P847: Problems on random polymers: To be discussed in class on Sept 11.
1)
a) For a 3D random ideal chain, convince yourself that the probability of observing the end to end distance $\vec{r}$ has to be $P(\vec{r})=\left(3 / 2 \pi N a^{2}\right)^{3 / 2} \exp \left(-3 r^{2} / 2 N a^{2}\right)$ given that the probability has to be normalized and that the variance has to be $N a^{2}$.
b) What is the distribution $P(r)$ and where is it peaked?
2) Tethering: Now consider that there is a tether between the beginning and the end of the polymer. What is the distribution $P(r)$ given that there is a tether at $\vec{R}$ ? There are $N^{\prime}$ Kuhn segments of length, $a$, between the tether and the end of the polymer.

3) Confinement: Solve/sketch the solution for the distribution of a confined 1D polymer that is tethered at $x_{0}$. This involves solving the diffusion equation that we derived

$$
\frac{\partial p(x, N)}{\partial N}=\frac{a^{2}}{2} \frac{\partial^{2} p(x, N)}{\partial x^{2}} \text { with the boundary conditions } p(0, N)=p(L, N)=0 \text { and }
$$

$p(x, 0)=\delta\left(x-x_{0}\right)$. Note this is not a probability until you normalize it to unity over the confining region.
4) Hi-C data: Looping probability: Calculate the probability of forming a loop in 3D where the end-to-end distance is within $r<\delta$. How does this scale with length of the polymer, $L$ in 3D?

