
Topic 3: Probability Theory and Boltzmann Distribution 



The Boltzmann Distribution: 

So far we’ve been talking about 
Ideal gases, but what about real systems 
 
Consider a small system of particles 
that finds itself in a large thermal 
reservoir, that is at fixed temperature 
 
We want to calculate statistical  
properties of this system 
 
Want to find the probability of finding 
the system in each of its possible 
states 
 
We will derive the Boltzmann distribution 



Microstates: 

What we mean, is that the small system can be in a variety of possible  
configurations, each with it’s own associated energy E. 
 
Given that this system is in contact with the thermal reservoir, what is the likelihood 
of observing a particular configuration? 
 
we call these configurations of the small system, microstates 

need to be able to count these 
microstates 



A 

B 

Both systems, A and B are at temperature T 
 
Total energy is constant:  𝐸𝑡𝑜𝑡 =  𝐸𝐴 + 𝐸𝐵 
 
 
Equilibrium:  every state in the combined system 
has energy 𝐸𝑡𝑜𝑡 and so has the same probability 
of occurring 
 
Using this postulate, what does it imply for 𝑃(𝐸𝐴)? 

For A, in a state with energy 𝐸𝐴,  how many states in system B are there? (the one  
that has the most states in B will be the most likely to be observed) 
 
We know the entropy in B: 
 

𝑆 𝐸𝐵 = 𝑘𝐵log (Ω 𝐸𝐵 )   thus the number of states in B is   Ω 𝐸𝐵 = exp (
𝑆 𝐸𝐵

𝑘𝐵
) 

Boltzmann distribution derivation 



Boltzmann distribution derivation 

But we know that 𝐸𝐵 = 𝐸𝑡𝑜𝑡  −  𝐸𝐴, so it depends on the energy in A, so rewrite 
 

Ω 𝐸𝑡𝑜𝑡 − 𝐸𝐴 = exp 𝑆𝐵 𝐸𝑡𝑜𝑡 − 𝐸𝐴  
 
Thus the # of states in B depends on what state A is in. 



Boltzmann distribution normalization 

 𝑃 𝐸 =
1

𝑍
 exp −

𝐸

𝑘𝐵𝑇
   where   𝑍 =   exp (−

𝐸

𝑘𝐵𝑇
)𝐸  

 
commit this equation to memory – you will use it lots 
 
Thus for a system at temperature T, the probability of a state with energy, E 
is given by the above distribution.  The rest is just application of this equation. 



Two state systems: 



Two state system: an ion channel 

𝑡𝐶
𝑡𝑂
= exp −

𝜀𝐶
𝑘𝑇

/exp (−
𝜀𝑂
𝑘𝑇
) 



Boltzmann and chemical kinetics: 

chemical equlibrium occurs when the flow from state 1 to state 2 is the same 
as the flow from state 2 to state 1.  What does this imply? 



Chemical equilibrium: 

So at equilibrium the distribution of particles only depends on the energy  difference 
between the states. 
 
What happened to the energy barrier?  It serves to set how long it takes to reach 
equilibrium.   Larger the barrier, the longer it will take to reach equilibrium. 



Dwell times: 

We’ve just found the likelihood of being in each state, but on average how long will 
you spend in each state?  this is know as the dwell time.   
 
What are the distribution of dwell times?   
 
 𝑃2→1 𝑡 ≡ the probability that you stay in state 2 for a time, t 

exponential distribution 



Dwell times: 

So dwell times are distributed exponentially 

Many reactions occur quickly, but some are 
very slow 

The energy barrier affects the rate.  From Boltzmann    
 
 rate (2  1) = (attempt rate) x (probability of jumping barrier from 1  2) 
 
or 

   𝑘+ =  𝜐 exp (−
𝐸𝐵

𝑘𝐵𝑇
) 

 
so larger barrier  slower rate and longer dwell times  



Generalizing to systems with degeneracies 

Previously, we assumed that the small system had states with energy E, and these  
states had no degeneracy (i.e. there is only one configuration associated with each 
energy E). 
 
But what if there are multiple configurations that have the same energy E? 

E1 

E2 

E3 

# of states, Ω2 

# of states, Ω3 

# of states, Ω1 

Use Boltzmann to calculate, probability of state 1, etc. 
 

𝑃1 =
Ω1exp (−

𝐸1
𝑘𝑇
)

Ω1 exp −
𝐸1
𝑘𝑇

+ Ω2 exp −
𝐸2
𝑘𝑇

+ Ω3exp (−
𝐸3
𝑘𝑇
)
=  
exp [−

1
𝑘𝑇
(𝐸1 − 𝑘𝑇 logΩ1)]

⋯
 

 
so 

 𝑃𝑖 =
1

𝑍
exp (−

𝐺𝑖

𝑘𝑇
)  where  𝑍 =   exp (−

𝐺𝑖

𝑘𝑇
)𝑖    and  𝐺𝑖 =  𝐸𝑖  − 𝑇𝑆𝑖  

entropy, 𝑆1 



Application to RNA folding 

Using an optical tweezer,  
the Bustamante lab looked 
at how a single RNA molecule 
unfolded under different 
applied forces 

different forces 

Measured the probability of 
being folded 
 
Measured dwell times 



Application to RNA folding 

𝐺𝐼 
𝐺𝐼𝐼 

The optical trap does work when the RNA unfolds a distance, ∆𝑧.  So the free energy 
difference between the unfolded and folded in the presence of a force is: 
 

∆𝐺 =  𝐺𝐼 − 𝐺𝐼𝐼 − 𝑓∆𝑧 =  ∆𝐺0 − 𝑓∆𝑧 
 
So the probability of being folded is: 
 

𝑃𝐼𝐼 =
exp −

𝐺𝐼𝐼
𝑘𝑇

exp −
𝐺𝐼𝐼
𝑘𝑇

+ exp (−
𝐺𝐼 − 𝑓∆𝑧
𝑘𝑇

)
=

1

1 + exp (−
∆𝐺0 − 𝑓∆𝑧

𝑘𝑇
 )

 

force, f 

∆𝑧 

work by force = −𝑓∆𝑧 



RNA folding dwell times: 

unfolded 

folded 
record the duration of time spent 
in a given state 
 
histogram these values 



RNA folding dwell times: 

folded 

unfolded 

increasing force 

decreasing force 

Energy barrier 

where, 
 

𝑘+ =  𝜐 exp (−
𝐸𝐵 − 𝑓∆𝑧

𝑘𝐵𝑇
 ) 

 
applying the force lowers the barrier 
between the folded and unfolded 
state. 
 
So in the optical tweezers experiment, 
they can measure the distribution 
and see the effect of force 

Recall, dwell time probability is: 



Summary 

The Boltzmann distribution gives us the ability to calculate the probability 
of observing a system at finite temperature in any particular microstate 
 
This probability only depends on the energy (free energy) of the state 
 
energy barrier affect the kinetics of reaction, not the final equilibrium 
 
dwell times in a particular state depend on the barriers between the states 
 
Optical tweezer experiments can measure directly the equilibrium likelihood 
and dwell times of each state. 


