Note that this result is
independent of membrane thickness if Eq. (6) holds.  For exam-
ple, if ∆P = 1 atm = 105 J/m3, the maximum allowable radius is
0.1 µm. Clearly, bacteria with radii of order microns need a cell
wall to sustain pressures of 10 atm or more.

Prolates and oblates
According to Eq. (7), shapes like prolate (cigar) and oblate
(pancake) ellipsoids have higher deformation energies than a
sphere.  To describe these shapes quantitatively, we define a
reduced volume vred as the enclosed volume of a particular
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Tubes
A variety of bacteria grow within a sheath or tube, which is
often a thin layer of strong material.  On theoretical grounds,
such tubes should be relatively straight if they are constructed
with few defects.  Let's calculate the persistence length of a thin
tube according to Eqs. (2) and (4).  For uniform tubes of radius
R and thickness t, the moment of inertia of the cross section is

I ≅ πR 3t (R >> t) (28)

which can be obtained from Eq. (2) by comparing I for solid
tubes of radius R and R+t.  Placing this into Eq. (4) gives

ξp = πR 3tY /kBT, (29)

which demonstrates that ξp grows strongly with radius, even
for hollow tubes.  As a numerical example, suppose that the
tube has R = 1 µm and t = 10 nm, like a modest bacterial cell
wall.  If Y = 107 J/m3, typical of cell wall material but much less
than most protein filaments, the persistence length is predicted
to be an impressive 80 m!  The presence of defects and kinks
will undoubtedly decrease this estimate, but it confirms that
cellular tubes should appear straight on the scale of hundreds
of microns.

Coils
Under what conditions will a tube spontaneously deform into a
coil?  This question is of general interest in molecular biology
because of the presence of coils in large proteins etc.  On meso-
scopic length scales, the coiling instability of multilamellar
tubes has been investigated [24] both theoretically and experi-
mentally.  These are uniform tubes made from concentric lami-
na of lipids - the tubes are "solid" in the sense that they are
composed entirely of lipids, but the lamina themselves are two-
dimensional fluids.  When a particular polymer is attached to
the outside of the tube in the appropriate concentration, it
spontaneously forms a coiled state, said to be maximally tight
in the sense that the repeat distance along the length of the coil
is just the diameter of the multilamellar tube.  A theoretical
model for this phenomenon, based upon equilibrium shapes,
has established that a compositional inhomogeneity (like the
polymer) which is free to diffuse on the surface of the tube,
may cause coiling within a range of densities.  If the polymer is
too dense, the tube's surface again becomes relatively uniform,
suppressing coiling.

For polymerized membranes, one can introduce an inhomoge-
neous composition in which some of the links possess a sponta-
neous curvature (say type C for curved) while others do not
(say type N for normal).  Imagine a triangulated network (all
elementary plaquettes are triangles subtended by six-fold ver-
tices) which has been formed into the shape of a straw, with
one set of bonds forming rings around the tube and the other
two sets spiraling around it at 120o to the rings.  Let's take all of
the diagonal bonds to have type N.  If all the bonds in the ring
set are type N or type C, the tube is straight.  However, for a
range of intermediate concentrations, the tube spontaneously
coils.  Now, it may be a bit much to demand a biological sheath
have this specific composition, but it does provide a mecha-
nism for tubes to form coils spontaneously.

Let's summarize these results.  It is easy to imagine strategies
that can give rise to spheres and ellipsoids using nothing more

than a fluid membrane.  On the other hand, a network or some
way of segregating compositional inhomogeneities is needed to
produce a spherocylinder.  Although we did not discuss mech-
anisms by which a cell might construct a tube, we did establish
that such tubes should have a very long persistence length
compared to their radius.  Designs by which tubes could spon-
taneously coil appear to involve some architectural ingenuity
on the cell's part - certain kinds of compositional inhomo-
geneities may be sufficient for fluid membranes, but more care
must be taken to induce coiling in polymerized membranes or
networks.

CONCLUSIONS
This article began with a look at guidelines for materials and
designs that are part of conventional building codes for resi-
dential construction.  How close are these guidelines to the
building code of the cell?  The raw materials for the cell - at
some level, CO2 and H2O - are certainly readily available on the
Earth's surface, but we did not discuss the synthetic pathways
for the cell's molecular building blocks: are lipids and proteins
energetically inexpensive to produce?  We did show, however,
that only a few specialized materials are needed to create many
cellular designs: fluid membranes and filamentous networks
can generate an impressive variety of fundamental cell shapes.
With their dual hydrocarbon chains, the phospholipids of mod-
ern cells have a low aggregation threshold and are very materi-
als efficient. This is the result of lipids having a strong affinity
for the bilayer phase.  With their hydrophobic cores, bilayers
resist rupture and are self-healing under many conditions.

The catalogue of cell architecture includes many simple designs
such as spheres and ellipsoids.  Not only can these cells propa-
gate through division, they are adaptable to changes in the cell's
environment and permit a cell to double in area and volume
during its lifetime.  Of course, the most evolutionarily
advanced cells are far removed from such simple designs, hav-
ing many internal compartments for specialized tasks as well
as networks for dynamic structural organization.  In this sense,
advanced cells more resemble villages than they do individual
houses.

While the core of Nature's building code has remained the
same for more than 3 billion years, it has been constantly elabo-
rated.  Many of the earliest fossilized cells resemble stacks of
coins [3], with each cell adhering to two opposing neighbours,
like a tower of pancakes (or a Rollo chocolate bar).  By the time
the Earth was half as old as it is today, a broader suite of
designs can be seen - spheres, prolates, multiplets and tubes -
as discovered in microfossils from Canada's Belcher Islands [25].
After another billion years, a variety of robust coils are firmly
established.  As the inventory of fossilized cells continues to
grow, it may be possible to trace the history of various designs
as cells compete for, and exploit, new resources in a changing
environment.
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