Review of Molecular Biology

What is life?

Cells compute:

Can we decipher the biological hardware and software?

- Biological parts self-assemble
- Biological parts are actively transported
- Biological parts interact specifically

These interactions lead to complex spatial and temporal patterns that produce the variety of life

complex behaviour arising within complex interacting systems = the language of physics

The nature and size of things in biology

Two Generic Cell Types:

Prokaryotic Cells:

Eukaryotic Cells:

Figure 2.1b Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 2.16 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Setting some length scales

Figure 2.15 (part 2 of 2) Physical Biology of the Cell, 2ed. (© Garland Science 2013)

- water we're 70% H20
- ions: H+, Na+, Ca2+, K+, etc. used to drive transport, pumps
- sugars glucose, ribose, sucrose substrates for many metabollic reactions
- nucleotides form DNA & RNA
 - ATP (adenosine triphosphate the big energy source of cells)
- amino acids form proteins
- fatty acids chain like molecules that are the basis of lipids that make the membrane

- Lipids are molecules which form membrane bi-layers
- consist of two fatty acids joined by a 'head' molecule of glycerol
- head group likes water, tail does not like water
- Lipids spontaneously self-assemble into membranes
 HYDROPHILIC

Lipids & Membranes: a physics view

Figure 1.7 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

DNA:

Four different nucleotides: A, C, T, G

Figure 1.3b Physical Biology of the Cell, 2ed. (© Garland Science 2013)

The Structure of DNA in Cells:

• How do you pack 1 m of DNA into a nucleus that is 2 μ m in size?

2nm DNA gets wrapped around histone complexes forming what are called nucleosomes (DNA –vely charged & histones are +vely charged)

These then wrap up and pack further and condense

RNA:

Proteins: Amino Acids

• Proteins are polymers built from 20 amino acids

Figure 2.33 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

	Quantity of interest	Symbol	Rule of thumb	
E. coli	<u></u>			
	Cell volume Cell mass Cell cycle time Cell surface area Macromolecule concentration in cytoplasm Genome length Swimming speed	$V_{E.\ coli}$ $m_{E.\ coli}$ $t_{E.\ coli}$ $A_{E.\ coli}$ $c_{E.\ coli}$ $N_{bp}^{E.\ coli}$ $V_{E.\ coli}$	\approx 1 μm ³ \approx 1 pg \approx 3000 s \approx 6 μm ² \approx 300 mg/mL \approx 5 × 10 ⁶ bp \approx 20 μm/s	
Yeast				
	Volume of cell Mass of cell Diameter of cell Cell cycle time Genome length	V _{yeast} M _{yeast} d _{yeast} t _{yeast} N ^{yeast} bp	≈60 μm ³ ≈60 pg ≈5 μm ≈200 min ≈10 ⁷ bp	
Organelles				
	Diameter of nucleus Length of mitochondrion Diameter of transport vesicles	d _{nucleus} I _{mito} d _{vesicle}	≈5 μm ≈2 μm ≈50 nm	
Water				
	Volume of molecule Density of water Viscosity of water Hydrophobic embedding energy	V _{H2} Ο ρ η ≈E _{hydr}	$≈10^{-2} \text{ nm}^3$ 1 g/cm ³ ≈1 centipoise (10 ⁻² g/(cm s)) 2500 cal/(mol nm ²)	

 Table 1.1: Rules of thumb for biological estimates.

Table 1.1 (part 1 of 2) Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Table 1.1: Rules of thumb for biological estimates.

	Quantity of interest	Symbol	Rule of thumb	
DNA				
	Length per base pair Volume per base pair Charge density Persistence length	l _{bp} V _{bp} ^λ DNA ξp	≈1/3 nm ≈1 nm ³ 2 <i>e</i> /0.34 nm 50 nm	
Amino acids and				
proteins				
	Radius of "average" protein Volume of "average" protein Mass of "average" amino acid Mass of "average" protein Protein concentration in cytoplasm Characteristic force of protein motor Characteristic speed of protein motor Diffusion constant of "average" protein in cytoplasm	rprotein Vprotein Maa Mprotein Cprotein Fmotor Vmotor Dprotein	$\approx 2 \text{ nm}$ $\approx 25 \text{ nm}^3$ $\approx 100 \text{ Da}$ $\approx 30,000 \text{ Da}$ $\approx 150 \text{ mg/mL}$ $\approx 5 \text{ pN}$ $\approx 200 \text{ nm/s}$ $\approx 10 \mu \text{m}^2/\text{s}$	
Lipid bilayers				
	Thickness of lipid bilayer Area per molecule Mass of lipid molecule	d A _{lipid} m _{lipid}	≈5 nm ≈ $\frac{1}{2}$ nm ² ≈800 Da	

Table 1.1 (part 2 of 2) Physical Biology of the Cell, 2ed. (© Garland Science 2013)

What does the cell use all these molecules/structure for?

- 1) Storing Chemical Information
- 2) Passing On/Replicating this information
- 3) Processing and calculating with this information

We'll look at each of these steps now

Cellular "states":

• Cellular state is determined by which genes=proteins are "ON"

• Different cell types = different genetic programs that are being run

- The information for running the cellular program is stored in the sequence of DNA
- DNA is like the hard drive of a computer
- It stores information, contains programs that get executed at specific times
- Each protein has a specific sequence in the DNA called a 'gene', and this DNA is called 'coding' DNA, as it codes for messages that make proteins
- The majority of DNA sequence does not code for 'genes' and is called non-coding DNA.
- It is the non-coding DNA which contains the 'programs' which determine what genes will get made at a given time or place
- different cells are running different programs and thus making different sets of genes

The Sizes of the Hard-drives

Bacteria (usually) have single circular chromosome – have many small plasmids

Eukaryotes have multiple linear chromosomes

.haploid = single copy of every chromosome

.diploid = two copies of every chromosome

•polypoid = multiple copies of every chromosome

organism	#	Т	size	genes
virus	1	Н	5kb	10
E. coli	1	Н	5Mb	4,377
S. Cervisiae	16	Н	12Mb	5,570
C. elegans	16	D	100Mb	19,000
A. thaliana	5	D	115Mb	25,498
D. melanogaster	4	D	122Mb	14,000
H. sapiens	23	D	3Gb	25,000

Figure 3.12 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

• 64 codons, with highly non-uniform mapping

UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys
UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys
UUA	Leu	UCA	Ser	UAA	Stop	UGA	Stop
UUG	Leu	UCG	Ser	UAG	Stop	UGG	Trp
CUU	Leu	CCU	Pro	CAU	His	CGU	Arg
CUC	Leu	CCC	Pro	CAC	His	CGC	Arg
CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg
CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg
	*1		TH TH TH TH				
AUU	lle	ACU	Thr	AAU	Asn	AGU	Ser
AUU AUC	lle Ile	ACU ACC	Thr Thr	AAU AAC	Asn Asn	AGU AGC	Ser Ser
AUU AUC AUA	lle Ile Ile	ACU ACC ACA	Thr Thr Thr	AAU AAC AAA	Asn Asn Lys	AGU AGC AGA	Ser Ser Arg
 AUU AUC AUA AUG	lle Ile Ile Met	ACU ACC ACA ACG	Thr Thr Thr Thr	AAU AAC AAA AAG	Asn Asn Lys Lys	AGU AGC AGA AGG	Ser Ser Arg Arg
 AUU AUC AUA AUG GUU	lle Ile Ile Met Val	ACU ACC ACA ACG GCU	Thr Thr Thr Thr Ala	AAU AAC AAA AAG GAU	Asn Asn Lys Lys Asp	AGU AGC AGA AGG GGU	Ser Ser Arg Arg Gly
 AUU AUC AUA AUG GUU GUC	lle Ile Ile Met Val Val	ACU ACC ACA ACG GCU GCC	Thr Thr Thr Thr Ala Ala	AAU AAC AAA AAG GAU GAC	Asn Asn Lys Lys Asp Asp	AGU AGC AGA AGG GGU GGC	Ser Ser Arg Arg Gly Gly
 AUU AUC AUA AUG GUU GUC GUA	lle Ile Met Val Val Val Val	ACU ACC ACA ACG GCU GCC GCA	Thr Thr Thr Thr Ala Ala Ala	AAU AAC AAA AAG GAU GAC GAA	Asn Asn Lys Lys Asp Asp Glu	AGU AGC AGA GGU GGC GGA	Ser Ser Arg Arg Gly Gly Gly

Start

Prokaryotes (Simple):

. Genes in bacteria are organized in operons - one contiguous message RNA is generated

Eukaryotes (Complex):

- . Genes contain coding (exons) and non-coding (introns) sequence
- . Introns are spliced out and exons are assembled to make final mRNA
- . final mRNA is exported out of nucleus and made into protein

Translation:

- Ribosome is big machine that translates mRNA into protein
- In bacteria, Ribosome binds to specific site on mRNA
- . In eukaryotes, Ribosome binds to 5' cap
- translation ends when 'STOP' codon is reached

ribosomes

Figure 3.13 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

How cells get energy

- . Oxidation of food \rightarrow CO2 and H2O and energy
- Metabolism = processes of converting/synthesizing molecules in cells

•Catabolism = breaking down of molecules

•Anabolism = synthesizing of molecules

• Two major energy reserves: sugars, fatty acids
- Most chemical reactions in cells are mediated by proteins called enzymes
- . Enzymes act as catalysts, by reducing the activation barrier between two states

- . Some chemical reactions in cells are energetically unfavourable (e.g DNA & protein synthesis)
- . Couple energetically bad pathway with favourable pathway using enzyme
- favourable pathway is driven by taking energy from energy carriers
- Most pervasive energy carrier is ATP

ATP \rightarrow ADP + P + H20 + (13 kcal/mol = 25 kT)

. DNA synthesis burns 2 ATP

Glycolosis

- . anaerobic
- . converts glucose \rightarrow 2 ATP

Citric Acid Cycle = Krebs Cycle:

- aerobic
- . occurs in the mitochondria
- generates about 30 ATP from a single glucose!!!
- convert about 50% of possible energy (c.f. car ~ 20%)

Numbers of things in cell biology

Why knowing numbers in biology matters?

. Given the vast range of scales and the large variety of parts, its important to have a sense of the numbers of things. · Why? O being able to estimate numbers of parts tete builds intuition. @ allows one to assess what aspects of a given biblical process will be important quantitatively - in complex systems, the things one ignores are as important as the Things that are considered. - models are always incomplete to Quantitative Biology: °0 F=ma $\nabla^2 \mathbf{c} = \mathbf{0}$ Intuition R Quartitative Experiment model building

Figure 2.4 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Some estimates of parts:

· Volume: Vcell ≈ / um 3 = IFL - Area: Acel ~ 6 µm² Cells are crowded: Mass: Mass = density × volume & density H2O x Vcell ≈ lg/m2 × IfL = 1pg Dry mass: Experiment -> Mory ? 0.3 pg = 30% Mass Protein mass: avy protein = 300 amino acids (AA) 1 AA = 100 Da & 1 Da = Mproton = 1,6 x/D-24 hg so average protein mass, Mprotein = (300) x (100 Da) x (116 x10-24 g) = 5 x10-20 g Number of profeins in E. coli : 50% of dry mass is protein from experiment Nprotein = protein mass = 0.15 pg 2 3×10⁶ muss per protein = 5×10-26g

Number of Ribosomes: Expt: 20% of protein mass is contributed by ribosomes Mribosome = 2.5 MDa but 1/3 Ribosome is protein & 2/3 is rRNA NRibosome = (0,2)(0,15 pg) = 20,000 820,000 Da How much volume do ribosomes acupy? $V_{ribosome} = \frac{4}{2} T (10 nm)^3$ 20nm V tot = (20,000) 4 TT(10 mm) 3 ≈ 10 8 mm 3 Ribosome ~ 10% Vall

Table 2.1: Observed macromolecular census of an *E. coli* cell. (Data from F. C. Neidhardt et al., Physiology of the Bacterial Cell, Sinauer Associates, 1990 and M. Schaechter et al., Microbe, ASM Press, 2006.)

Substance	% of total dry weight	Number of molecules
Macromolecules		
Protein	55.0	2.4×10^{6}
RNA	20.4	
235 RNA	10.6	19,000
16S RNA	5.5	19,000
5S RNA	0.4	19,000
Transfer RNA (4S)	2.9	200,000
Messenger RNA	0.8	1,400
Phospholipid	9.1	22×10^{6}
Lipopolysaccharide (outer membrane)	3.4	1.2×10^{6}
DNA	3.1	2
Murein (cell wall)	2.5	1
Glycogen (sugar storage)	2.5	4,360
Total macromolecules	96.1	
Small molecules		
Metabolites, building blocks, etc.	2.9	
Inorganic ions	1.0	
Total small molecules	3.9	

Table 2.1 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

1 nM ~ 1 molecule inside the volume of an E. coli cell

Cells are crowded places

The timing of things: timescales in biology

Biology is not static, it's dynamic!

It has dynamics over a range of timescales

- Q: How do we treat physical systems that have processes that are operating over many different timescales
- A: We choose a timescale of interest and only consider processes that are of the same scale. Faster processes will be considered to be at steady state
 - we'll define this later.

Figure 3.1 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 3.2b Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 3.2c Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Cell movements

Figure 3.2f Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 3.2g Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 3.2h Physical Biology of the Cell, 2ed. (© Garland Science 2013)

The lives of molecules: RNA lifetimes

Figure 3.14 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 3.15a Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Timing estimates

How fast is the replication machinery? are 5x10° bp in E.coli There $rato_{pp} = \frac{5 \times 10^{b} \text{ bp}}{3000 \text{ s}} = \frac{2000 \text{ bp}}{\text{s}}/\text{s}$ Thus v. Origin · In E. coli, 2 DNA polymerases replicate the DNA from I origin in opposite directions · A single DNA polymerase in Ecoli has a rate of 1000 p/s Aside: In higher organisms, DNA polymerase rate ~ 10pp/s and the genomes are much larger Q: now does the DNA ever get replicated in time?

Timing estimates:

what is the rate of profein synthesis. Previously, ~ 3×10° proteins in an E.coli cell rate protein = 3×106 = 1000 proteins/5 Q: what are the mechanical properties of these 6 io machines (DNA polynerase, Ribosomes) that allow them to operate at these rates?

Q: given the # of ribosomes in E. coli, how many proteins per second is ribosome making?

Cell Cycle:

In many biological processes, time is relative.

All that matters is that a task gets completed

So in the cell cycle there are many checkpoints

Figure 3.16 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Building an oscillator

Biophysical Experimental Techniques:

Figure 2.13a Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 2.13b Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 2.13c Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 4.11 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 4.12 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Molecular Biology Experimental Methods:

Chromatography:

. Chromatography is used to separate and purify molecules from a complex mixture

Types:

- Charge = ion-exchange chrom.
- Hydrophobicity = hydrophobic chrom.
- Size = gel-filtration chrom.
- **Binding** = affinity chrom.

Affinity chromatography can be used to elute very pure protein samples

- e.g. DNA for DNA binding proteins
 - antibodies for specific protein
 - protein binding partners
 - engineered tags (HIS, GST)
 - = Co-immune precipitation = CoIP

Gel Electrophoresis

. Used to determine size of biomolecules

· -vely charged molecules move in applied field through gel

 For proteins, SDS(detergent) is used to denature proteins and give them net negative charge
= SDS-PAGE

 2D SDS-PAGE can be used to sort proteins by both size and native charge

DNA manipulation

- Use restriction enzymes to cut specific nucleotide sequences (e.g. Hpal = GTTAAC; EcoRI = GAATTC)
- . Some make blunt ends, some make dangling 'sticky' ends

GGCCTCG	AATTCTCGAC
CCGGAGCTTAA	GAGCTG

- Used to chop up large DNA segments (i.e. Chromosome)
- Used to ligate (join) different DNA fragments -> genetic engineering

• Used to detect quantitative amounts of specific DNA (southern), RNA (northern) or proteins (Western) from a complex mixture (i.e. cellular extract).

Add a labeled probe to the membrane (in buffer solution).

DNA Cloning

- . Replicate specific DNA fragment in large quantities using bacteria
- Fragment is inserted into circular plasmid DNA and transfected into bacteria
- Large collection of bacteria colonies each with different fragmet = library

• Types of libraries = genomic, cDNA

. cDNA library comes only from mRNA

• Use cDNA plasmid to express lots of specific protein = expression vector
Dideoxy method: use special nucleotides that stop growth of DNA --> produces DNA that stops at specific letter positions

Polymerase Chain Reaction (PCR):

. Use 2 DNA primers to pull out and amplify specific region of DNA in a sample

Inside the PCR reaction tube...

• Our chromosomes contain regions of 'satelite' DNA that vary in length – each individual has specific length = fingerprint

• PCR amplify regions and then use gels to measure the lengths -> yields fingerprint

- . Reporter
- . Green flourescent proteint GFP lacZ, labelled antibodies

Imaging II

- . In-situ hybridization measure the presence of mRNA of specific gene
- takes a snapshot of gene pattern use flourescently labelled RNA probe
- Use confocal microscope to image different 2D layers ⊕ ⊕ ⊕ build 3D image

Detecting biomolecular interactions

Interactions II:

Phage Display:

- Phage = virus that infects bacteria. Has an external coat of protein
- . Can fuse foreign proteins to coat proteins of phage
- Used to screen libraries of proteins for specific interaction 2 2 3 drug design

