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Abstract 

Many studies on non-rigid assemblies, or assemblies of non-rigid components, 

suggest that the component variation affects the assembly dimensional quality.  However, 

little is known about how the variation of surface micro-geometry of assembly components 

influences the assembly dimensional quality. In this paper, a new method based on the 

fractal geometry and finite element method (FEM) is proposed to study such an influence. 

In the new method, a special fractal function, named the Weierstrass-Mandelbrot (W-M) 

function, is used to extract and represent the characteristics of the variation of surface 

micro-geometry of assembly components. FEM is applied to analyze the deformation of 

non-rigid assemblies by integrating the variation of component micro-geometry. The 

sensitivity matrix between the component variation and assembly variation is obtained by 

using the existing influence coefficients method.  It is found that contributions of the 

variation of surface micro-geometry of assembly components to the final variation of non-

rigid assemblies could be substantial under certain conditions.  The proposed method is 

illustrated through a case study on an assembly of two flat sheet metal components under 

different fixture releasing conditions.   
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1. Introduction 

            Dimensional quality is one of the most important issues in the assembly of non-rigid 

components, which is widely seen in aerospace and automobile industries such as the 

assembly of auto bodies and airfoils.  A lot of factors in the assembly process, such as the 

component variation, tool variation, fixture layout, and assembly sequence, have impact on 

the assembly dimension variation [1, 2]. For example, an auto body is often composed of 

hundreds of non-rigid sheet metal panel parts. All types of variation accumulate and 

propagate along with the assembly process [3]. Such accumulated variations would affect 

the final quality of the auto body. Unsatisfactory dimensional quality decreases product 

performance, increases warranty costs, and creates many problems, such as rework, rejects, 

and engineering changes. It is thus an important and interesting task to predict the 

dimensional variations of a final assembly during the design and process planning stage 

[1~3].  

          Currently, the variation analysis of non-rigid assemblies has attracted many 

researchers [1~9]. Liu and Hu [4] considered the compliant nature of sheet metal parts and 

proposed an influence coefficients method to analyze the effect of component variation and 

assembly spring-back on the assembly variation by applying linear mechanics and statistics. 

The influence coefficients method was a key technique to get the component stiffness 

matrix.  Camelio et al. [5] successfully extended this approach to model the product 
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variation in multi-station assembly systems.  Hu [3] set up the �stream of variation� theory 

for the automotive body assembly variation analysis. Ceglarek and Shi [6] proposed a new 

variation analysis methodology for the sheet metal assembly based on physical / functional 

modeling of the fabricated error using a beam-based model. Hu et al. [7] developed a 

numerical simulation method for the assembly process incorporating compliant non-ideal 

components. The effects of various variation sources were analyzed. In addition, Heieh and 

Oh [8] represented a procedure for simulating the combined effects of deformation and 

dimensional variation in the elastic assembly. Cai et al. [9] discussed the fixture schemes 

and demonstrated that the N-2-1 fixture scheme was better than the 3-2-1 scheme for non-

rigid assemblies.  

In general, the component variation is recognized as a major problem in elastic 

assembly processes.  A number of methods and tools have been developed to simulate the 

assembly processes and to analyze the assembly variation. However, little is known about 

how the variation of surface micro-geometry of assembly components affects the assembly 

dimensional quality.  

            In this paper, a novel method is proposed to investigate the influence of the 

variation of component surface micro-geometry on the assembly dimensional variation by 

applying the finite element method and fractal geometry.  A fractal function, named 

Weierstrass-Mandelbrot (W-M) function [10~14], is used to extract and represent the 

characteristics of the variation of surface micro-geometry of assembly components. The W-

M function is then used as an input for the finite element analysis to calculate the 

deformation of the final assembly [4, 8]. The contribution of the variation of surface micro-

geometry of assembly components to the final assembly deformation is obtained by the 
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influence coefficients method. The proposed method is implemented by using ANSYS [16, 

17] and Matlab [18, 19], and is illustrated through a case study on the assembly of two flat 

sheet metal components.   

           In the next section, details of the assembly process modeling for non-rigid 

components will be discussed first. Then, Section 3 introduces the fractal geometry, and the 

modeling of component variations of surface micro-geometry by the W-M function. The 

systematic simulation flowchart and a case study on an assembly of two flat sheet metal 

components will be given in Section 4.  Finally, conclusions are given in Section 5.  

 

2. Non-rigid assembly process modeling 

            In order to analyze the non-rigid assembly variation in a typical assembly station, it 

is necessary to model the �real� complex assembly process. One of the most widely used 

approaches to model an assembly process is the mechanistic simulation methodology 

developed by Liu and Hu [4]. This methodology is based on the following assumptions on 

the assembly procedure [3, 4, 5, 7]:  

           1) all of the process operations occur simultaneously; 

           2) the component deformation is linear and elastic; 

           3) the component material is isotropic; 

           4) fixtures and tools are rigid; 

           5) no or negligible thermal deformation occurs during the assembly process; and 

           6) the stiffness matrix remains constant for deformed component shapes. 
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           The assembly processes of components and subassemblies in a typical assembly 

station can be illustrated by Figure 1, and represented by the following steps [4, 5, 7]: 

 

i) Placing components (Fig.1a)  

Components are loaded and placed on work-holding fixtures using a locating scheme 

(Fig.1a). Since the fabrication error of components is a natural phenomenon in component 

manufacturing, the component variation {δu} offset from the design nominal will inevitably 

cause the initial matching gap. Here, index u refers to un-joined components. Cai et al. 

(1996) suggest that it is better to use the N-2-1 (N>3) fixture scheme than the 3-2-1 scheme 

for non-rigid assembly to assure the assembly quality because of the assembly deformation. 

That means, constraining N(>3) DOF (degree of freedom) in the first plane, 2 DOF in the 

second plane,  and 1 DOF in the third plane. 

 

(Insert here: Fig. 1 The non-rigid assembly process) 

 

ii) Clamping components (Fig.1b) 

            The initial matching gap between components and subassemblies is forced to close 

by deforming components to the nominal position. Considering the component stiffness 

matrix [Ku] that could be built through the finite element method, the relationship of the 

required clamping forces {Fu} to the closed gap {δu} can be given by Eq.(1) 

                                      {Fu} = [Ku] {δu}                                  (1) 

 

iii) Joining components (Fig.1c)    
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When using a joining method, such as spot welding, riveting, or gluing, to join two 

components, deformation occurs at each joint point as the gap between components is 

closed. The assembly force {Fu} is still being applied. 

 

iv) Releasing clamps/fixtures and subassembly spring-back (Fig.1d) 

After assembling the two components, the clamps/fixtures are removed. The joined 

components will spring back to release the stored strain energy during the assembly 

operation. It is reasonable to assume that the spring-back force {Fw} is equal to the 

clamping force {Fu}. Therefore, applying FEM to get the component and assembly stiffness 

matrix, the value of spring-back variation {δw} can be calculated by removing displacement 

boundaries both at clamping points and the releasing fixture locations to simulate 

clamps/fixtures release, as described in the following Eqs. (2)~(5): 

           {Fw} = [Kw] {δw}                      (2) 

{Fw} = {Fu}                               (3) 

{δw} = [Kw]-1 [Ku] {δu}            (4) 

{δw} = {Suw}{δu}                     (5) 

Where, {Suw} is the sensitivity matrix. Index u represents the input source of variation and 

w the output measurement points. {Suw} represents the linear mapping relationship between 

the assembly variation and the component variation. 

For a given specific assembly process and station, getting the stiffness matrix [Ku] 

and  [Kw] by using commercial FEM software is the key issue to the assembly variation 

analysis procedure, because most software provides no direct means for users to access and 

operate the FEM stiffness matrix. The influence coefficients method, which is developed by 
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Liu and Hu [4], could be used to indirectly construct the sensitivity matrix {Suw} if the 

commercial FEM software embeds an application-oriented development language. In fact, 

this method uses FEM to compute the stiffness matrix [Ku] and [Kw], and obtains the 

sensitivity matrix {Suw} by Eq. {Suw}= [Kw]-1 [Ku]. The procedure to achieve the stiffness 

matrix of assembly and/or component can be described as follows: a unit force is applied at 

each source of variation with the same direction of the deviation; FEM is then used to 

calculate the response at some specific points; after such response computation for all 

sources of variation, a response matrix can be constructed; the stiffness matrix can be 

obtained by inverting the response matrix since it is symmetric. Details about the influence 

coefficients method are in the reference [4]. 

 

3. Component variation modeling using fractals 

3.1 Introduction of fractal geometry 

             It was the Polish mathematician Benoit B. Mandelbrot who first introduced the 

term 'fractal' (from the latin fractus, meaning 'broken') in 1975 to characterize spatial or 

temporal phenomena that are continuous but not differentiable[13]. Unlike more familiar 

Euclidean constructs, splitting a fractal into smaller pieces shall result in the resolution of 

more structures [14, 15]. Self-similarity is the property that fractal objects and processes 

inherit [14].  

            Fractal properties include scale independence, self-similarity, complexity, and 

infinite length / detail. It is well known that fractal structures do not have a single length 

scale, while a single time scale cannot characterize fractal processes (time series). 
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Nonetheless, the necessary and sufficient conditions for an object (or process) to possess 

fractal properties have not been formally defined [15]. 

           Fractal theory provides methods to describe the inherent irregularity of natural 

objects [14, 15]. In fractal analysis, a constant parameter D, known as the fractal (or 

fractional) dimension, is treated as a relative measure of complexity, or as an index of the 

scale-dependency of a pattern. Excellent summaries of basic concepts of fractal geometry 

can be found in references [14, 15].  

           The fractal dimension is a statistical overall 'complexity' measurement. A 

mathematical fractal is formally defined as any series for which the Hausdorff dimension 

(a continuous function) exceeds the discrete topological dimension [14]. Currently there 

are several kinds of methods, such as box counting, pair counting, and power spectrum 

method to compute the fractal dimension for a given data set [15]. Topologically, a line 

is one-dimensional, that is D=1; the fractal dimension of a plane is D=2; and the 

dimension of a fractal curve is 1 < D < 2, shown in Fig. 2. 

 

(Insert here: Fig. 2   Fractal dimension of typical geometry entities) 

 

          Nowadays, fractal geometry has been widely applied to study the non-linearity and 

complexity of physical, chemical, biological, and/or engineering systems. For example, 

the property of �seashore� can be modeled using fractals. On the other hand, some 

complex patterns can be constructed by using iterative procedures. Fig. 3 shows one 

example of the process for the construction of the Koch Curve [15].  
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Currently, the fractal Brownian motion and fractal Weierstrass-Mandelbrot (W-M) 

function are used extensively in engineering application because their simple forms are 

easily understandable [10~12, 14, 15]. In the next sub-section, the Weierstrass-

Mandelbrot (W-M) function and its application in the component variation modeling will 

be discussed. 

 

(Insert here: Fig.3 An example of the Koch Curve iterated twice [15]. (a) A 

line of unit length. (b) The line increases in length by 4/3. (c) The length 

is again increased by 4/3, so it is now 16/9 of the initial unit length) 

 

3.2 Component variation micro-geometry modeling using W-M 

function 

            It is inevitable that any manufactured component has fabrication variations due to 

uncertainties in manufacturing systems [10, 12]. The maximum and minimum of deviation 

should be identified under strict measurement and control so that the final product can 

satisfy the design requirements. Recent studies show that not only the amount of 

manufacturing variations but also the variation�s micro-geometry influences a component�s 

friction [10, 11]. In this paper, we will model the variation of surface micro-geometry of 

non-rigid components by using the fractal function W-M function in order to numerically 

analyze the effect of the variation of component surface micro-geometry on the final 

assembly dimensional quality. 
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          The variation of surface micro-geometry of assembly components is very complex. 

Experiments show that most engineering surfaces / profiles appear to be irregular, and the 

portion of surfaces / profiles looks similar to the whole as it is amplified [10~12]. Even on a 

very small scale, the surfaces / profiles are obviously irregular. Self-affinity and self-

similarity are the main characteristics of the topography of most engineering surfaces / 

profiles [10]. Therefore, such topography characteristics of a component profile can be used 

to analyze the variation of surface micro-geometry of assembly components.  

         The Weierstrass-Mandelbrot (W-M) function is often applied to study those profiles 

that appear to have self- affinity and self-similarity. The W-M function can be written as 

Eq.(6) [11, 13] 
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Where 

            D:  fractal dimension of the profile 

            G:  scaling constant,  

            rn: frequency modes, which correspond to the reciprocal of the wavelength λ 

                                     rn = 1/λn                                                             (7) 

            n1: corresponds to the low cut-off frequency of the profile under measurement 

                                                 rn1 = 1/L     ( L: profile length)        (8) 

            r : =1.5  ( it is suitable and practicable for general  fractal cases [10~12]) 

          The power spectrum density of the W-M function is very useful for the computation 

of the parameters D and G., and it can be statistically represented as: 
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Eq.(9) indicates that the W-M function power spectrum density follows the power law, 

namely the linear relation between log(S) and log(ω) in  a double logarithm co-ordination. 

Since most engineering profiles are fractal, the fractal dimension D and scaling constant G 

are determined by the power spectrum, and parameters D and G are independent of 

frequency ω, that means they are scale-independent. This is a typical characteristic of 

engineering fractal profiles. 

When given the measured data of variation for a profile, the power spectrum 

density analysis can be applied, and then the logarithmic transformation can be made. On 

the log-log power law plot, the average slope (k) and y-intercept Sy are obtained though 

linear regression algorithms. The fractal dimension D and scaling constant G are most 

commonly estimated from Eqs.(10)~((11): 
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           The fractal dimension D reflects the degree of variation complexity of the 

component surface micro-geometry. The W-M function can be used easily to analyze the 

degree of fractal complexity of the component variation, and to synthesize the component 

variations. The procedure is illustrated in Fig. 4. The synthesized component variation, 

since it is represented by the W-M function, can be easily applied for further analysis of the 

assembly variation. 
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(Inset here: Fig.4   Procedure of component variation modeling by W-M function) 

 

               From the viewpoint of manufacturing, different fractal dimension D corresponds 

to different manufacturing conditions. For example, a grinding profile generally has a 

smaller fractal dimension D than a milling profile [10, 12], while as we know, in general 

the quality of a grinding profile is better than that of a milling profile. Therefore, it is 

possible to make a good manufacturing plan by analyzing the variation of surface micro-

geometry of assembly components. 

 

4. Assembly variation simulation procedure and case studies 

4.1 Assembly variation simulation procedure 

             Based on the four steps of the assembly process of components and subassemblies 

in a typical assembly station (shown in Fig.1) and the method on the component variation 

modeling by using the W-M function, the assembly variation simulation flowchart is 

summarized in Fig.5. 

            The entire analysis procedure shown in Fig.5 consists mainly of two portions. One 

is the variation of surface micro-geometry of assembly components by using the W-M 

function; the other is the four-step assembly process simulation based on the finite element 

analysis method. 

           In fact, the W-M function statistically represents the component variation, and it can 

be one of the displacement boundaries in FEM; thus, the deformation due to component 

variation can be computed through Eq. (5) derived in Section 2. 
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(Insert here: Fig.5 Flowchart of the assembly variation simulation procedure) 

 

          Generally, the FEM model can be created by �map-mesh� with structural elements so 

that the jointed spots are definitely together. The minimum clamping force is dependent on 

the material property and dimensions of the components. Since focus is on the variation of 

surface micro-geometry of assembly components and its contribution to the final product 

dimension variation, it is apparent that the more flexible the component material and the 

smaller the component dimensional size, the more prominent the influence will be. 

Therefore, it is important to study the assembly variation for high flexible assemblies and / 

or mini-machines (for example, MEMS systems). 

           The component joining process is simulated through coupled nodes in the FEM 

model, while the tool releasing process is simulated by removing the displacement 

boundaries at the released clamp / fixture points. The whole assembly process is assumed to 

be non-frictional and linear. 

            For non-rigid assembly, it is often needed to determine a set of points on 

components that should be critical points (CPs) to assure the assembly dimensional quality 

[5~8]. The characteristics of the CPs usually significantly affect the target value of the 

controlled variation, the performance of component function, and customer satisfaction. 

However, it is difficult to decide on the locations of CPs. The determination of CPs relies 

on such factors as the component shape, assembly process, component or subassembly 

performance, and assembly variation requirements [7]. 

           The proposed assembly variation simulation procedure shown in Fig. 5 provides a 

method to analyze the variation of surface micro-geometry of assembly components and its 
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influence on the product assembly variation. It can be implemented by using the software 

ANSYS and Matlab. ANSYS is used to generate the FEM model, to compute component 

deformation and the clamping force, to simulate the joining and releasing process, to 

calculate the spring back, and to get the assembly variation; while the Matlab can be 

applied to develop the program for the component variation analysis and synthesis 

procedures. It is very efficient and fast to obtain the variation of surface micro-geometry of 

assembly components by using the W-M function with Matlab. 

 

4.2  Case study: assembly of two flat sheet metal components  

         An assembly of two identical flat sheet metal components by lap joints is selected as 

an example to verify the proposed approach. Assuming that these two components are 

manufactured under the same conditions, their fabrication variations are expected to be the 

same. The task then is to find the variation at each point in the assembly that corresponds to 

the variation of surface micro-geometry of assembly components.  

 

         1) Component geometry and material 

         The size of the flat sheet metal components used in this case study is 100×100×1mm, 

Young�s modulus E = 2.62e+9 N/mm2 and Poison�s ratio ν = 0.3.  

 

         2) Fixture and joining scheme 

         Due to the flexibility of the sheet metal components, the N-2-1 (N > 3) style of fixture 

[9] is adopted for each component in this example (shown in Fig.6). The positions of 
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symbol �∆� indicate the fixture locations. All pair joint spots (indicated by symbol �x�) are 

simultaneously assembled together.       

 

(Insert here: Fig.6 Assembly of two flat sheet metal components) 

 

3) Component variation modeling 

            A variation signal from the component profile (shown in Fig. 7) is sampled by using 

a Coordinate Measurement Machine (CMM).  During the measurement process, 200 points 

along the profile line AB showed in Fig. 6 are selected to be CMM measurement points. 

For the measured data of the component variation, the mean variation is computed first, and 

then the detailed variation is modeled by using the W-M function. The mean variation is 

found to be 0.5 mm. The log-log power spectrum density of the detailed variation is 

obtained in Fig.8, and the fractal parameters computed from Fig.8 are given in Table 1. The 

variation synthesized by using the W-M function is shown in Fig. 9. The analysis and 

synthesis programs are developed using Matlab. 

 

(Insert here: Fig.7 The sampled component variation) 

 
(Insert here: Fig.8 The log-log power spectrum density of detailed variation) 

 
(Insert here: Table 1   Parameters in W-M function) 

 

(Insert here: Fig. 9 The variation reconstructed by W-M function) 
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         4) FEM modeling 

The finite element computation model of the assembly of two flat sheets, shown in 

Fig.10, is created in ANSYS by assuming that the small elastic deformation does not 

significantly change the component geometry size. The element type is SHELL63. The 

number of elements and the number of nodes are 128 and 162, respectively. There are 9 

pairs of nodes to be connected together in this model, corresponding to the �x� symbols in 

Figure 10.  

  

(Insert here: Fig.10   The FEM model for analyzing the assembly of two flat sheet metal 
components) 

 

         5) Computational results  

         After the FEM model for simulating the assembly process and the variation of surface 

micro-geometry of assembly components are obtained, the assembly variation that results 

from the detailed component variation can be computed by using Eq. (5) derived in Section 

2.  In this example, corresponding to the mean variation and the detailed variation in the 

component profile, the assembly variation distribution (Fig.11) is obtained under three 

different tool-releasing schemes respectively (see Table 2). The computational procedure is 

coded by APDL (ANSYS Parametric Design Language) in ANSYS. 

 

(Insert here: Table 2   Tool releasing schemes) 

(Insert here: Fig.11 Assembly variation corresponding to component variations and tool 
releasing schemes) 
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From Fig.11 a1)~ b3) we can see that the component variation propagation heavily 

relies on the assembly process. Different tool releasing schemes result in quite different 

assembly variation distributions. The complete fixture releasing scheme (Scheme 3 in Table 

2) generates much larger assembly variation than the partially fixture releasing scheme 

(Scheme 2 in Table 2). Therefore, it is necessary to design the assembly process that meets 

the product dimensional tolerance. In addition, the assembly variation caused by the 

detailed component variation is considerable, which is also unsymmetrical even if the 

assembly condition is symmetrical. It is because the variation of surface micro-geometry of 

assembly components is complex and not symmetric, demonstrating fractal characteristics.  

We can determine some CPs in components to check the influence of component 

variation on the assembly dimensional quality. In this example, we suppose that there are 3 

CPs (shown in Fig.10). The assembly variations of these 3 CPs under 3 different tool-

releasing schemes are extracted from computation results (see Fig.11), and are shown in 

Fig.12. It can be seen from Fig.12 that both assembly variations caused by the mean and the 

detailed component variation increase as more fixtures are released.  The contribution of 

the variation of surface micro-geometry of assembly components to the final assembly 

variation is significant for Scheme 3. Thus, the incorporation of the analysis of micro-

geometry of component variation can give a more accurate prediction of the final assembly 

quality.  

 

(Insert here: Fig.12  Assembly variation of 3 CPs. (a) Assembly variation due to the mean 
component variation.  (b) Assembly variation due to the detailed component variation) 
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5. Summary and conclusion 

          Non-rigid assembly is quite different from rigid assembly. Due to the deformation 

that occurs in the assembly process, the product dimensional quality will be affected by 

many factors. One of these factors is the component variation. In this paper, fractal 

geometry is applied to model the variation of surface micro-geometry of assembly 

components.  The influence of the variation of surface micro-geometry of assembly 

components on the final assembly variation is then studied. It is found that different tool 

releasing schemes will produce quite different assembly variation distributions.  With more 

fixtures released, the contribution of the variation of component surface micro-geometry to 

the final assembly variation is getting more significant.  Moreover, the final assembly 

variation could be asymmetrical even under a fairly symmetric assembly condition, if the 

variation of surface micro-geometry of assembly components is taken into consideration.  

Therefore, the assembly variation caused from the variation of surface micro-geometry of 

assembly components should not be neglected in an assembly process plan for high 

precision assemblies. Given the developed method, quality of non-rigid assemblies can be 

more accurately determined. 

           Since the proposed methodology and related tools particularly focus on the 

investigation on the variation of surface micro-geometry of components and its influence 

on final product dimensional quality, it is more applicable for the assembly variation 

analysis of mini-machines that have compliant components. Furthermore, because different 

manufacturing process plans will result in different component variation patterns, the 
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proposed approach can be integrated with process plan methods to optimize the 

manufacturing process plans to meet the product quality requirements.    
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Tables: 

 
Table 1   Parameters in W-M function 

 
D 
(fractal 
dimension) 

G 
(scaling 
constant) 

r 
(constant) 

n1 
(the lowest cut-off 
frequency mode) 

L 
(sample 
length) 

 
         1.55 

 
1.67e-8 

 
1.5 

 
-11.36 

 
100 mm 

 

Table 2   Tool releasing schemes 

Scheme 1 Scheme 2 Scheme 3  

Releasing all clamps Releasing clamps + 

partial fixtures (A, C 

and D, see Fig.10) on 

part1 

Releasing clamps + all 

fixtures (A, B, C and D, 

see Fig.10) on part1 

Assembly variation due 

to mean component 

variation 

Assembly variation 

distribution shown in 

Fig.11 a1) 

Assembly variation 

distribution     shown in 

Fig.11 a2) 

Assembly variation 

distribution shown in 

Fig.11 a3) 

Assembly variation due 

to detailed component 

variation 

Assembly variation 

distribution     shown in 

Fig.11 b1) 

Assembly variation 

distribution    shown in 

Fig.11 b2) 

Assembly variation 

distribution shown in 

Fig.11 b3) 
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Legends for the figures: 

Fig.1 The non-rigid assembly process 

Fig.2 Fractal dimension of typical geometry entities 

Fig.3 An example of the Koch Curve iterated twice [15]. (a) A line of unit length. (b) The 

line increases in length by 4/3. (c) The length is again increased by 4/3, so it is now 16/9 of 

the initial unit length 

Fig.4 Procedure of component variation modeling by W-M function 

Fig.5 Flowchart of the assembly variation simulation procedure 

Fig.6 Assembly of two flat sheet metal components 

Fig.7 The sampled component variation 

Fig.8 The log-log power spectrum density of detailed variation 

Fig. 9 The variation reconstructed by W-M function 

Fig.10 The FEM model for analyzing the assembly of two flat sheet metal components  

Fig.11 Assembly variation corresponding to component variations and tool releasing 

schemes  

Fig.12  Assembly variation of 3 CPs. (a) Assembly variation due to the mean component 

variation.  (b) Assembly variation due to the detailed component variation 
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Fig. 1   The non-rigid assembly process 

 

 

Fig. 2   Fractal dimension of typical geometry entities 

 

Fig.3 An example of the Koch Curve iterated twice [15]. (a) A line of unit 

length. (b) The line increases in length by 4/3. (c) The length is again 

increased by 4/3, so it is now 16/9 of the initial unit length 



 25

 

Fig.4   Procedure of component variation modeling by W-M function 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Flowchart of the assembly variation simulation procedure 
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Fig.6 Assembly of two flat sheet metal components 

 

 

Fig.7 The sampled component variation 
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Fig.8 The log-log power spectrum density of detailed variation 

 

Fig. 9 The variation reconstructed by W-M function 
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Fig.10   The FEM model for analyzing the assembly of two flat sheet metal components  

   

a1)                                               b1) 
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                                   a2)                                                                 b2) 

 

a3)                                                               b3) 

                                 Fig.11 Assembly variation corresponding to component variations and 

tool releasing schemes 
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(b) 

Fig.12  Assembly variation of 3 CPs.  (a) Assembly variation due to the mean 

component variation.  (b) Assembly variation due to the detailed component variation 

 


