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Growth modes of 2-Ga microfossils

Steven Bennett, David Boal, and Hanna Ruotsalainen

Abstract.—By digitally imaging colonies with more than a hundred cells, the distributions of cell
size and shape are determined for four examples of 2-Ga microfossils: bacillus-shaped Eosynecho-
coccus moorei and three dyads or diplococci (Sphaerophycus parvum and two forms of Eoentophysalis
belcherensis). By assuming that each colony obeys steady-state growth, the measured distributions
can be inverted to infer the time evolution of the individual cell shape. The time evolution can also
be predicted analytically from rate-based models of cell growth, permitting the data to distinguish
among different postulates for the physical principles governing growth. The cell cycles are found
to be best described by the exponential growth of cell volume, although linear volume growth is
not ruled out. However, the measured dyad cycles are inconsistent with several growth models
based on surface area or the behavior of the septum at the division plane. Where they have been
measured, modern bacilli obey exponential growth whereas eukaryotics obey linear growth, which
implies that these 2-Ga microfossils are likely prokaryotic.
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Introduction

The record of the emergence of life on Earth
includes isotopic ratios typical of biological
processes (Schidlowski 1988; Mojzsis et al.
1996; Rosing 1999; Shen et al. 2001; for a recent
critique, see van Zuilen et al. 2002) and fossil-
ized cell colonies and other remnants, of
which some have been dated at 3.5-3.0 Ga
(Knoll and Barghoorn 1977; Walsh and Lowe
1985; Schopf and Packer 1987; Schopf 1993;
Rasmussen 2000; Furnes et al. 2004) and oth-
ers at 2.5-2.0 Ga (Barghoorn and Tyler 1965;
Hofmann 1976; Knoll and Barghoorn 1976; Ti-
mofeev 1979). Individual microfossils display
shapes such as ellipsoids, dyads (diplococci,
or pairs of joined spheres), rodlike bacilli, and
filamentous tubes and rods; collectively, they
may be found in loose colonies or dense mats.
Lost during the fossilization process, their in-
ternal architecture is largely unknown com-
pared to the design and construction of mod-
ern cells (Boal 2002). What, then, can be
learned about their mechanical features or cell
cycle when so few of the techniques for prob-
ing modern cells are applicable?

Many taxa of microfossils have been imaged
photographically to permit the determination
of ensemble-averaged quantities such as the
mean cell width or eccentricity. Valuable as
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these averaged quantities are for characteriza-
tion purposes, the underlying probability dis-
tributions of cell sizes and shapes are substan-
tially more informative because they may be
used to infer the cell cycle of the measured
population as described below. At least three
conditions need to be satisfied for such an
analysis to succeed:

1. the shapes must be accurately determined;

2. for conventional microscopy, the random
orientation of cells must be taken into ac-
count;

3. the cell colonies must be sufficiently large
as to obey steady-state growth, such that
the observed cells provide a statistically ap-
propriate sample of the cell cycle.

Digital imaging with a CCD camera lends it-
self to the application of numerical algorithms
that resolve item (1), as will be described be-
low. The formalism needed to accommodate
item (2) is straightforward and described in
the Appendix. As for item (3), there are sev-
eral examples of microfossils in the 2-2.5 Ga
age range where colonies of cells have not
been subject to large-scale shear stress and
can be imaged without excessive background.
In summary, items 1-3 can be addressed, per-
mitting the study of microfossil shape to help
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identify relationships between the architec-
ture and cell cycle of microfossil taxa and their
modern analogues.

A theoretical framework is needed to inter-
pret the inferred cell cycle and expose the
physical and biological principles that drive it.
One starting point for the mathematical de-
scription of a cell cycle would be a set of rate
equations governing the production of molec-
ular building blocks such as lipids and pro-
teins, and their incorporation into the cell’s
mechanical components such as the plasma
membrane or cell wall. In this paper, we de-
scribe these manufacturing and assembly pro-
cesses through a set of empirical rate equa-
tions (for example, various postulates for the
growth rates of the cell area or volume), al-
though we cannot directly establish the actual
magnitudes of the rate constants appearing in
the differential equations. Each rate equation
(such as dA/dt « A", where A is the surface
area of the cell and 7 is a tunable exponent)
leads to a prediction for the time-dependence
of a geometrical attribute such as the cell size
or shape. In other words, although this theo-
retical approach cannot predict the absolute
time scale for the cell cycle, it can predict the
probability distributions for measurable attri-
butes, allowing experiment to select among
various models and principles for cell growth.

Not all geometrical quantities are useful de-
scriptors of the cell cycle. Much of what is
known of the cycle of modern bacteria comes
from studies of uniform cylindrical cells,
whose shapes provide only limited informa-
tion about the cell cycle because their length,
surface area and volume are all roughly line-
arly proportional. That is, a cylindrical shape
cannot discriminate easily among models in
which the cell cycle is driven by one of cell
length, area, or volume, because all three
quantities have similar time dependence.
However, this is not true of dyads, whose vol-
ume is not linearly proportional to cell area or
length. Fortunately, both dyadic and rodlike
cell shapes are common among microfossils,
providing a good laboratory for investigating
the evolution of the cell cycle over several bil-
lion years. What is known so far from modern
cells is that cylindrical bacteria are observed
to extend exponentially with time along their
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FIGURE 1. Examples of Belcher Island microfossils.
Clockwise from the upper left: bacillus-like E. moorei
and dyads EB, S. parvum, and E. belcherensis capsulata.
Scale bar, 5 microns.

symmetry axis (reviewed in Bramhill 1997);
examples include Bacillus cereus (Collins and
Richmond 1962), Escherichia coli (Koppes and
Nanninga 1980), and Bacillus subtilis (Sharpe
et al. 1998). In contrast, the mass of modern
eukaryotic cells increases linearly with time
(Killander and Zetterberg 1965). The reader is
referred to Murray and Hunt (1993) or Hall et
al. (2004) for broader treatments of the cell
growth process.

In this paper, we measure the shapes of four
examples of 2-Ga microfossils collected from
Canada’s Belcher Islands (Hofmann 1976): ba-
cillus-like Eosynechococcus moorei Hofmann,
1976, and three dyads, Sphaerophycus parvum
Schopf 1968, Eoentophysalis belcherensis capsu-
lata Hofmann, 1976, and a cell type that we la-
bel EB (not cataloged in the collection but re-
sembling Eoentophysalis belcherensis punctata
Hofmann, 1976, which is a degradational var-
iant of Eoentophysalis belcherensis). The cell
shapes in this collection appear to have suf-
fered little deformation by geological events
following fossilization; although the cells may
have suffered plasmolysis and degradation,
we assume that this has affected all cells in a
similar way. Figure 1 shows examples of each
cell colony, where the individual cell dimen-
sions are most commonly in the 2-9  range.
These cells grow primarily along their sym-
metry axis, which appears to be randomly ori-
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ented in the colonies studied. In some cases,
the cell interiors contain dark regions which
might be adventurously interpreted as rem-
nants of nuclei but are almost certainly degra-
dational features (Golubic and Hofmann
1976); with an age of about 2 Ga, these cells
originate from the epoch when eukaryotes
were thought to increase in abundance along
with the rise in atmospheric oxygen. We will
show that the cell cycle inferred from the dis-
tribution of cell shapes most closely resembles
the growth of modern prokaryotes.

Containing results from several experimen-
tal, analytical, and numerical techniques, this
paper is organized as follows:

1. Following an introduction to the source of
the microfossil colonies, the image analysis
algorithm is described at length because of
its importance for obtaining accurate shape
distributions.

2. With this imaging technique, the cell shape
characteristics are reported for the four cell
types of interest; all taxa exhibit relatively
constant surface curvature during cell
growth.

3. Five different growth-rate models for the
cell cycle are introduced and solved ana-
lytically. The method for angle-averaging
the cell orientations to permit comparison
with experiment is straightforward, al-
though it must be done numerically in
some situations. We argue that dyadic taxa
are best suited for distinguishing among
various models for cell growth.

4. We show that the cycles of individual cells
in all taxa are consistent with exponential
volume growth, meaning that the rate at
which the cell volume increases is propor-
tional to the cell’s volume (that is, dV /dt «
V). Most other growth models are clearly
inconsistent with the observed distribu-
tions of cell shape, although linear volume
growth is not ruled out.

5. Last, we illustrate how the data can be
probed further by means of a computer
simulation of the cell cycle that could in-
corporate a two-step growth process for
dyads as well as some aspects of experi-
mental uncertainties, etc. As it stands,
more accurate data are needed to make
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quantitative use of the simulation ap-
proach.

Although the focus of this paper is the elu-
cidation of the microfossil cell cycle, neverthe-
less the techniques described are generic and
applicable to any population of cells obeying
steady-state growth.

Material

The microfossils analyzed here are from
cherts collected in the Belcher Islands of Hud-
son Bay by Hans Hofmann (1976) and are cu-
rated at the Geological Survey of Canada
(GSQ). First proposed to contain the fossilized
remains of ancient cells by Moore (1918), the
formations are roughly two billion years old:
the overlying strata are 1.760 £ 0.037 Ga (Fry-
er 1972; recalculated) and the underlying
basement is older than 2.5 Ga. The samples are
drawn mainly from the McLeary and Kase-
galik Formations at several different strati-
graphic levels, as described in more detail by
Hofmann (1976). Found in black chert in stro-
matolitic dolostones, the sedimentary struc-
tures indicate deposition in supratidal, inter-
tidal and subtidal environments undergoing
gradual subsidence. Modern analogues are in-
tertidal and subtidal algal mats and mounds
(Golubic and Hofmann 1976). Hofmann (1975)
argues that these stromatolites are formed by
permineralization of algal mats by amorphous
or gelatinous silica and carbonate, followed by
crystallization and recrystallization. In the 18
thin sections of the collection, Hofmann (1976)
has identified and cataloged examples of 24
cell taxa, some of which may be degradational
products of others.

For the purposes of this analysis, we have
scanned the collection manually for loosely
associated colonies of undistorted cells; large
growth fronts of more than 10* cells were not
included in our analysis, in part because the
cells are distorted by contact with their neigh-
bors. The coordinates of each colony present-
ed here, and the number # of cells or cell pairs
imaged from it, are as follows: Eosynechococcus
moorei (n = 224; GSC42770 at 26.6x, 14.5y);
Sphaerophycus parvum (n = 99; GSC42773 at
17.9x, 10.0y); Eoentophysalis belcherensis capsu-
lata (n = 156; GSC42773 at 17.1x, 8.3y); and an
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uncataloged colony which we will refer to as
EB, similar to Eoentophysalis belcherensis punc-
tata (n = 184; GSC42769 at 38.4x, 20.6y). The
five-digit number is the GSC identification of
the microscope slide, and the xy coordinates
are displacements in millimeters from its up-
per right-hand corner. To gauge the variation
of cell shape with local environment, we im-
aged additional colonies of E. moorei from dif-
ferent locations: (n = 271; GSC42769 at 32.4x,
7.3y) and (n = 76; GSC43589 at 26.2x, 9.9y).
Where the cells in a colony display an axis of
cylindrical symmetry, their orientation ap-
pears to be random; that is, they are not ar-
ranged radially with respect to the center of
the cell colony. The taxa examined appear
commonly in the Belcher Island samples (Hof-
mann 1976) and should not be regarded as un-
usual or exotic; our particular choice of colony
was motivated only by numerical size and
clarity of images.

Methods

Our determination of cell shape distribu-
tions requires an image analysis method that
yields accurate and numerically stable mea-
surements of cell dimensions. Each cell colony
is examined microscopically (Olympus BX51)
with oil immersion objectives of 50X or 100X
magnification at 1 pum steps in the z-direction,
perpendicular to the focal plane. As the colo-
nies may be hundreds of microns across, they
are subdivided into 50-100 pm regions for im-
age capture with a CoolSnap ¢f © CCD cam-
era (Roper Scientific) having pixels of 4.65 pm
to the side. From these regional domains, in-
dividual cell images are extracted, having di-
mensions of 60-250 pixels in a given direction.
To reduce their interference with algorithms
for determining the cell boundary, segments
of nearby cells appearing in an image are re-
moved manually using Adobe Photoshop©
image manipulation software. Obviously in-
complete cells and those near the boundary of
the thin section are discarded to reduce sam-
ple bias (Smith 1968 outlines the problem of
determining the mean dimensions of 200-400
pm diameter grains embedded in thin sec-
tions). Grayscale values of the Cartesian CCD
image are then translated, by using a Monte
Carlo sampling approach, into a polar coor-
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dinate representation with origin at the cell’s
visual center of mass. Commonly, a cell ap-
pears as a dark ring with a light interior, or a
dark disk on a light background; in either case,
the somewhat diffuse outer boundary is about
5-8 pixels thick, across which the grayscale
value decreases away from the cell center
(here, black and white have grayscale values
of 255 and 0, respectively).

A numerical algorithm provides a system-
atic quantification of cell shape and reduces
the likelihood of subjective biases from the ob-
server. Working in the polar coordinate rep-
resentation, the numerical derivative d,, of a
series of grayscale density values g, is deter-
mined simply from d,, = (110 — Si-1.)/2
where i is a radial pixel index at fixed polar
angle o (measured with respect to the vertical
axis of the image). Searching from the coor-
dinate origin, the location of the radial pixel m
with the most negative derivative d,,, is deter-
mined for each o, corresponding to the outer
edge of the cell. From m, the radial location of
the boundary r, at angle o is constructed from
a weighted average of derivative pixels
around m, namely r, = %, r;d,,/2; d;,, where
the radial index j satisfiesm — 2 =j=m + 2
and only negative values of d,, are included in
the sum. Consistent with the dimensions of
the boundary mentioned above, these five pix-
els cover most of the diffuse outer edge of the
cell image. Lastly, the suite of values {r,} for
each cell image is fitted by a Legendre poly-
nomial expansion R(y) = ¥, ¢, P, (cos y), where
the polynomial index satisfies 0 = | = 4 and
where ¢, are coefficients with the dimension of
length. The angle +y is defined with respect to
one of the cell’s symmetry axes (almost always
prolate) obtained by diagonalizing the “iner-
tia tensor” of the cell boundary generated
from {r.}. That is, the representation R(y) is a
continuous function of angle y, which permits
the cell’s shape to be determined more accu-
rately than the discrete set of points {r,}.

The main sources of error in the algorithm
include (1) small irregularities in the cell
boundary on the submicron length scale aris-
ing from the fossilization process, and (2)
slight smearing of the boundary by the CCD
discretization and conversion to the polar rep-
resentation. The extracted boundary typically
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drifts by 1% when the size of the polar bins
is varied, although changes up to £2% are oc-
casionally observed. A change in the coordi-
nate bin size tends to shift the sizes of all cells
in a colony by a similar scale factor, so that the
relative distribution of sizes is less sensitive to
this uncertainty. We find for these images that
32 angular bins and 40 to 50 radial bins pro-
duce robust fits.

Results and Discussion

Our approach to the study of microfossil
cell cycles involves three different toolkits, so
to speak—image analysis, analytical model-
ing, and computer simulation—all reported in
this one section of the paper. To clarify the pre-
sentation, our results are organized into the
following subsections:

a. distributions of cell sizes and shapes as ob-
tained from microfossil images,

b. analytical predictions for these distribu-
tions from rate-based models for cell
growth,

c. determination of cell cycles consistent with
the measured cell colonies, and

d. simulation of correlations in cell shape
which could probe multistep cell cycles.

Of these, subsections (b) and (d) are of general
applicability to equilibrium populations of
cells.

Size and Shape Distributions.—As observed
microscopically for the colonies analyzed, the
three-dimensional shape of each cell or cell
pair appears to have an axis of rotational sym-
metry. Figure 2 shows two views of the same
dyad: the “top view”’ is its appearance as a
pair of overlapping spheres (as seen through
a microscope), whereas the “‘side view’’ is
drawn perpendicular both to the symmetry
axis of the dyad and to the viewing direction
(that is, within the plane of a thin section). The
symmetry axis makes an angle 6 with respect
to the viewing axis. Now, the symmetry axis
seems to be randomly oriented in the samples
studied, such that an average must be per-
formed over 6 when comparing measure-
ments with analytical models; this will be
treated in the following subsection. Generally
speaking, it is easier to predict analytically the
properties of projected shapes of the whole
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Top view

LII LII

FIGURE 2. Definition of projected lengths L, and L used
in the shape analysis of a dyad. The top view is the ap-
pearance of an overlapping cell pair in a dyad as seen
through a microscope. The side view is the same pair as
seen in the plane of the thin section, perpendicular to
the cylindrical symmetry axis of the dyad. The separa-
tion between centers of the spherical caps is s, while 6
is the angle between the symmetry axis and the direc-
tion of observation. The side view shows that the pro-
jected length L, is equal to 2R + s sin 0; the projected
width is L, = 2R, independent of 0. The thick line in-
dicates the junction of the two caps; referred to as the
neck, this junction region is circular with a radius r.

Side view

cell rather than slices through it, particularly
when angle-averaging must be performed. As
a result, we focus on the projected lengths L,
and L, perpendicular and parallel to the cell’s
projected symmetry axis as defined in Figure
2. For a dyad pair, where each subunit has ra-
dius R and their centers of curvature are sep-
arated by a distance s, one can see that L, =
2R independent of s or 0, and L, = 2R +
s-sin 0.

Turning first to the dyadic taxa, a large frac-
tion of cells in these colonies have the appear-
ance of two spherical caps joined at a ring; the
percentage of visible dyads is roughly 45% or
more for all dyadic taxa reported in Table 1.
Dyads with their symmetry axis lying close to
the direction of observation will not appear as
linked cells, but rather as one mildly elliptical
object with a thick boundary, so the measured
fraction underestimates the true fraction by a
small percentage. That these cells spend 50%
or more of their life as dyads indicates that
they are not described by a cell cycle in which
the cell slowly inflates radially like a balloon
before it rapidly contracts along an equatorial
arc to form two daughters; cells in such a cycle
would be dyads for only a small fraction of
time.

We now examine the projected shapes of all
four cell types of interest. The images are ob-
tained by using a microscope objective with a
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Percentage of visible dyads and lengths L, and L, of projected cell shapes for four microfossils colonies

with n analyzable cells or pairs. Data are quoted as (mean) * (o = standard deviation). The mean values are ob-
tained from specific colonies, and may vary from one colony to the next depending on growth conditions.

Visible dyads (L)) (pm) o, /(L) (L (pm) a,/{Ly (L,/L,)
Sphaerophycus parvum (dyads, n = 99)

45 = 7% 2.82 £ 0.28 0.10 3.62 = 0.60 0.17 1.28 £ 0.18
Eoentophysalis belcherensis capsulata (dyads, n = 156)

72 % 7% 4.96 + 0.59 0.12 6.68 = 1.16 0.17 1.35 = 0.18
EB (dyads, n = 184)

43 * 5% 5.90 £ 0.54 0.092 7.63 = 1.24 0.16 1.30 = 0.19
Eosynechococcus moorei (rods, n = 224)

no meaning 2.71 £ 0.31 0.12 3.85 = 0.67 0.17 1.43 £ 0.24

large enough depth of field to capture the
shape as projected onto the viewing plane
(100X for the small E. moorei and S. parvum
and 50X for the larger cells). The observations
are summarized in Table 1, where o is the
standard deviation of a distribution, and #n is
the number of objects in the analysis. The
mean projected width (L,) varies consider-
ably, ranging from just under 3 pm for E.
moorei and S. parvum to 5 pm for E. belcherensis
capsulata and 6 pm for EB. Even though the
colonies represent cells of moderately differ-
ent mean sizes, the ratio of the standard de-
viation of the distribution of L, to its mean (L,)
is quite constant: o,/(L,) = 0.12, 0.10, 0.12,
and 0.092 for the four colonies, in order of in-
creasing (L,). However, the observed distri-
bution is broadened by the fuzzy biological
boundary of the original living cell, the effects
of degradation during fossilization, and the
uncertainties of the measurement process, so
these ratios are an overestimate of the native ra-
tios before cell death. Lastly, we note that the
mean values of these geometric quantities
may drift by perhaps 10% from one colony of
cells to the next for the same taxon, judging
from the behavior we observed for three dif-
ferent colonies of E. moorei. Such differences
are presumably attributable to variation of the
local environments in which the cells grew.
To probe the distributions of L, further, we
repeat the shape analysis on the individual
subunits of dyads using the same colonies as
Table 1. Now, the subunits are captured by us-
ing an objective (100X) having a narrow
depth of field; following image capture, the
boundaries of any connected subunits are re-

moved from the image manually. Comparing
the results with Table 1, we find (L,) = ¢, of
the subunits is: 2.80 = 0.28 wm for S. parvum
(n =78),4.57 = 0.51 pm for E. belcherensis cap-
sulata (n = 279) and 5.89 = 0.47 pm for EB (n
= 155), where L, and o, have the same mean-
ing as Table 1 but n includes individual sub-
units as well as complete cells for those situ-
ations where resolution into subunits is im-
possible. We first observe that (L,) and o, are
fairly similar for both the separated subunits
and the complete dyads of Table 1. This gives
us confidence that our imaging techniques
and analysis are robust, as the two data sets
for each colony were imaged, extracted, and
numerically analyzed independently. Impor-
tant for their interpretation, the distributions
in L, are even narrower than those of the in-
tact cells of Table 1: for the subunits, o, /{L,)
= 0.10, 0.11, and 0.080. As for Table 1, these
numbers overestimate the native ratios before
cell death.

A more informative probe of cell width is
the probability density ?, for the projected
width L,, where 2, has units of inverse length
and is normalized to unity via | 2, dL, = 1.
Figure 3 compares P, of small E. moorei (solid
line) and larger EB (dashed line). Clearly, 7,
does not correspond to a uniform distribution
in L,, even allowing for some smearing aris-
ing from fossilization and measurement ef-
fects. Rather, P, resembles a sharply peaked
native distribution, which has been broadened
by a Gaussian function with ¢ ~ 0.1. Thus, the
ratio o, /(L,) of the subunits and the distri-
bution P, of all taxa both point toward a rather
narrow distribution in cell width during the
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FIGURE 3. Measured probability density 2, of the trans-

verse dimension L, for small bacillus-shaped E. moorei
(solid line, n = 224) and large dyads EB (dashed line, n
= 184). The peaks have about 30 cells per bin, resulting
in a statistical uncertainty of about 20% for ©, at its peak.
Dimensions are microns for L, and inverse microns
for ,.

cell cycle for dyads and for rodlike E. moorei.
This is consistent with o, /(L) ~ 0.10 in mod-
ern B. subtilis, which grows by elongation, not
radial inflation (Sharpe et al. 1998). Measure-
ments of seven taxa of modern diplococcal
and rodlike cyanobacteria yield o, /{L,) = 0.07
to 0.10 (C. Forde and D. H. Boal unpublished
data).

Cells of the microfossil taxa studied here are
not generally spherical in shape, and this is re-
flected in the values of the mean projected
length (L) compared to (L,). As reported in
Table 1, (L) is 30-40% higher than (L,) for the
dyads and E. moorei. A slightly more sensitive
ratio than (L)/(L,) is the ensemble average
(L,/L,) which has the experimental advantage
of lower systematic uncertainties through the
use of the dimensionless ratio A = L;/L, on a
cell-by-cell basis. As seen in Table 1, (A) is ap-
proximately 1.3 for dyads and somewhat more
than 1.4 for rodlike cells; (A) is expected to be
larger for rodlike cells because the cylindrical
section of the cell has a non-zero minimum
value (whereas dyads are pairs of truncated
spheres). Measurements of several modern cy-
anobacteria yield (A) = 1.3 to 1.5 for diplo-
cocci and 1.8 to 2.4 for long rodlike cells (C.
Forde and D. H. Boal unpublished data). Giv-
en that the averaging process includes orien-
tations with small values of 6, the mean pro-
jected length (L) is obviously less than the ac-
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FiGUre 4. Combined data for the probability density
P, of the dyads S. parvum (diamonds), E. belcherensis cap-
sulata (circles), and EB (triangles) compared with the ex-
pectations of growth at constant curvature and expo-
nential increase in volume (solid curve) or area (dashed
curve). The largest values of #, have about 30 cells per
data bin for a statistical uncertainty of about 20% per
individual datum.

tual mean length, and this is particularly true
for rodlike cells. For both dyads and bacilli,
the upper bound on L,/L, is at least 2, so there
should be a broader distribution in L, than in
L,. This behavior can be seen in Table 1, where
the relative width /(L) is about 0.17 for all
examples, compared with o,/(L,) of about
0.11.

Rather than probing the shapes further us-
ing the probability density 2, (with units of in-
verse length), we work with the unitless prob-
ability density ?, generated from A = L,/L,.
In Figure 4, 2, for the three colonies of dyads
is seen to rise rapidly to a maximum exceed-
ing 2, = 2.5 at A near 1 before falling more
gently as A approaches its upper limit of 2 for
linked spheres. In contrast, 2, for the bacillus-
like E. moorei in Figure 5 does not exhibit such
a pronounced peak, rising only to 2, = 1.5;
further, ®, for this rodlike shape persists
above the dyad data at larger A and continues
beyond A = 2 as permitted by geometry. In
both figures, P, is normalized to unity by
§ 2, dA = 1. Comparing Figure 3 with either
of Figures 4 and 5 demonstrates the breadth
of the distribution in L, and confirms the ob-
servation that values for o /(L,) are larger than
those of o, /(L) obtained from the much nar-
rower distribution ?,. We now use P, to dis-
criminate among models for cell growth; we
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FIGURE 5. Measured probability density #, for the ba-
cillus-like E. moorei compared with predictions from ex-
ponential (solid curve) and linear (dashed curve) vol-
ume growth for spherocylinders (B, = 0.2). Statistical
uncertainties as in Figure 4.

return to correlations in L, and L, in a later
subsection.

Models for the Cell Cycle.—In an ideal world,
the measured probability densities # from im-
age analysis would be sufficiently accurate
that they could be numerically integrated to
obtain the time evolution of the cell shape—
the geometrical description of the cell cycle.
Two aspects of the measurement serve to con-
found this approach:

1. the distributions are limited in their accu-
racy, in part because the colonies suitable
for imagery contain only a few hundred
cells; and

2. by measuring projected shapes, one is
forced to include orientational averaging.

The method of choice, then, is to work from
the opposite direction by proposing analytical
models for the cell cycle from which the func-
tions P can be predicted, including orienta-
tional averaging.

To model the cell cycle, we hypothesize a
rate equation for a geometrical quantity (for
example, dV/dt « V, where V is the cell vol-
ume) and solve it to determine the time evo-
lution of the quantity. For an arbitrary cell
shape, the length, surface area, and enclosed
volume each can obey a different rate equation
and hence display different time dependence
during cell growth. However, by imposing
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constraints on the general cell shape, these
quantities become related so that the time evo-
lution of the cell shape depends on the behav-
ior of only one or two independent geometri-
cal characteristics. Specifically, we interpret
o,/(L,) ~ 0.10 of dyad subunits to mean that
the curvature of the cell boundary is fairly
constant during cell growth; this constraint is
sufficient to reduce the number of indepen-
dent variables to just one for both dyads and
spherocylinders. That is, once the time evolu-
tion of just one of separation s(t), area A(t), or
volume V(t) is known, where s is defined on
Figure 2, the remainder are determined by the
constraint of growth at constant curvature.
Mathematically, our approach is to

1. propose a simple rate equation for one of s,
A, V or some other shape characteristic;

2. solve for the time-dependence of that char-
acteristic using the rate equation from (1);

3. determine s(f) using the solution in (2) un-
der the assumption that surface curvature
is constant during growth.

Knowing s(f) from (3), the probability density
P, in s under steady-state conditions can be
calculated from

P, = (dt/ds)/T,, 1)

where T, is the doubling time of the cycle. As
an example, the simplest case for dyads is lin-
ear growth in s, or s(t) = 2Rt/T,; this gives
ds/dt = 2R/T, and hence 2, = (2R)"! from
equation (1). The assumption of steady-state
growth is central to the analysis, as it relates
the probability density to the time evolution of
the cell shape. Most readers encountered a
form of equation (1) when introduced to sim-
ple harmonic motion, where the probability of
observing an object at a given displacement
during an oscillation is inversely proportional
to its speed at that point: an object is more
likely to be observed at a turning point where
its speed is low than at zero displacement
where its speed is high. Equation (1) can be
integrated to confirm the normalization of %,.

For dyads, s and A are linearly proportional
to each other (and thus are not independent),
but not to the volume nor to the radius r of the
circular neck at the division plane. Hence, it is
redundant to consider separate models for s
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and A, rather, we propose several growth
models each of which treats as an independent
variable just one of cell area, cell volume, or
radius r of the septum defining the division
plane. This approach assumes that division is
symmetric and occurs at a unique time T',; as
discussed below, our data are not sufficiently
accurate to isolate and identify the effects of
distributions in division time or daughter size,
as considered by Koch and Schaechter (1962),
Rosenberger et al. (1978) or Sharpe et al.
(1998), for example. With their limited ability
to distinguish among rate models for s, A, or
V, only two growth models are considered for
bacillus-like shapes: either linear or exponen-
tial increase in the volume with time.

Care must be taken to average over the an-
gle 6 of the cell symmetry axis with respect to
the direction of observation, a process that re-
duces the mean projected length. As a simple
example, consider a set of identical thin rods
of length L; and negligible radius. The mean
projected length of a randomly oriented col-
lection of such rods is (L) = {f§ Ly sin 6
d cos 0}/{[} d cos 0} = (m/4)Ly; that is, (L) is
about 20% smaller than L;. Although impor-
tant, this reduction is modest because, in a
random distribution, there are far fewer ““ver-
tical”” orientations (toward the viewer) than
orientations close to the focal plane. As estab-
lished in the Appendix, the angle-averaged
probability density ?, for the dimensionless
projected length A can be obtained from

_ (A — /8]
no f IR

g, (2

where the dimensionless integration variable
B is defined by B = s/2R such that 7, = 2R?P,.
The integration limits are provided in the Ap-
pendix. In other words, once ?, has been ob-
tained for a given model, it leads to a predic-
tion for #, on the basis of equation (2) via ;.
Analytical expressions for #, = 2R, are giv-
en in Table 2 for five different rate-based
growth models, each based on a rate equation
for one of A, V, or r, with growth occurring at
constant curvature (please see the Appendix
for details of the derivation). Two forms for
the rates of change are investigated: (1) con-
stant rate of change, leading to linear time de-
pendence of the observable; and (2) a rate pro-
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TaBLeE 2. Calculated probability density ?, for five
models of dyad growth. To compare these functions
with data from randomly oriented cells, 7, must be av-
eraged using equation (2).

Case Rate equation P,
Linear
I  ds/dt =2R/T, 1
or dA/dt = 4wR?*/T,
I dv/dt = (4wR%/3)/T, 3(1 —B?»)/2
I dr/dt = —R/T, B/(1 — pHY?

Exponential
v ds/dt =sIn2/T,
ordA/dt =AIn2/T,
V. dv/dt=VIn2/T,

1/[(B + 1)In 2]

[(3(1 — p?)/In 2]
+[2+BG - pI]

portional to the characteristic itself, leading to
exponential time dependence. Any of these
linear or exponential approaches could be
plausible under certain conditions; however,
we omit a model with linearly decreasing
neck radius 7, as is justified below. In general,
the angle-averaged ?, does not have a simple
analytical form and must be evaluated nu-
merically by using equation (2). An exception
is linear growth in s or A (ds/dt = 2R/T, for
both) leading from #?, = (2R) ' to P, = 2RP, =
1 as discussed as an example following equa-
tion (1); as a result

P, = w/2 — arcsin(A — 1), [caseI] (3)

according to equation (2). In the next subsec-
tion, the expressions for 2, from Table 2 will
be integrated to obtain 2, and then compared
with measured distributions.

These models can be extended without dif-
ficulty from dyads to spherocylinders, an ide-
alized shape that contains a cylindrical sec-
tion of initial length s,,, capped at each end by
hemispheres of radius R. We assume that the
cylinder first extends from s, to 2s,, after
which the neck constricts while s rises to 2s,
+ 2R at the division point. As the fixed pa-
rameter of this shape s,/ R becomes large, the
time dependence of s, A, and V become ever
more similar, such that the behavior of 2, de-
pends mainly on the form of the growth rate
(i-e., linear or exponential), not the choice of s,
A, or V for its basis. Thus, we narrow our dis-
cussion to volume-based growth, which is
also a good approximation to length- or area-
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based growth. For linear volume growth, one
can easily establish that for spherocylinders:

1
Tﬁ - (2/3 + B()) BO - B - ZBO (43)
(- Ay o
=gy YW=B=2Bt1 W)

where B, = s,/2R and AR = B — 28,. For ex-
ponential volume growth, one obtains

o 1
B (n2)-2/3 + B)]
Bo=B =28, (5a)
o (1—-AB?)
P 2In2-{[1+ ABB — AB2)/2]/3 + B,)
2B, =B =2B,+ 1. (5b)

Both %, and its first derivative are continuous
at B = 2B,.

Comparisons with Data.—The dimensionless
probability density ®?, is now used for com-
paring our measurements against the predic-
tions of Table 2 and equations (4) and (5), after
averaging over observation angle with equa-
tion (2). Because of their better ability to dis-
criminate among cell growth models, we be-
gin with dyadic cells, as shown in Figure 4.
The scatter in the data roughly approximates
the statistical uncertainties in the individual
data points. The most notable feature of Fig-
ure 4 is the strong peak in 2, at small A, ex-
ceeding 2, = 2.5. A successful model must
slightly overpredict the maximum value of the
peak in order to accommodate its reduction
once the smearing effects of experimental un-
certainties are taken into account. As P, is nor-
malized to unity, if a model underpredicts the
data in one range of A, it must overpredict the
data elsewhere. The discussion proceeds case
by case: the first three cases represent growth
that is linear in time, whereas the remaining
two cases are exponential.

Case I: linear growth in area or separation.
Linear time dependence in s or A yields the
same P,. Although it slowly decreases with A,
the predicted ?, is much flatter than the data;
for example, the A = 1 value of equation (3),
namely ?,(1) = w/2 is well below the data of

391

Figure 4 at small A, and necessarily above it
as A — 2. The data do not support the model.

Case II: linear growth in volume. At A =1,
this model predicts that 2, approaches 3w /4
= 2.36, which is barely sufficient for small A;
as in cases I and IV, P, then exceeds the data
as A — 2.

Case III: linear shrinkage of septum radius.
Here, the expression for 2, in Table 2 is peaked
at B = 1 (or s = 2R), the termination of the cell
cycle. Even when angle-averaged, it predicts
that ®, increases with A, certainly in disagree-
ment with all taxa on Figure 4. Exponential
decrease in radius is also in qualitative dis-
agreement with the data, but is not reported
in Table 2.

Case IV: exponential growth in area. As
shown on Figure 4, this model does not pos-
sess the strong peak observed in ?, and is
somewhat higher than the data as A — 2. As
with cases I and III, the data do not support
this model.

Case V: exponential growth in volume.
Only this model possesses both the quantita-
tive and qualitative features of 2, as seen in
Figure 4. It predicts 2,(1) = 3.34; incorporat-
ing experimental uncertainties will reduce the
predicted peak and shift its location above A
=1

Summarizing the results so far for dyads,
the data of Figure 4 agree with case V, do not
rule out case II, but do not support cases I, III,
and IV.

What physical growth mechanisms under-
lie the equations in Table 2? Linear models as-
sume that change occurs at the same rate
throughout the cell cycle no matter what the
contents of the cell. Examples of linear models
can be found in eukaryotic cells, where the
contractile ring may shrink at a constant rate
(Biron et al. 2005) and the cell mass grows lin-
early with time (Killander and Zetterberg
1965). Here, we find that the only linear model
not immediately ruled out by data is case II,
linear rise in volume, for which agreement
with data is marginal at best. Exponential
growth may arise from several different mech-
anistic origins. Case IV corresponds to new
surface being created at a rate proportional to
the area available to absorb new material—a
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FIGURE 6. Scatter plot of (L, L) for 224 cells in the E.
moorei colony reported in Table 1. Dimensions are quot-
ed in microns.

logical possibility but not supported by Fig-
ure 4. Lastly, case V arises if new volume is
created at a rate proportional to the cell’s con-
tents, which is the only scenario to describe
the data comfortably.

Cylindrical cells cannot select among
growth models to the same extent as can dy-
ads, but they are a distinct morphology and
could in principle obey a different mechanism
for growth. Here, quantities such as ?, can dis-
tinguish between linear and exponential
growth only for high statistics data, being gen-
erally insensitive to whether growth is driven
by s, A, or V. The angle-averaged prediction for
P, is displayed in Figure 5 for linear and ex-
ponential growth in volume for 3, = 0.2. Com-
pared with the B, = 0 (dyad) curve in Figure
4, the peak in ?, at A ~ 1 is suppressed for
spherocylinders in Figure 5, and the proba-
bility density is spread to regions both below
the peak, and above A = 2. Accounting for ex-
perimental uncertainties will smear the peak
further. Although the agreement with the data
displayed for E. moorei is not perfect for B, =
0.2, nevertheless the predictions are consis-
tent. The quality of the agreement is degraded
if B, is raised to 0.5. Exponential elongation
has been established with good statistics for a
variety of modern bacilli: B. subtilis (Sharpe et
al. 1998), B. cereus (Collins and Richmond
1962), and E. coli (Koppes and Nanninga
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1 2 3 4 5 6

FIGURE 7. Monte Carlo simulation of a rodlike cell col-
ony with exponential volume growth parametrized by
R = 1.3 pm, s, = 0.5 wm, and experimental uncertainty
o = 0.3 um. The vertical arrow is the idealized growth
trajectory. Dimensions are quoted in microns.

1980), indicating that the exponential growth
mode may have characterized rodlike bacteria
for several billion years.

Correlations of (L,, L;).—To probe further
into the cell cycle we examine the correlations
in L, and L, which are removed when the di-
mensionless variable A = L,/L, is taken. A
scatter plot of (L,, L) from the bacillus-like E.
moorei colony of Table 1 is displayed in Figure
6, where the coordinate origin has been shift-
ed to visually exaggerate the distribution. The
vertical trend is what one would expect from
a model of elongation of a cylinder at constant
width: for cells lying perpendicular to the
viewing axis (§ = m/2), one would expect
(L., L)) to run from (2R, 2R + s;) to (2R, 4R +
2s,). To compare these data quantitatively
with a model, one would have to incorporate
both the random distribution in 6, which will
shift the distribution toward the L, = L, line,
and experimental uncertainties, which tend to
broaden the distribution horizontally (al-
though the behavior is more complex near L
= L, because of the definitions of L, and L)). A
Monte Carlo simulation of the cell cycle in-
cluding these effects is shown in Figure 7; this
is a model with exponential volume growth
and R = 1.3 pm, s, = 0.5 pm (3, = 0.2), and
experimental uncertainty in (L,, L;) governed
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FIGURE 8. Scatter plot of (L,, L) for 156 cells in the E.

belcherensis capsulata colony reported in Table 1. Visible
dyads (doublets) are indicated by open circles, and sin-
glets are displayed as solid disks. Dimensions are quot-
ed in microns. For clarity of presentation, the scale of the
x-axis is double that of the y-axis.

by a normal distribution with ¢ = 0.3 pm. The
vertical arrow indicates the trajectory in the
idealized o = 0 limit. The simulation is seen
to be in qualitative agreement with the data.
Unfortunately, the interpretation of o is cloud-
ed because it represents not just experimental
uncertainty but also effects arising from dis-
tributions in daughter size or division time
(Koch and Schaechter 1962; Rosenberger et al.
1978; Sharpe et al. 1998; see also Koch 1983).

Compared with rodlike E. moorei, potential-
ly more information can be extracted from
scatter plots of (L,, L) for dyads, where the
added feature is classification of the cell ac-
cording to the presence of a visible neck or
junction ring. We will refer to cell pairs with a
visible ring as doublets and without as singlets,
recognizing that physical dyads may appear
as singlets when the orientation angle 6 ~ 0.
A scatter plot of the E. belcherensis capsulata
data is displayed in Figure 8; note that the x
and y scales are inequivalent. The singlets
tend to be distributed along the x = y line, cor-
responding to uniform expansion of the cell
early in its cycle. The doublets are distributed
more vertically, corresponding to the forma-
tion of the symmetry axis and division plane.
For such a two-step picture, the idealized tra-
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jectory for dyads would be a straight line
along x = y starting at (2R, 2R) followed by a
straight, non-vertical line to (2R, 4R). Al-
though the data aren’t strong enough to sup-
port this picture quantitatively, they are nev-
ertheless suggestive. Each dyad colony of Ta-
ble 1 has a different fraction of visible dyads,
and the scatter plots of each colony suggest
that the larger this fraction, the less time is
spent in the initial phase of uniform expan-
sion. Given the ambiguity of identifying visi-
ble dyads when 6 is near zero, we cannot yet
quantitatively assign a time fraction for the ex-
pansion phase. It's worth mentioning that
populations of modern diplococcal cyanobac-
teria display the same qualitative features as
Figure 8 (C. Forde and D. H. Boal unpublished
data): the fraction and distribution of visible
dyads, and the distribution of singlets along
the L, = L, line are similar in both the ancient
and modern cells.

Conclusions

Adopting a digital algorithm for character-
izing cell shapes from good-resolution CCD
images, we have measured size and shape dis-
tributions of two-billion-year-old dyads and
bacillus-like cells. To interpret these distribu-
tions, five different rate-based models were
developed for dyad growth, and two for ba-
cillus growth; the models easily accommodate
numerical averaging over the cell’s orientation
angle with respect to the observer. In this pa-
per, more emphasis has been placed on dyads
than on rodlike bacilli, because the geometry
of the former is more suitable for distinguish-
ing among growth models. For four types of
microfossils, the shape distributions are con-
sistent with exponential volume growth at
constant surface curvature, obeying a rate dV'/
dt proportional to cell volume V: the greater
the cell’s contents, the faster it grows. The data
do not rule out linear volume growth, but they
are inconsistent with linear or exponential
growth in area (or separation s) or with linear
decrease in the radius of the septum. Scatter
plots of (L,, L) demonstrate that dyad growth
may include a short initial phase of uniform
expansion before the axis of elongation ap-
pears. We continue to investigate whether the
extra information contained in scatter plots
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may prove useful in establishing the identity
of microfossils through comparison with
modern cyanobacteria.

Qualitatively, the most important term
driving the shape of these ancient cells is the
increase in the cell’s contents, which the sur-
face area accommodates but does not direct.
The behavior is consistent with exponential
elongation observed in modern cylindrical B.
subtilis (Sharpe et al. 1998), B. cereus (Collins
and Richmond 1962) and E. coli (Koppes and
Nanninga 1980). Linear volume growth as
seen in modern eukaryotes is not dismissed
by the microfossil data, but is certainly less
likely. Thus, the growth modes of these two
morphologically distinct groups of 2-Ga mi-
crofossils (dyads and bacillus-like cells) are
closer to modern prokaryotes than modern
eukaryotes, in spite of the presence of dark in-
teriors in some taxa that might be suggestive
of nuclei.

We have attempted to identify the presence
of a wall at the interface between cell com-
partments by measuring the optical intensity
profile along the symmetry axis of the dyad.
Referring to the orientation of the dyad in Fig-
ure 2 (top view), light traveling through only
one of the subunits in the dyad passes through
two wall regions, whereas light traveling
through the center passes through three. If the
central wall has the same thickness as the ex-
ternal cell wall, then an absorption intensity
profile taken along the symmetry axis of the
dyad should display three minima in roughly
a 2:3:2 ratio, ignoring the angle-dependent
path length of light through the walls. We
have succeeded in analyzing only a handful of
E. belcherensis capsulata and found that the in-
tensity minimum of the overlap region is 0-
70% larger than that of the individual sub-
units. While suggestive, this range is too large
to allow a conclusion to be drawn about the
presence of an internal wall; a technique with
finer resolution than optical microscopy will
most likely be needed to resolve this question.
Further, the use of three-dimensional image
reconstruction would permit the cell shapes to
be determined directly, eliminating the angle-
averaging procedure of the approach taken
here (for example, Grotzinger et al. 2000; Xiao
2002).
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Appendix

The purpose of this appendix is to provide a sketch of the
mathematical steps leading to the analytical distributions in Ta-
ble 2. The starting point for the calculations is an expression for
the surface area or volume of the idealized geometries chosen
to represent the shapes of dyads or bacillus-like cells. Because
it is analytically simpler, dyad geometry is discussed first.

Given the narrow distribution observed for the diameter of
dyads, their assumed geometry will be that of two spherical
caps of fixed radius R intersecting at a ring (or neck) of varying
radius 7, as in Figure 2. The separation between the centers of
the caps is s, which can range from s = 0 at the beginning of the
cell cycle to s = 2R at the division point. It is not difficult to
show that the total surface area A and total enclosed volume V
of the dyad are as follows:
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A = 4mR2(1 + s/2R) = 4wR2(1 + PB) (dyad) (A1)

V = (@mR3/3){1 + (s/2R)- [3 — (s/2R)?]/2}

= (@mR/3)[1 + B- (3 — B?)/2]. (dyad) (A2)

In the limit s = 0, these expressions have their single-sphere val-
ues, and at s = 2R the area and volume are doubled. The com-
bination s/2R appears so frequently in what follows that it is
easier to work with the second representation in equations (A1)
and (A2), where the dimensionless quantity

B =s/2R (A3)

has been introduced. The volume of rodlike cells will be pre-
sented below.

From the viewpoint of measurement accuracy and interpre-
tation, the geometrical attribute of greatest interest is the pro-
jection of the separation s onto the observation plane of a mi-
croscope. Thus, the measurement process yields information on
?,, a probability density (per unit s). The simple example ?, =
(2R) ! for linear growth in s is given in the text; here we describe
the more relevant situation of exponential volume growth

V(t) = V, exp(In2 t/T,). (A4)

In this equation, the volume doubles from its initial value V,in
a time T,. To obtain ?, we assume steady-state conditions such
that 2, = [T,-(ds/dt)]*. As will become obvious momentarily, it
is less cumbersome to work with %, than with 2, for which

Py = [T (dB/dt)] .

The two probability densities are related by #, = (ds/dB)?, =
2R®,, according to equation (A3).

Armed with the time-dependence of the volume in equation
(A4), one can invert either representation of equation (A2) to ob-
tain the functions s(t) or B(t). However, equation (A2) is cubic
in s or B, so the inversion is cumbersome; in fact, it’s unneces-
sary, as all that is needed to solve equation (A5) is the time de-
rivative df/dt. Rearranging equation (A4) to read

(A5)

t = (T,/In 2) In(V/V,), (A6)
and replacing V(t) by equation (A2), one obtains
dt/d@ = (T»/In 2):3(1 — B3/[2 + B3 — B (A7)

Equation (A7) then may be substituted into equation (A5) to ob-
tain

Ty = [3(1 — B?)/In 2]/[2 + B-B — B,

which is the result quoted in Table 2 for exponential volume
growth of dyads.

The idealized shape we choose for representing bacillus-like
cells is the spherocylinder: a uniform cylinder of radius R
capped at each end by hemispheres of the same radius. If the
minimum cylinder length at the start of the cell cycle is s, (where
s is still the distance between the centers of curvature of the end-
caps), then s runs from s, to 2s, + 2R by the time the cell has
doubled at t = T,. Alternatively, B runs from B, (= s5,/2R) to 23,
as the length of the cylindrical section doubles, and then to 23,
+ 1 as two new hemispheres are formed at the division plane of
the cylinder. Expressed in terms of B, the volume of the spher-
ocylinder is

(A8)

V = (4mR*/3)- (1 + 3B/2)

Bo=B =28 (A9a)
V= (4mR?/3)- [1 + ABB — AB?)/2)] + 4mRB,
2By =B =2B, + 1 (A9b)
where
AB = B— 2B, (A10)
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These expressions can be manipulated as above to yield %, al-
though the mathematics is slightly more cumbersome because
of the change in functional form at 23,. Again, it is not necessary
to solve for B(t) or s(t), simply finding their time derivative is
sufficient. However, here it is more convenient to use (dB/dt) =
(dB/dV)-(dV/dt) to derive equation (5) for exponential volume
growth.

In the lab, it may be possible to manipulate cells such that
their symmetry axes lie in observational plane, even if they are
not parallel to each other. In such circumstances, #; or 2, can be
measured directly. However, the microfossil cell colonies that
are studied here have random orientations in three dimensions,
which forces us to average over the angle 0 in Figure 2 (the angle
between the symmetry axis and the viewing axis) when pre-
dicting the distribution of shapes as projected onto the obser-
vational plane. Now, the projected length and width of the ide-
alized shapes here are L, = 2R + s-sin 6 and L, = 2R, respec-
tively, such that the dimensionless ratio A = L;/L, is given by
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A =1+ (s/2R)sin 6 =1 + B sin 6. (A11)

The probability density #, of A is then obtained from #, or #, by
averaging over 0, as in

P, dA = f 7, dB sin 0 d0. (A12)

Using equation (A11) to obtain (dA/d6) = B cos 8 as well as ex-
pressions for sin 6 and cos 6, we can rewrite equation (A12) as

o, = f 2, [B[(A_—WB] ap, (A13)

2 (A — 1)2]1/2

which is equation (2). Note that the integration limits depend on
the value of A chosen for ?,: the lower limit is the larger of A —
1 or B, and the upper limitis 1 + 2.



