Comparing the Rate of Return on Assets between Two Countries: The arithmetic of Chapter 14

The home Rate of Interest is $R_{\$}$. The foreign Rate of Interest is $R_{\$}$ The Spot Exchange Rate is $E_{\$/\$}$ which we shall abbreviate to E. The exchange rate expected in the future is $E^{\$}$.

Take \$1 and compare the return at home, $R_{\$}$, to the return if you were to take the 1\$ abroad and invest in \notin s abroad at R_{\notin} and then bring it back in \$.

\$1(1 + R_s) is what you can earn at home
If you take that money and convert it into Euros, then this gives you [\$1/ E_{s/€}] Euros to invest
Invest your [\$1/ E_{s/€}] Euros for the year meaning that at the end of the year you have [\$1/ E_{s/€}](1+ R_€) Euros.

Take your $[\$1/E_{\$/e}](1+R_e)$ end of year Euros and bring them home at the exchange rate you expect to prevail at the end of the year; E^e : $[\$1/E_{\$/e}](1+R_e) E^e$

Therefore you compare $1(1 + R_{s})$ with $[1/E_{s/e}](1 + R_{e}) E^{e}$. If $1(1 + R_{s}) > [1/E_{s/e}](1 + R_{e}) E^{e}$, then keep your money at home. If $1(1 + R_{s}) < [1/E_{s/e}](1 + R_{e}) E^{e}$, then you take your money abroad. If $1(1 + R_{s}) = [1/E_{s/e}](1 + R_{e}) E^{e}$, then you are indifferent between investment at home or abroad.

This relationship is *approximated* by:

$$\mathbf{R}_{\$}=\mathbf{R}_{\bullet}+\left(\frac{E^{e}-E}{E}\right).$$

In equilibrium the rate of return on domestic assets is equal to the rate of return on foreign assets plus the expected depreciation of the dollar. This approximation follows from:

$$(1+R_{s}) = \left(\frac{E^{e}}{E}\right) (1+R_{e})$$
$$(1+R_{s}) = \left(\frac{E^{e}}{E}\right) + R_{e} \left(\frac{E^{e}}{E}\right)$$
$$(1+R_{s}) = \left(\frac{E^{e}-E}{E}\right) + 1 + R_{e} \left(\frac{E^{e}}{E}\right) - R_{e} \left(\frac{E}{E}\right) + R_{e}$$

$$(R_{s}) = \left(\frac{E^{e} - E}{E}\right) + R_{\varepsilon} + R_{\varepsilon} \left(\frac{E^{e} - E}{E}\right)$$

However, since R_{\notin} and $\left(\frac{E^e - E}{E}\right)$ are both percentage rates, their product is considered to be a second order of small in comparison to the levels of R or $\left(\frac{E^e - E}{E}\right)$. Thus we assume that their product is zero: $R_{\notin}\left(\frac{E^e - E}{E}\right) \rightarrow 0$, and we are left with the relationship in the text:

$$\mathbf{R}_{\$}=\mathbf{R}_{\bullet}+\left(\frac{E^{e}-E}{E}\right).$$