
 1

 An Efficient Pareto Set Identification Approach for Multi-objective

Optimization on Black-box Functions
Songqing Shan G. Gary Wang1

1. Abstract

Both multiple objectives and computation-intensive black-box functions often exist simultaneously in

engineering design problems. Few of existing multi-objective optimization approaches addresses

problems with expensive black-box functions. In this paper, a new method called the Pareto set

pursuing (PSP) method is developed. By developing sampling guidance functions based on

approximation models, this approach progressively provides a designer with a rich and evenly

distributed set of Pareto optimal points. This work describes PSP procedures in detail. From testing

and design application, PSP demonstrates considerable promises in efficiency, accuracy, and

robustness. Properties of PSP and differences between PSP and other approximation-based methods

are also discussed. It is believed that PSP has a great potential to be a practical tool for multi-objective

optimization problems.

Key words: Black-box function, multi-objective optimization, Pareto set, Pareto set pursuing,

sampling guidance function

2. Introduction

Modern design problems often involve multiple objectives and are thus treated as multi-objective

optimization (MOO) problems. In general multi-objective optimization (MOO) methods, excluding

methods dealing with uncertainties in MOO, can be roughly categorized into two main classes. The

first class of methods converts a MOO problem into a single-objective problem. Such conversion is

1 Corresponding author, Dept. of Mechanical and Manufacturing Engineering, The University of
Manitoba, Winnipeg, MB, Canada R3T 5V6, Tel: 204-474-9463, Fax: 204-275-7507, Email:
gary_wang@umanitoba.ca

 2

usually achieved by using either explicit or implicit weights, preferences, utilities, or targets. These

methods require a priori selection of weights, preferences, or utilities for each of the objective

functions [1-2]. It can be very difficult to decide which weighting factors should be used in practice for

real problems. In addition, these weights may be inadequate in capturing decision makers’ preferences.

This class of methods provides information for only one design scenario and lacks of a rigorous method

for the weight selection. It is also found that the weighted-sum method is unable to find Pareto points

in non-convex regions in the performance space [2]. This class of methods is recently improved by the

physical programming method [4-6]. The second class of methods tries to identify a set of discrete

points as an approximation of the Pareto optimal frontier for decision makers without pre-assuming

their preferences. The most successful and widely used approaches in this category seem to be

evolutionary algorithms [7-12]. These methods can generate a large number of Pareto points for

decision makers. However, they are usually computationally expensive because a massive number of

non-Pareto set points have to be evaluated. A recent detailed survey of MOO methods can be found in

Ref. [2].

For MOO problems involving expensive analysis and simulation processes such as finite element

analysis (FEA) and computational fluid dynamics (CFD), the use of approximation becomes more

attractive. Since FEA and CFD processes are based on complex and numerous simultaneous equations,

these processes are often treated as “black-box” functions, for which only inputs and outputs are

known. Because the complexity of these expensive processes seems to maintain its pace with

computing advances, the challenge brought by these computationally expensive black-box functions on

optimization should be addressed. For MOO problems involving expensive black-box functions, the

computational burden aggravates. Recent approaches to solve MOO problems with black-box

functions are to approximate each single objective function or directly approximate the Pareto optimal

frontier [13-15]. The accuracy of the Pareto optimal frontier depends on the accuracy of approximation

 3

models. Wilson et al. [13] used the surrogate approximation in lieu of the computationally expensive

analyses to explore the multi-objective design space and identify Pareto optimal points, or the Pareto

set, from the surrogate. Li et al. [13] used a hyper-ellipse surrogate to approximate the Pareto optimal

frontier for bi-criteria convex optimization problems. If the approximation is not sufficiently accurate,

then the Pareto optimal frontier obtained using the surrogate approximation will not be a good

approximation of the actual Pareto optimal frontier. A latest work by Yang et al. [15] proposed the

first framework (as claimed by the authors) managing approximation models in MOO. In the

framework, a GA based method is employed with a sequentially updated approximation model. It

differs from [13] by updating the approximation model in the optimization process. The fidelity of the

identified frontier solutions, however, is still built upon the accuracy of the approximation model. The

work in Ref. [15] also suffers from the problems of the GA-based MOO algorithm, i.e., the algorithm

has difficulty in finding frontier points near the extreme points (the minimum obtained by considering

only one objective function).

This work proposes a Pareto set identification method by “intelligent” progressive sampling. With no a

priori preference is needed, this method could automatically sample near the Pareto optimal frontier

and rapidly converge to the Pareto set. Before introducing the proposed method, some basic yet

important concepts of MOO are reviewed in the next section. The proposed method will be described

and its properties will be discussed in Section 4. Section 5 will present numerical studies on a few

well-known MOO problems. The proposed method is then applied to an engineering design problem,

which will be presented in Section 6. Section 7 will discuss the properties PSP and related issues.

Section 8 gives conclusions and future work.

 4

3. Basic Concepts of Multi-Objective Optimization

Multi-objective Optimization

Multi-objective optimization is a vector optimization problem. A general multi-objective optimization

problem is to find design variables that optimize a vector objective function subject to a number of

constraints and bounds. The multi-objective optimization is often formulized as follows:

Minimize F(x) = {f1(x), f2(x), …,fi(x),…, fm(x)}

 Subject to:

 hj(x) = 0, j = 1, …, q

 gk(x) � 0, k = 1, …, p (1)

 ,u
rr

l
r xxx ≤≤ r = 1, …, n

Where the components of the multiple objective function vector, F(x) = {f1(x), f2(x), …, fm(x)}, are

usually in conflict with one another with respect to their own optima. The design variable vector, x =

[x1, x2, …, xn], consists of all design variables in the problem bounded in u
rr

l
r xxx ≤≤ , r = 1, …, n.

hj(x) are equality constraints and gk(x) are inequality constraints. In this work for the ease of

illustration, we define feasible design space as the set of all design points represented by design

variables that satisfy constraints. Those points within the feasible design space inclusively are called

feasible design points or feasible designs. We define feasible performance space as a set of all

objective function values with respect to every feasible design.

Pareto Set

Pareto set [5] is defined as a set of points of Pareto optimality. A vector of x* is Pareto optimal if there

exists no feasible vector x that would decrease some objective function without causing a simultaneous

increase in at least one objective function. Mathematically, the Pareto optimality is defined as follows:

a vector of x* is a Pareto optimum iff, for any x and i,

)()(,;,...,1),()(** xfxfijmjxfxf iijj ≥�≠=≤ (2)

 5

In general for MOO, the task is to identify Pareto set points. The question is how to judge if a point is

in the Pareto set. To address this question, the fitness function is introduced.

Fitness Function

For a given set of design points, a fitness function is defined as [7]:

lj
sm

i
sm

j
s

i
s

j
s

i
s

ij
i ffffffG))],,,(min(max1[2211 −−−−=

≠
� (3)

Where, iG denotes the fitness value of the ith design; i
skf is the scaled kth objective function value of

the ith design, k = 1,…, m; and l is called the frontier exponent. In this work, l is taken as a constant 1.

The max in Eq. (3) is over all other designs ij ≠ in the set and the min is over all the objectives. The

objectives fs1, fs2, …, fsm in the Eq. (3) are scaled to a range [0, 1]. For example for i
sf 1 ,

min,1max,1

min,1,1

1 rawfrawf
rawfrawfi

s
if −
−= (4)

Where, irawf ,1 denotes un-scaled value of the first objective for the ith design; max,1rawf denotes the

maximum un-scaled value of the first objective among all designs; and min,1rawf denotes the minimum

un-scaled value of the first objective among all designs. In case that an objective function is a constant,

the scaled objective function value i
sf 1 is taken as 1 in this work.

As the fitness function measures relation between points in the performance space and all the objective

function values are scaled to [0, 1], it is not hard to find that for a given set of points following

statements hold true:

� Pareto set points should have a fitness function value in the range of [1, 2].

� Non-Pareto set points have a fitness value in [0, 1); and the higher the fitness function value, the

closer the point to the Pareto frontier.

� When Pareto set points are closely and evenly distributed, the fitness value of all Pareto set

points tends to be 1.

 6

4. Pareto Set Pursing (PSP) Methodology

The goal of PSP is to directly sample many Pareto solutions (points) to approximate the entire Pareto

optimal frontier in an economical manner for MOO problems with computationally expensive black-

box functions. Assuming at the first iteration we start from random sampling for the unknown

problem, it is desirable at the next iteration to sample more points closer to the Pareto frontier than

further away. If the trend continues, we can sample right on or very close to the frontier. Figure 1

illustrates such a desired sampling scheme, which is to be achieved by the proposed PSP method.

Figure 1 An illustration of the desired sampling scheme for PSP.

Before we introduce details of PSP, the sampling guidance function is defined first. How to construct a

sampling guidance function to realize the desired sampling scheme as shown in Figure 1 is a key to

PSP.

Sampling Guidance Function

As we know, there exists many methods in Statistics to generate a sample from a given probability

density function (PDF) [16]. These methods include inverse transformation, acceptance-rejection

�������	
��

������	
��

��

��

������
�����
��

�������	
��

������

 7

technique, Markov Chain Monte Carlo (MCMC), importance sampling, and so on. A recent work is

given by Fu and Wang [17], which can be considered as a Cumulative Density Function (CDF) inverse

method. The goal of such sampling is to generate sample points that conform to a given PDF, i.e. more

points in the area that has high probability and fewer points in the area that has low probability, as

defined by the PDF. Inspired by such sampling, the authors developed a Mode Pursuing Sampling

(MPS) method before [18], which used a variation of the objective function to act as a PDF so that

more points are generated in areas having lower objective function value and fewer in other areas. In

brief, for an expensive black-box objective function, MPS first constructs an approximation model

from a few sample points. It then generates a large number of points from the approximation model,

sorts the points, and constructs a cumulative function analogous to CDF by adding up all the function

values before the current point in the sorted point set. A sample is then drawn from the point set

according to this cumulative function. As a result, more new sample points are generated around the

current minimum and less in other regions in the design space. MPS uses Fu and Wang’s method [17]

to generate a sample from a PDF and is an iterative process. It is in essence a discriminative sampling

method with approved convergence. To generalize the sampling idea of MPS, this work gives the

definition of a sampling guidance function.

A sampling guidance function of a discrete random variable X is described as a function

][)(ˆ ii xXPxz == which satisfies:

(i) 0)(ˆ ≥ixz , for each value xi of X

(ii) representing the nature of the problem

(iii) reflecting one’s sampling goal, and

(iv) expressing prior information if used iteratively

Requirement (i) is to ensure all of the guidance function values are larger than 0, similar to a PDF.

Apparently, a sampling guidance function should represent the nature of the problem and reflect one’s

 8

sampling goal. Thus requirements (ii) and (iii) are then stipulated. If the sampling guidance function is

to be used in an iterative process, another desirable feature of a sampling guidance function is to

express prior information and be adaptive, which is Requirement (iv). One can note that unlike a PDF,

the sampling guidance function doesn’t have to satisfy 1)(ˆ
1

=�
=

k

i
ixz . A PDF can thus be considered as a

special sampling guidance function. The variation of the objective function in MPS [18] is also a

sampling guidance function.

In this work, two types of sampling guidance function are developed. One is for the sampling of

“cheap” points from the approximation model of each objective function. The other is for the sampling

towards the Pareto frontier. Details about these two types of sampling guidance functions will be given

in the description of the PSP procedures.

Procedures of the Pareto Set Pursuing (PSP) Strategy

The following illustrates the procedures of PSP to identify the Pareto set points of an n-dimensional

MOO problem defined by Eq. (1). Steps of the algorithm are illustrated in Figure 2, along with step-

by-step explanations. A well known MOO problem is taken from the literature to facilitate the

explanation of PSP [13].

Minimize: F(x) = {f1(x), f2(x)}

4/)3()5.7(),(2
12

2
21211 +−+−+= xxxxxxf

 2/)4(4/)1(),(2
2

2
1212 −+−= xxxxf

 Subject to: 02/)2(5.2),(2
3

1211 ≥−−−= xxxxg (5)

 0)65.0(885.3),(12
2

12212 ≥−−+−+= xxxxxxg

 50 1 ≤≤ x ; 30 2 ≤≤ x

This problem involves 2 design variables (n = 2) and 2 objective functions (m = 2) with 2 constraints

and variable bounds. Constraints are often handled in many different ways in optimization, e.g.,

 9

penalty or Lagrange methods. They can also be treated as special objective functions as in [19]. A

detailed survey of constraint handling is in [20]. For the MOO problem defined in Eq. (1), if there is

any computation-intensive constraint, we assume that it can be either treated as another objective

function, or can be integrated to existing objective functions as a penalty or Lagrange term. To focus on

PSP but not losing generality, we concentrate on problems in which all of the objective functions are

computationally expensive black-box functions, while constraints are inexpensive functions.

Figure 2 Flowchart of the Pareto-Set-Pursuing Approach

Step 1: Initial Random Sampling and Expensive Function Evaluation.

Initial sample points are used to build an approximation model for each objective function. This work

employs both quadratic polynomial fitting (QPF) and radial basis function (RBF) fitting. QPF is the

No

Start

1. Initial Sampling & Function Evaluation

2. Fitness Computation; Current
Frontier Points Identification

3. Objective Functions’ Fitting; Sampling on Single Objective Functions

4. Combining the Sample Points from Last Step with Current Frontier Points;
Frontier Points Identification from the Combined Point Set

6. Function Evaluation for New Drawn Sample Points

7. Combining New Drawn Sample Points with Expensive Frontier Points from the Last Iteration;
Identification of the New Frontier Set

Stop

8.Convergent?

5. Sampling Frontier Points

Yes

(Expensive)
Black-box
Functions

Call

Call

 10

most widely used response surface model [21]. RBF demonstrates great promise in approximation [22].

Both QPF and RBF are very simple, intuitive, and easy to construct. RBF fitting passes all the

expensive points, prevents unnecessary “curvatures” added to the unknown surface, and preserves the

minimum among the expensive points, i.e., },,1),({min)(ˆmin)(kixfxf i
�== because its linearity

nature. This feature ensures that more expensive points are generated around the current minimum of

f(x), rather than being biased because of the approximation model)(ˆ xf . Comparatively QPF fitting

smoothes the sample data by a quadratic model; it is thus not absolutely loyal to the sample data and

does introduce “curvature” to the data. These two sampling methods are automatically alternated

during the sampling procedure based on a criterion that will be explained later. It is to be noted that

PSP does not dictate the exclusive use of the two models. Moreover, the accuracy of the

approximation model, as will be discussed later in Section 7, is less important in PSP than its common

use in conventional approximation-based optimization.

An n-D quadratic polynomial model [21] is usually expressed by Eq. (6).

� � ��
= = < =

+++=
n

i

n

i ji

n

j
jiijiiiii xxxxxf

1 1 1

2
0)(ˆ ββββ (6)

Where ij and ,, βββ iii represent regression coefficients,)1(, nixi �= are design variables, and)(ˆ xf

is the response. RBF has many forms. This work uses its simplest form, i.e., using k function values

f(x(1)), f(x(2)),…, f(x(k)) to fit a linear spline function

�
=

−=
k

i

i
i xxxf

1

)(||||)(ˆ α , (7)

such that)()(ˆ)()(ii xfxf = , i = 1, 2,…, k. Where iα denotes the regression coefficients and)(ix

represents the coordinates of the ith sample point. For both QPF and RBF models, the number of initial

random sample points is chosen as the minimum number needed to build a full quadratic

approximation model, (n+1)*(n+2)/2, where n denotes the number of variables. After random

 11

sampling (n+1)*(n+2)/2 number of points, expensive black-box functions are called to evaluate these

sample points. The number of the so-far evaluated sample points np at the end of the first step thus

equals to (n+1)*(n+2)/2. For the example problem, 6 points for objective functions f1 and f2 are

generated in random in the design space (50 1 ≤≤ x and 30 2 ≤≤ x). The points are evaluated

expensive points and are plotted in the performance space in Figure 3.

Step 2: Fitness Computation and Current Frontier Points Identification

By using Eq. (3), the fitness value of the evaluated initial sample points are computed and the current

frontier points can be identified according to their fitness function values. The average fitness value of

all the current frontier points is also computed as it is used as part of the convergence criterion. It is to

be noted that the current frontier is to be updated as the procedure continues. In Figure 3 P1, P2, and P3

are identified as the current frontier points. Approximation models for both f1 and f2 are then generated

by using Eqs. (6) or (7).

Figure 3 Initial points generated for the example problem with identified current frontier points.

 12

Step 3: Objective Functions’ Fitting and Sampling on Single Objective Functions

The goal of this step is to generate a large number of “cheap” points from each approximation model

independently, in preparation for the sampling of the frontier points in the performance space. First we

use the np evaluated function values fi(x(1)), fi(x(2)),…, fi(x(np)) (i =1, 2, …, m) to gain the coefficients of

the approximation model)(ˆ xf i , a n-D quadratic polynomial model Eq. (6) or a linear spline function

Eq. (7). We could perform random sampling to get the desired large number of “cheap” points.

Alternatively, we could put a greater emphasis on points having smaller function values for each

objective in order to identify end points on the Pareto frontier. Therefore, we then construct a sampling

guidance function for the ith objective function,)(ˆ xzi = c0 -)(ˆ xf i , c0 �)(ˆ xf . It is easy to see that

)(ˆ xzi is always positive; it is a linear transformation of its approximation function)(ˆ xf i ; it reflects the

goal to sample more points in regions that)(ˆ xf i has smaller values; and as)(ˆ xf i is built from so-far

evaluated expensive points,)(ˆ xzi can thus adapt to increasingly richer information. Therefore,)(ˆ xzi

satisfy all of the four requirements for the sampling guidance function; and it is the first type of

sampling guidance function used in this work. The other type is for the sampling of frontier set points

which will be discussed later.

An equal number of sample points, e.g., 100, are drawn independently according to each objective

function’s sampling guidance function)(ˆ xzi . As a result, we will have m×100 number of cheap points.

It is to be noted although there are more sample points drawn from function fi having small function

values of fi, these points might have large function values of fj, ji ≠ , and vice versa. If the point

leading to min(fi) is identified, this point will be at one of the vertices of the Pareto frontier in the

performance space and is usually called an extreme point. Therefore, by independently pursuing the

minimum of each objective function, we have a mixture of m×100 points potentially covering all of the

 13

extreme points on the Pareto frontier. By doing so, the difficulties of GA-based algorithms in

identifying extreme points as found in [15] can be overcome.

Step 4: Combining the Sample Points from Last Step with Current Frontier Points; Frontier

Points Identification from the Combined Point Set

This step is to prepare for sampling new frontier points. First sample points drawn at Step 3 are

combined with current frontier points for the recalculation of the fitness value of all points in the

combined set. It is to be noted that current frontier points are evaluated expensive points, their real

function values are used in the fitness computation. Sample points drawn from Step 3 are not evaluated

from expensive black-box functions; their respective)(ˆ xf i function values will be used instead for the

fitness value computation. Sample points drawn from Step 3 are used to enrich the information for the

construction of a sampling guidance function for the next step, though their function values are only a

prediction from the approximation model. Then the fitness function values are computed by using Eq.

(3). For the combined point set, points having a fitness value larger than or equal to 1 will be used for

the sampling in the next step. Other points are discarded as these points are likely non-frontier points.

Step 5: Sampling Frontier Points

The frontier points obtained from Step 4 are the “best” points among all of the existing points in terms

of the possibility of becoming Pareto set points. Frontier points are different from Pareto set points as

the former may turn to be non-frontier points if new points (designs) are added as the sampling process

iterates. Converged frontier points are deemed Pareto set points in this work. For the frontier points

obtained in Step 4 whose fitness value is larger than or equal to 1, define

1))],,,(min(max1[1)(ˆ 2211 −−−−−=−=
≠

lj
sm

i
sm

j
s

i
s

j
s

i
s

ij
i ffffffGxz � .)(ˆ xz is nonnegative and

represent the nature of the problem because it is compounded from fi(x) and)(ˆ xfi . It is also used to

sample more points in regions at which the fitness value is higher, because the higher the fitness value,

 14

the more likely Pareto set points exist. Thus this)(ˆ xz function reflects our sampling goal. Since it is

built on fi(x) and)(ˆ xfi , it adapts to increasingly richer information as more sample points are evaluated.

Therefore)(ˆ xz satisfies all four requirements and it is in fact the second type of sampling guidance

function in this work. Assuming L frontier points are obtained from Step 4, a random sample x(np+1)
,

x(np+2), …, etc. from the L frontier points are drawn, guided by the)(ˆ xz function. To determine the

number of to-be-drawn points, a simple heuristics is used in this work. If the ratio of L and the number

of the current frontier points in the last iteration is less than 2, L points are drawn. If the ratio is

between 2 and 4, the same number of the current frontier points is drawn. Otherwise, a double number

of the frontier points in the last iteration are drawn. All the new sample points form a new sample set.

If the drawn points have been evaluated before or repetitive, they are discarded from the new sample

set to avoid re-evaluation.

Step 6: Function Evaluation for New Sample Points

The points in the new sample set obtained from Step 5 are evaluated by calling expensive black-box

functions.

Figure 4 Sample points at the end of the 1st iteration for the example problem.

 15

For the example problem, in total 200 cheap points are generated independently from each

approximation model at Step 3. These 200 points are also evaluated by all the approximated objective

models. They are then combined with points P1, P2, and P3 to calculate fitness function values. Among

all these points, points having fitness values larger than or equal to 1 are chosen as a new point set.

New samples are drawn from this point set as shown in Figure 4 by performing Step 5. The ‘+’ symbol

indicates locations of the new sample points PN1, PN2 and PN3, after expensive function evaluations.

Step 7: Combining New Sample Points with Expensive Frontier Points from the Last Iteration

and Identification of the New Frontier Set

At this step, the newly evaluated sample points PN1, PN2 and PN3 are then combined with formerly

evaluated expensive frontier points P1, P2, and P3 shown in Figure 3. Fitness values of this combined

point set are then calculated and the frontier points are identified as the final frontier points of this

iteration. It is easy to see that PN1, PN2 and PN3 will replace the previous P1, P2, and P3 as the new

frontier points. All of the final frontier points are evaluated expensive points. All points evaluated by

expensive function evaluations, in this case PN1, PN2, PN3 and the initial 6 points, will participate the

modeling of each objective function at the 2nd iteration.

Step 8: Checking Convergence

If the convergence criteria are met, the procedure terminates; otherwise, back to Step 3. Figure 5 shows

all of the evaluated sample points and converged frontier points with respect to the feasible

performance space for the example problem. As one can see that the converged frontier points override

the real Pareto frontier, even at the singular point at the left upper corner. These points also distribute

closely and evenly across the entire curve. The ratio of Pareto points obtained over the total number of

sample points is high. Since the proposed method calls random processes, 10 independent runs have

 16

been carried out. Similar accuracy and efficiency have been achieved in all of the 10 runs. Detailed

results on this test function will be reported in Section 5.

Figure 5 Performance space, evaluated points, and Pareto set points for the example problem.

Convergence criteria

Because no property of a black-box function is available, it is unlikely to develop a rigorous

convergence criterion such as Kuhn-Tucker conditions. Many direct search algorithms use the

maximum number of iterations or allowable budget as the criterion, e.g., [23]. This work applies two

convergence criteria. The first can be thought of as a criterion along the vertical direction, which

measures the progress of iterations. It is similar to the one used in [15], i.e., the difference between

frontier points after two consecutive iterations is sufficiently small. Assuming (PS)k is the frontier

point set at the k-th iteration, n(PS)k,k+1 is the total number of points in (PS)k that also exist in (PS)k+1,

and n(PS)k+1 is the total number of points in (PS)k+1. Then 95.0
)(

 n(PS)

1

1k k, ≥=
+

+

kPSn
ρ is used as the first

convergence criterion, which means most frontier points identified in the last iteration are also in the

current frontier and therefore only few new frontier points are found. The second criterion can be

 17

considered as a convergence criterion in the horizontal direction, which measures the closeness and

distribution of Pareto points on the frontier at the last iteration. Referring to the fitness function

defined in Eq. (3) and its properties, when Pareto points are closely and evenly distributed, the fitness

value of all Pareto set points tends to be 1. Therefore, in this work we set the average fitness value of

all the current frontier points, �
=

=
L

i
iG

L
G

1

1
, close to 1 as an additional convergence criterion, where L

is the number of frontier points in the last PSP iteration. In practice, we use)001.1or(02.11 ≤≤ G .

This criterion ensures the Pareto points spread over the frontier, a desired property supported by many

researchers [2, 15, 24].

Approximation Model Alternation

At Step 3, QPF and RBF models are automatically alternated to take the advantages of both and make

the algorithm more efficient. There are two criteria for alternation. In general QPF is used in the

earlier stages because QPF emphasizes more on predicting the overall trend than linear RBF. RBF is

used in the later stages because it is more loyal to sample points. The earlier and later stages are

marked by evaluating the average fitness value of current frontier points, kG , as compared against the

desired convergence criterion for dG , e. g. 1.001, plus a constant deviation δ (=0.05 in this work).

If δ+> dk GG , which indicates that the current frontier is far from convergence so that it is regarded as

an earlier stage, QPF is used. Otherwise, RBF is used. The second criterion is based on the number of

new sample points. Models are alternated to speed up if the number of new sample points generated

after an iteration is less than a given small constant.

 18

5. Numerical Studies

The proposed PSP method is tested with a number of well-known MOO problems taken from the

literature. Three test problems are chosen. The first is a convex, bi-objective MOO problem. The

second, as described by Eq. (5), has a non-smooth Pareto frontier featured by a singular Pareto point.

The third is a highly non-linear problem with 3 objectives. PSP is then applied to a real engineering

design problem. The formulas of the test problems are as below.

� Problem 1 [13].

 Minimize: 2
2

2
1211)1()2(),(−+−= xxxxf

 2
2

2
1212)6(),(−+= xxxxf

 Subject to : 06.1),(1211 ≤−= xxxg
 04.0),(1212 ≤−= xxxg (8)

 05),(2213 ≤−= xxxg
 02),(2214 ≤−= xxxg

� Problem 2 is the example problem defined by Eq. (5).

� Problem 3 [4]:
 Minimize)}(),(),({)(321 xfxfxfxF =

 Subject to: 012)(2
3

2
2

2
11 ≥−−−= xxxxg (9)

 .3,2,1,50 =≤≤ ixi
 where the objective functions are given by

10/))3(3(50

10/))2(2(35

10/))1((25

21
2
3

3
3

3
2

3
13

3
331

2
2

3
2

3
12

3
3

3
232

2
1

3
11

xxxxxxf

xxxxxxf

xxxxxxf

+++++−=

+++++−=

+++++−=

Since random processes are used in PSP, 10 runs have been carried out for each problem. The test

results are presented below. For each test problem, the number of iterations, total number of evaluated

points (expensive), number of converged frontier points, as well as the ratio of the number of

converged frontier points to the total number of evaluated points are recorded for 10 different runs.

The median and variation range for all integer numbers are recorded. For the point ratio, the mean

value and its standard deviation (S.D.) are used instead. The results are listed in Table 1, along with

 19

the result for the panel design problem which will be described in the next section. The total number of

expensive function evaluations for each problem equals to the number of evaluated points times the

number of objective functions, m.

Table 1 Results of testing and application of PSP.

of iterations

of evaluated points # of converged
frontier points

of converged
frontier points
of evaluated

points

Median Range Median Range Median Range Mean S.D.

Problem 1 5 [4 5] 71 [60 86] 64 [52 80] 0.91 0.02

Problem 2 11.5 [9 20] 38.5 [31 55] 24.5 [19 30] 0.61 0.06

Problem 3 31.5 [26 48] 299.5 [272 346] 204.5 [192 249] 0.69 0.03

Panel Design 22 [9 45] 86.5 [50 131] 27 [22 34] 0.32 0.07

As one can see from the table, the total number of expensive points is small for all problems.

Considering the small number of iterations, parallel computation could be potentially implemented.

Among the modest number of sample points, the ratio of converged frontier points to the total number

of sample points are more than 60% for all the test problems. The low ratio of the panel design problem

will be discussed later. PSP is also found robust with small variations on the point ratio between

different runs. To better observe the accuracy of converged frontier points, all of the evaluated points

are plotted together with the feasible performance space, as shown in Figures 5~7. It is clear from the

plots that the converged frontier points override exactly or are very close to the real Pareto frontier.

6. Multi-objective Optimization for Fuel Cell Component Design

The multiple function panel is a key component of a patented Proton Exchange Membrane (PEM) fuel

stack [26]. The panel consists of a copper fin sandwiched between two square flat copper sheets.

Figure 8 illustrates a section of the panel.

 20

Figure 6 Performance space, evaluated points, and Pareto set points for Problem 1.

Figure 7 Performance space, evaluated points, and Pareto set points for Problem 3.

 21

 h

w t

Figure 8 A section of the multiple function panel and design variables.

The panel has three functions: 1) to function as a distributed spring system to compensate the enormous

amount of hydro and thermal expansions during the fuel cell operation, 2) to function as a radiator to

get rid of the heat generated during the operation, and 3) to function as a conductor to collect electrons

for a stack of many fuel cells. The panel is to be made of copper coated with graphite to satisfy the

third function requirement, and in the mean time to avoid contamination of metal particles to PEM fuel

cells. Design of the panel for the rest two functions is formulated as a MOO problem as follows, with

h, w, and t as the 3 design variables.

 Minimize: 034.0/|034.0)(|),,(2
4
12

sin1 −−−−= wuhtwhf h
θ

Maximize:),,(),,(2 twhfindhttwhf = (10)

 Subject to:

340),,(2 ≥twhf ; 94 ≤≤ h ; 94 ≤≤ w ; 6.006. ≤≤ t

Where w
htg 2=θ , θ2sin2Et

Pwhu = . 1f denotes the ratio of the difference between the panel’s real

deformation and the ideal deformation over the ideal deformation under a given pressure, P. E is the

Young’s modulus of copper. 2f is the exit air temperature from the panel, which is to be maximize for

the radiation purpose. findht is a program which finds the exit air temperature, which can be

 22

considered as a black-box function. Details of the program can be found in Ref. [26]. Results obtained

by the Pareto-Set-Pursuing method are listed in Table 1.

Figure 9 Performance space, evaluated points, Pareto set points for the panel design.

Figure 9 illustrates the results. The unit for f2 is Kelvin. Values of f2 are listed as negative as the

optimization process minimizes the negative of f2 for maximization. One can see from Table 1 that the

ratio of Pareto set points is not very high for this problem. It is because the performance space is

discontinuous with long narrow “tails”. It took extra expenses to generate sample points in the upper

left region of the Pareto set.

7. Discussions

Features of PSP

One can possibly observe from the PSP procedure that PSP has following two properties: 1) as PSP

always samples in the entire design space, every Pareto set point has a probability to be drawn and this

probability is much higher than that of non-Pareto set points, according to the sampling guidance

function; 2) as the iteration continues, points in (PS)k will be closer to the real Pareto frontier than those

 23

in (PS)k-1, and thus PSP converges to the real Pareto frontier if sampling continues to infinity. From

test results and the design application, the proposed PSP method demonstrates great efficiency for

MOO problems. By reflecting the PSP process and especially its sampling strategy, it is found that a

reduction of search space is inherent by utilizing the nature of the Pareto set. Let’s still use the

example in Eq. (5) for explanation. Assume at Iteration 1 we randomly sample two design points a

and b in the design space, as shown in Figure 10. Points a and b are then evaluated by calling the

expensive black-box functions and thus their objective function values are obtained. As a result, points

A and B in the performance space corresponding respectively to points a and b are shown in Figure 11.

Figure 10 Sample points in the design space at the 1st iteration.

Assume the coordinates of A and B in the performance space are (f1A, f2A) and (f1B, f2B). Currently these

two sampling points A and B are frontier points in the performance space. According to the definition

of Pareto set points, any point I falls in the region defined by f1I>f1A and f2I>f2A is dominated by Point

A. Similarly, any point J falls in the region defined by f1J>f1B, f2J>f2B is dominated by Point B. Only

points in the shaded area in Figure 11 have potential to dominate Point A or B. Points i and j

corresponding to I and J respectively are also plotted in the design space, as shown in Figure 10. As

a

b

j

i

x1

x2

 24

PSP only draws sample points from current frontier points (though they are a mix of real points and

predicted points), it implies that roughly only the shaded regions in Figure 11 are explored further in

the entire performance space. The rest of the regions are excluded. In this way the search space from

the perspective of performance shrinks a great deal by using only two points. By continuing sampling

in the shaded area in Figure 11, new frontier points can be identified and the shaded area will be further

shrunk. Therefore, in brief, because of the characteristics of the Pareto set, the PSP sampling discards

dominated regions in the performance space and thus converges rapidly.

Figure 11 Sample points in the performance space at the 1st iteration

In the process of PSP development, an alternative method to generate initial sample points is explored.

That is, we run optimization on each single objective function regardless of other objectives. The

optimum of each objective function is used as initial sample points for PSP. In theory these optima are

in the Pareto set. By searching for these optima, it is expected that PSP can be sped up. It is found

through testing that there is no obvious improvement on the convergence speed of PSP. Furthermore,

the optimization processes used to find initial points consume many expensive function evaluations.

Overall, this idea requires more function evaluations with no apparent benefits.

B

A

I

J

f1

f2

 25

Comparison of PSP with Other Approximation-based Methods

Current state-of-art approximation-based methods strive to build an accurate approximation model [13,

15], on which the Pareto frontier is searched. Using the method in Ref. [13] as an example of these

methods, its procedure is illustrated in Figure 12a, which is adapted from Ref. [13]. In contrast, the

procedure of PSP is simply illustrated in Figure 12b. As one can see that PSP 1) does not need to

validate the approximation model as the model is only used to guide the sampling; 2) no third-party

optimization algorithm such as GA is called in PSP; and 3) no verification of the frontier points is

required since all the identified frontier points in PSP have been evaluated in the process. The build-

accurate-model-first approach as in Ref. [13] could be efficient when the black-box function is simple

and of low dimension. However, the cost to identify and validate the model could be high, especially

when the model is complex. Ref. [23] stated that it was almost impossible to inexpensively construct

an accurate approximation model for high-dimensional problems, thus the reliance on the accuracy of

approximation model raises concerns. PSP provides an alternative in which the approximation

accuracy is not critical but the Pareto frontier points can still be efficiently obtained.

 (a) (b)

Figure 12 Comparison of PSP with the method in Wilson et al. [13]: (a) the procedure of the method in
Ref. [13]; (b) a simplified illustration of PSP procedure.

Sample Design Space

Build Approximation Model

Validate the Model

Identify Pareto Frontier

Verify Pareto Frontier

Sample Design Space

Build Approximation Model

Sample towards Pareto Frontier

 26

Comparison of PSP with other Direct Search Methods for MOO Problems

The PSP method can also be used as an independent direct search method for all MOO problems. It

would be ideal if PSP can be compared with other direct search methods such as GA-based methods by

examining their converged Pareto sets. There are a number of difficulties, however. First, the obtained

Pareto sets are usually not published. If those data are available, we can see if two sets dominate each

other. If all the points in one set are dominated by the points in the other, we can safely conclude that

the latter is a better solution set. But the more likely is that only some points in one set are dominated

by points in the other. In this case, it is almost impossible to establish an objective criterion to compare

the quality of the two [27]. The same is true if both sets are real Pareto sets and therefore no point is

dominated by any other point in either set. Given such difficulties, our result is thus only compared

visually with the real frontier generated by evaluating a fine grid of points as shown in Figures 5-7, 9.

8. Conclusion

This work presents a new multi-objective optimization (MOO) method, the Pareto Set Pursuing (PSP)

method. PSP is especially suitable for design problems involving expensive black-box functions,

though it could also be used as a general-purpose MOO method. This approach provides decision

makers with a set of Pareto set for choices without any a priori knowledge of the objective functions or

preferences. Solutions obtained by this method can reflect the entire Pareto optimal frontier, even

when the frontier surface is highly non-linear, e.g., non-convex or concave. This approach also

automatically captures the Pareto optimal frontier without calling any formal optimization process. It

uses approximation to guide the sampling process only and does not demand an accurate approximation

model. Through tests and applications, PSP is found robust and efficient, and the Pareto set points

found by PSP are real or close-to-real Pareto set points and spread closely and evenly over the entire

Pareto optimal frontier. The defined sampling guidance function may be useful for developing other

discriminative sampling schemes for various purposes.

 27

Future research will examine closely the applicability of PSP to high-dimensional problems with many

design objectives, how to compare PSP with other direct search MOO methods, and how PSP can be

improved by replacing the random sampling with more controlled sampling methods such as Latin

Hypercube sampling, and so on.

Acknowledgements

Funding from Natural Science and Engineering Research Council (NSERC) of Canada is gratefully

appreciated. The authors would also like to thank anonymous reviewers for their valuable comments

that resulted in a much improved manuscript.

References

1. Keeney, R.L. and Raifa, H. (1976). Decisions with multiple objective: preferences and value trade-
off. John Wiley and Sons, New York.

2. Marler, R. T. and Arora, J. S. (2004) Survey of multi-objective optimization methods for
engineering. Structural and Multidisciplinary Optimization, 26: pp. 369-395.

3. Chen, W., Wiecek, M.M. and Zhang, J. (1999). Quality utility -- a compromise programming
approach to robust design. Journal of Mechanical Design, Transactions of the ASME, 121: pp. 179-
187.

4. Messac, A. (1996). Physical programming: effective optimization for computational design. AIAA
Journal, 34(1): pp. 149-158.

5. Tappeta, R.V. and Renaud, J.E. (1999). Interactive multiobjective optimization procedure. AIAA
Journal, 37(7): pp. 881-889.

6. Tappeta, R.V., Renaud, J.E., Messac, A. and Sundararaj, G. (2000). Interactive physical
programming: tradeoff analysis and decision making in multicriteria optimization. AIAA Journal,
38(5): pp. 917-926.

7. Schaumann, E.J., Balling, R.J. and Day, K. (1998). Genetic algorithms with multiple objectives. 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis,
MO, AIAA Vol. 3, Sept. 2-4, 1998, pp. 2114-2123, Paper No. AIAA-98-4974.

8. Deb, K. (1999). Evolutionary algorithms for multi-criterion optimization in engineering design.
Proceedings of evolutionary algorithms in engineering & computer science, Eurogen-99.

9. Deb, K., Mohan, M. and Mishra, S. (2003). A fast multi-objective evolutionary algorithm for
finding well-spread pareto-optimal solutions. Report No. 2003002, Indian Institute of Technology
Kanpur, Kanpur.

10. Srinivas, N. and Deb, K. (1995). Multiobjective optimization using nondominated sorting in genetic
algorithms. Journal of Evolutionary Computation, 2(3): pp. 221-248.

 28

11. Nain, P.K.S. and Deb, K. (2002). A computationally effective multi-objective search and
optimization technique using coarse-to-fine grain modeling. Report No. 2002005, Indian Institute
of Technology Kanpur, Kanpur.

12. Luh, G.-C., Chueh, C.-H. and Liu, W.-W. (2003). MOIA: multi-objective immune algorithm.
Journal of Engineering Optimization, 35(2): pp. 143-164.

13. Wilson, B., Cappelleri, D.J., Simpson, T.W. and Frecker, M.I. (2001). Efficient Pareto frontier
exploration using surrogate approximations. Optimization and Engineering, 2: pp. 31-50.

14. Li, Y., Fadel, G.M. and Wiecek, M.M. (1998). Approximating Pareto curves using the hyper-
ellipse. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
St. Louis, Paper No. AIAA-98-4961.

15. Yang, B. S., Yeun, Y.-S., and Ruy, W.-S. (2003). Managing Approximation Models in
Multiobjective Optimization. Structural and Multidisciplinary Optimization, 24: pp. 141-156.

16. Ross, S. M. (2002). Simulation, 3rd edition, Academic Press, San Diego, CA.
17. Fu, J.C. and Wang, L. (2002). A random-discretization based Monte Carlo sampling method and its

applications. Methodology and Computing in Applied Probability, 4: pp. 5-25.
18. Wang, L., Shan, S. and Wang, G.G. (2004). Mode-Pursuing sampling method for global

optimization on expensive black-box functions. Journal of Engineering Optimization, 36(4): pp.
419-438.

19. Audet, C. and Dennis, J. E. (2004). A Pattern Search Filter Method for Nonlinear Programming
Without Derivatives. SIMA Journal on Optimization, 14(4): pp. 980-1010.

20. Michalewics, Z. (1995). A Survey of Constraint Handling Techniques in Evolutionary Computation
Methods. Proceedings of the Fourth Annual Conference on Evolutionary Programming, J.
McDonnell, R. Reynolds, and D. Fogel (ed.), MIT Press, Cambridge, MA: pp. 135-155.

21. Myers, R. H. and Montgomery, D. C. (1995). Response surface methodology, process and product
optimization using designed experiments. John Wiley & Sons, Inc.

22. Jin, R., Chen, W. and Simpson, T. W. (2001). Comparative Studies of Metamodeling Techniques
under Multiple Modeling Criteria. Journal of Structural and Multidisciplinary Optimization, 23(1):
pp. 1-13.

23. Ong, Y. S., Nair, P. B., and Keane, A. J. (2003). Evolutionary Optimization of Computationally
Expensive Problems via Surrogate Modeling. AIAA Journal, 41(4): pp. 687-696.

24. Ray, T., and Tsai, H. M. (2004). Swarm Algorithm for Single- and Multiobjective Airfoil Design
Optimization. AIAA Journal, 42(2): pp. 366-373.

25. Dong, Z. (1999). Fuel cell stack assembly, Patent Cooperation Treaty Patent WO, AU, CA, CN,
IN, JP, KR, SG, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE). Patent No. 99/57781, November 11, 1999.

26. Wang, G.G. (1999). A quantitative concurrent engineering design method using virtual
prototyping-based global optimization and its application in transportation fuel cells. Ph.D.
Dissertation Thesis, University of Victoria, Victoria, Canada.

27. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G. (2003). Performance
Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on
Evolutionary Computation, 7(2): pp. 117-132.

 29

Nomenclature
c0 A constant
np Number of so-far evaluated sample points
l The exponent for fitness value computation
L Number of points having fitness value larger than or equal to 1
m Number of design objectives
n Number of design variables
k Number of points; an index of iteration
p Number of inequality constraints
P Pressure on the multi-function panel within a fuel cell stack
q Number of equality constraints
t Thickness of the fuel cell panel
X The design variable vector, x = [x1, x2, …, xn]
x(i) The i-th design point
x* A Pareto optimum

l
rx Lower bound of the rth variable
u
rx Upper bound of the rth variable

h(x) Equality constraint functions
g(x) Inequality constraint functions

iG Pareto fitness value of the ith design

G Average fitness value of frontier points
i

skf Scaled kth objective function value of the ith design

irawf ,1 Un-scaled value of the first objective for the ith design

min,1rawf Minimum un-scaled value of the first objective among all designs

max,1rawf Maximum un-scaled value of the first objective among all designs

ẑ Sampling guidance function
f(x) A general objective function

)(ˆ xf The approximation model of f(x)

F(x) Vector of all of the objectives
fi(x) The i-th objective function, i =1,…,m

)(ˆ xf i Approximation model of the i-th objective function fi(x)

(PS)k The frontier point set at the k-th iteration

iα Regression coefficients of the RBF model

iβ Regression coefficient of the quadratic polynomial function model

δ A small constant for model alternation

ρ A ratio between number of points for PSP convergence

