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Abstract 

Computation-intensive design problems are becoming increasingly common in manufacturing 

industries.  The computation burden is often caused by expensive analysis and simulation 

processes in order to reach a comparable level of accuracy as physical testing data.  To address 

such a challenge, approximation or metamodeling techniques are often used.  Metamodeling 

techniques have been developed from many different disciplines including statistics, 

mathematics, computer science, and various engineering disciplines. The metamodels are initially 

developed as “surrogates” of the expensive simulation process in order to improve the overall 

computation efficiency.  They are then found to be a valuable tool to support a wide scope of 

activities in modern engineering design, especially design optimization.  This work reviews the 

state-of-the-art metamodel-based techniques from a practitioner’s perspective according to the 

role of metamodeling in supporting design optimization, including model approximation, design 

space exploration, problem formulation, and solving various types of optimization problems. 

Challenges and future development of metamodeling in support of engineering design is also 

analyzed and discussed.   

Keywords: Metamodeling, engineering design, optimization 

                                                 
*
 Corresponding author 

ASME Transactions, Journal of 

Mechanical design, 2006, in press. 



 2 

Introduction 

To address global competition, manufacturing companies strive to produce better and cheaper 

products more quickly. For complex systems such as an aircraft, the design is intrinsically a 

daunting optimization task often involving multiple disciplines, multiple objectives, and 

computation-intensive processes for product simulation. Just taking the computation challenge as 

an example, it is reported that it takes Ford Motor Company about 36-160 hrs to run one crash 

simulation [1].  For a two-variable optimization problem, assuming on average 50 iterations are 

needed by optimization and assuming each iteration needs one crash simulation, the total 

computation time would be 75 days to 11 months, which is unacceptable in practice. Despite 

continual advances in computing power, the complexity of analysis codes, such as finite element 

analysis (FEA) and computational fluid dynamics (CFD), seems to keep pace with computing 

advances [2].  In the past two decades, approximation methods and approximation-based 

optimization have attracted intensive attention. This type of approach approximates computation-

intensive functions with simple analytical models.  The simple model is often called metamodel; 

and the process of constructing a metamodel is called metamodeling. With a metamodel, 

optimization methods can then be applied to search for the optimum, which is therefore referred 

as metamodel-based design optimization (MBDO).  

 

Continuing on an earlier review [3], Haftka and coauthors [4] discussed in depth the relation 

between experiments and optimization, i.e., the use of optimization to design experiments, and 

the use of experiments to support optimization.  It also dedicated a section talking about MBDO 

with slightly different terminologies. The benefits of MBDO were elaborated as follows: 1) it is 

easier to connect proprietary and often expensive simulation codes; 2) parallel computation 
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becomes simple as it involves running the same simulation at many design points; 3) building 

metamodels can better filter numerical noise than gradient-based methods; 4) the metamodel 

renders a view of the entire design space; and 5) it is easier to detect errors in simulation as the 

entire design domain is analyzed.  Simpson et al. [5] gave a very focused review on metamodels 

and MBDO by going through many popular sampling methods (or experimental design methods), 

approximation models (metamodels), metamodeling strategies, and applications.  Guidelines and 

recommendations were also given at the end of the paper.  A panel discussion about the topic was 

held in 2002 in the 9th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis 

& Optimization in Atlanta.  The summary of the panel discussion was archived in [6].  Four 

future research directions were elaborated as 1) sampling methods for computer experiments, 2) 

visualization of experimental results, 3) capturing uncertainty with approximation methods, and 

4) high-dimensional problems. 

 

In the past few years, new developments in metamodeling techniques have been continuously 

coming forth in the literature.  From the lead author’s past five years of experience as a session 

organizer/chair for the ASME Design Engineering Technical Conference (DETC) on the topic, it 

also seems that as more and more of these methods being developed, the gap between the 

research community and design engineers keeps widening.  It is probably first because 

metamodeling is mathematically involving, and second it evolves rapidly with rich information 

from many disciplines.  Therefore, a review of the field from a practitioner’s view is seen needed.  

This review is expected to offer an overall picture of the current research and development in 

metamodel-based design optimization.  Moreover, it is organized in a way to provide a reference 

of metamodeling techniques for practitioners.  It is also hoped that by examining the needs of 

design engineers, the research community can better align their research directions towards such 
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needs.  Though great efforts have been exercised to collect as much relevant and important 

literature as possible, it is not the intent of the review to be exhaustive on this intensively studied 

topic. 

Roles of Metamodeling In Support of Design Optimization 

Intensive research has been done in employing metamodeling techniques in design and 

optimization.  These include research on sampling, metamodels, model fitting techniques, model 

validation, design space exploration, optimization methods in support of different types of 

optimization problems, and so on.  Through the years it has become clear that metamodeling 

provides a decision-support role for design engineers. What are the supporting functions that 

metamodeling can provide?   From our experience and informal interviews with design 

engineers, with reference to the literatures [7], the following lists some of the areas that 

metamodeling can play a role. 

• Model approximation. Approximation of computation-intensive processes across the 

entire design space, or global approximation, is used to reduce computation costs. 

• Design space exploration.  The design space is explored to enhance the engineers’ 

understanding of the design problem by working on a cheap-to-run metamodel.  

• Problem formulation.  Based on an enhanced understanding of a design optimization 

problem, the number and search range of design variables may be reduced; certain 

ineffective constraints may be removed; a single objective optimization problem may be 

changed to a multi-objective optimization problem or vice versa.  Metamodel can assist 

the formulation of an optimization problem that is easier to solve or more accurate than 

otherwise. 
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• Optimization support.  Industry has various optimization needs, e.g., global optimization, 

multi-objective optimization, multidisciplinary design optimization, probabilistic 

optimization, and so on.  Each type of optimization has its own challenges.  

Metamodeling can be applied and integrated to solve various types of optimization 

problems that involve computation-intensive functions. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Metamodeling and its role in support of engineering design optimization. 

As illustrated in Fig. 1, metamodeling supports various design activities that are enclosed in small 

ellipses.  The bottom half includes model approximation, problem formulation, and design space 

exploration, which form a common supportive base for all types of optimization problems.  The 

upper half lists four major types of optimization problems of interests to design engineers. For 

each of the above-mentioned areas, related recent development is reviewed. General consensus 

that has been reached thus far in the research community is given.  
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Model Approximation  

Approximation, or metamodeling, is the key to metamodel-based design optimization.  

Conventionally the goal of approximation is to achieve a global metamodel as accurate as 

possible at a reasonable cost.   In this section, we focus on global metamodeling and discuss 

MBDO in later sections.  

Table 1 Commonly used metamodeling techniques. 

Experimental 

Design/Sampling Methods 

Metamodel Choice Model Fitting 

- Classic methods 

� (Fractional) factorial 

� Central composite 

� Box-Behnken 

� Alphabetical optimal 

� Plackett-Burman 

- Space-filling methods 

� Simple Grids 

� Latin Hypercube 

� Orthogonal Arrays 

� Hammersley sequence 

� Uniform designs 

� Minimax and Maximin 

- Hybrid methods 

- Random or human selection  

- Importance sampling 

- Directional simulation 

- Discriminative sampling 

- Sequential or adaptive   

methods  

- Polynomial (linear, 

quadratic, or higher) 

- Splines (linear, cubic, 

NURBS) 

- Multivariate Adaptive 

Regression Splines 

(MARS) 

- Gaussian Process 

- Kriging 

- Radial Basis Functions 

(RBF) 

- Least interpolating 

polynomials 

- Artificial Neural 

Network (ANN) 

- Knowledge Base or 

Decision Tree 

- Support Vector Machine 

(SVM) 

- Hybrid models 

- (Weighted) Least 

squares regression 

- Best Linear Unbiased 

Predictor (BLUP) 

- Best Linear Predictor 

- Log-likelihood 

- Multipoint 

approximation (MPA) 

- Sequential or adaptive 

metamodeling 

- Back propagation (for 

ANN) 

- Entropy (inf.-theoretic, 

for inductive learning 

on decision tree) 

 

 

Table 1 categorizes the metamodeling techniques according to sampling, model types, and model 

fitting [5].  This review discusses each of these categories in more detail. 

Sampling 

“Classic” experimental designs originated from the theory of Design of Experiments when 

physical experiments are conducted.  These methods focus on planning experiments so that the 
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random error in physical experiments has minimum influence in the approval or disapproval of a 

hypothesis. Widely used “classic” experimental designs include factorial or fractional factorial 

[8], central composite design (CCD) [8, 9], Box-Behnken [8], alphabetical optimal [10, 11], and 

Plackett-Burman designs [8].  These classic methods tend to spread the sample points around 

boundaries of the design space and leave a few at the center of the design space.  As computer 

experiments involve mostly systematic error rather than random error as in physical experiments, 

Sacks et al. [12] stated that in the presence of systematic rather than random error, a good 

experimental design tends to fill the design space rather than to concentrate on the boundary.  

They also stated that “classic” designs, e.g. CCD and D-optimality designs, can be inefficient or 

even inappropriate for deterministic computer codes.  Simpson et al. [13] confirmed that a 

consensus among researchers was that experimental designs for deterministic computer analyses 

should be space filling.    

 

Koehler and Owen [14] described several Bayesian and Frequentist “Space Filling” designs, 

including maximum entropy design [15], mean squared-error designs, minimax and maximin 

designs [16], Latin Hypercube designs, orthogonal arrays, and scrambled nets.  Four types space 

filling sampling methods are relatively more often used in the literature.  These are orthogonal 

arrays [17-19], various Latin Hypercube designs [20-24], Hammersley sequences [25, 26], and 

uniform designs [27]. Hammersley sequences and uniform designs belong to a more general 

group called low discrepancy sequences [28].  The code for generating orthogonal arrays is 

available online at http://lib.stat.cmu.edu/design/owen.html and http://ie.uta.edu/index.cfm/ by 

Chen [28]. Hammersley sampling is found to provide better uniformity than Latin Hypercube 

designs.    Several uniform designs are available on-line at URL: 

http://www.math.hkbu.edu.hk/UnifromDesign. A comparison of these sampling methods is in 
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Ref. [29]. It is found that the Latin Hypercube design is only uniform in 1-D projection while the 

other methods tend to be more uniform in the entire space. Also found is that the “appropriate” 

sample size depends on the complexity of the function to be approximated.  In general, more 

sample points offer more information of the function, however, at a higher expense.  For low-

order functions, after reaching a certain sample size, increasing the number of sample points does 

not contribute much to the approximation accuracy.  Moreover, when certain optimality criteria 

are used to generate samples, these optimality criteria such as maximum entropy are concerned 

with the sample distribution and are independent to the function.  While the approximation 

accuracy depends on whether sample points capture all the features of the function itself.  

Therefore those optimality criteria are not perfectly consistent with the goal of improving 

approximation, due to which the additional computational cost of searching for the optimal 

sample is often not well justified. 

 

The Monte Carlo Simulation (MCS) method, which is a random sampling method, is still a 

popular sampling method in industry, regardless of its inefficiency.  It is probably because the 

adequate and yet efficient sample size at the outset of metamodeling is unknown for any black-

box function.  Improved from the Monte Carlo simulation method, the importance sampling (IS) 

bears the potential of improving its efficiency while maintain the same level of accuracy as MCS 

[30].  Zou and colleagues developed a method based on an indicator response surface, in which 

IS was performed in a reduced region around the limit state [31-33].  Another variation of MCS 

is directional simulation [34-36].  A new discriminative sampling method has been developed 

when the sampling goal was for optimization instead of global metamodeling [37-39].  With its 

original inspiration from [40], this sampling method is space filling and reflects the goal of 

sampling; it is a more aggressive MCS method.  Comparatively, these MCS-rooted methods are 
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less structured but offer more flexibility.  If any knowledge of the space is available, these 

methods may be tailored to achieve higher efficiency.  They may also play a more active role for 

iterative sampling-metamodeling processes.  

 

Mainly due to the difficulty of knowing the “appropriate” sampling size a priori, sequential and 

adaptive sampling has gained popularity in recent years. Lin [41] proposed a sequential 

exploratory experiment design (SEED) method to sequentially generate new sample points.  Jin 

et al. [42] applied simulated annealing to quickly generate optimal sampling points and the 

method has been incorporated into the software iSight
TM

[43].  Sasena et al. [44] used the 

Bayesian method to adaptively identify sample points that gave more information.  Wang [45] 

proposed an inheritable Latin Hypercube design for adaptive metamodeling.  Samples are 

repetitively generated fitting a Kriging model in a reduced space [46]. Jin et al. [47] compared a 

few different sequential sampling schemes and found that sequential sampling allows engineers 

to control the sampling process and it is generally more efficient than one-stage sampling.  One 

can custom design flexible sequential sampling schemes for specific design problems.  

Metamodeling 

Metamodeling evolves from classical Design of Experiments (DOE) theory, in which polynomial 

functions are used as response surfaces, or metamodels. Besides the commonly used polynomial 

functions, Sacks et al. [12, 48] proposed the use of a stochastic model, called Kriging [49], to 

treat the deterministic computer response as a realization of a random function with respect to the 

actual system response.  Neural networks have also been applied in generating the response 

surfaces for system approximation [50]. Other types of models include Radial Basis Functions 

(RBF) [51, 52], Multivariate Adaptive Regression Splines (MARS) [53], Least Interpolating 
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Polynomials [54], and inductive learning [55].  A combination of polynomial functions and 

artificial neural networks has also been archived in [56]. There is no conclusion about which 

model is definitely superior to the others.  However, insights have been gained through a number 

of studies [2, 5, 13, 28, 57, 58].  In recent years, Kriging models and related Guassian processes 

are intensively studied [59-64]. A well written Kriging modeling code (in Matlab) is 

downloadable from the internet URL: http://www2.imm.dtu.dk/~hbn/dace/ [65].  

 

In general the Kriging models are more accurate for nonlinear problems but difficult to obtain 

and use because a global optimization process is applied to identify the maximum likelihood 

estimators.  Kriging is also flexible in either interpolating the sample points or filtering noisy 

data. On the contrary, a polynomial model is easy to construct, clear on parameter sensitivity, and 

cheap to work with but is less accurate than the Kriging model [13].  However, polynomial 

functions do not interpolate the sample points and are limited by the chosen function type.  The 

RBF model, especially the multi-quadric RBF, can interpolate sample points and at the same time 

is easy to construct.  It thus seems to reach a trade-off between Kriging and polynomials.  

Recently, a new model called Support Vector Regression (SVR) was used and tested [66].  SVR 

achieved high accuracy over all other metamodeling techniques including Kriging, polynomial, 

MARS, and RBF over a large number of test problems.  It is not clear, however, what are the 

fundamental reasons that SVR outperforms others.  The Least Interpolating Polynomials use 

polynomial basis functions and also interpolate responses. They choose a polynomial basis 

function of “minimal degree” as described by [54] and hence are called “least interpolating 

polynomials.”  This type of metamodel deserves more study. In addition, Pérez et al. [67] 

transformed the matrix of second-order terms of a quadratic polynomial model into the canonical 

form to reduce the number of terms.  Messac and his team developed an extended RBF model 
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[68] by adding extra terms to a regular RBF model to increase its flexibility, based on which an 

optimal model could be searched for.  Turner and Crawford proposed a NURBS-based 

metamodel, which was applied only to low dimensional problems [69].  

 

If gradient information can be reliably and inexpensively obtained, gradient information can be 

utilized in metamodeling [70, 71].  A multipoint approximation (MPA) strategy has also received 

some attention [72-75]. MPA uses blending functions to combine multiple local approximations, 

and usually gradient information is used in metamodeling.  Metamodels can also be constructed 

when design variables are modeled as fuzzy numbers [76, 77].   

 

Each metamodel type has its associated fitting method. For example, polynomial functions are 

usually fitted with the (weighted) least square method; the kriging method is fitted with the 

search for the Best Linear Unbiased Predictor (BLUP). Simpson et al. [5] gave a detailed review 

on the equations and fitting methods for common metamodel types. 

 

In general computer experiments have very small random error which might be caused by the 

pseudorandom number generation or rounding [78].  Giunta et al. [79] found that numerical 

noises in computing the aerodynamic drag of High Speed Civil Transport (HSCT) caused many 

spurious local minima of the objective function. The problem was due to the discontinuous 

variations in calculating the drag by using the panel flow solver method.  Madsen et al. [80] 

stated that noises could come from the complex numerical modeling techniques of CFD such as 

turbulence models, incomplete convergence, and discretization. In case of physical or noisy 

computer experiments, it is found that Kriging and RBF are more sensitive to numerical noise 

than polynomial models [13, 81].  However, Kriging, RBF, and ANN could be modified to 

handle noises, assuming the signal to noise ratio is acceptable [82].   
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Model Validation  

Metamodels, especially global metamodels, are to be validated before being used as a “surrogate” 

of the computation-intensive processes.  Model validation has been a challenging task, and it  

shares common challenges with the verification and validation of other computational models 

[83, 84].  Meckesheimer et al. [26, 85] studied the cross-validation method.  One starts with a 

dataset, S{X, Y}, consisting of N input-output data pairs (x; y), where y is the disciplinary model 

response at the design sample point, x, and N is the total number of disciplinary model runs.  In 

p-fold cross-validation, the initial data set is split into p different subsets, that is, S{X,Y)  = 

S1(X1, Y1}, S2{X2, Y2},…, Sp {Xp, Yp}. Then, the metamodel is fit p times, each time leaving 

out one of the subsets from training, and using the omitted subset to compute the error measure of 

interest. A variation of p-fold cross-validation is the leave-k-out approach, in which all possible 










k

N
 subsets of size k are left out, and the metamodel is fit to each remaining set. Each time, the 

error measure of interest is computed at the omitted points. This approach is a computationally 

more expensive version of p-fold cross-validation. Mitchell and Morris [86] described how the 

cross-validation error measure could be computed inexpensively for the special case of k = 1; this 

is called leave-one-out cross-validation.  Based on the observations from the experimental study 

conducted to assess the leave-k-out cross-validation strategy [26], a value of k = 1 was 

recommended for providing a prediction error estimate for RBF and low order polynomial 

metamodels, but not for kriging metamodels. Choosing k as a function of the sample size used to 

construct the metamodel (that is, k = 0.1N or k = N ) was instead recommended for estimating 

the prediction error for kriging metamodels.  Lin [41] found through intensive testing that the 

leave-one-out cross-validation is an insufficient measurement for metamodel accuracy.  The 
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leave-one-out cross-validation is actually a measurement for degrees of insensitivity of a 

metamodel to lost information at its data points, while an insensitive metamodel is not 

necessarily accurate. A “validated” model by leave-one-out could be far from the actual as the 

data points may not be able to capture the actual.  Designers are in danger of accepting an 

inaccurate metamodel that is insensitive to lost information at data points, and inaccurate and 

insensitive metamodels might be the results of poor experimental designs (clustering points or 

correlated data points).  On the other hand, with leave-one-out cross validation we are in danger 

of rejecting an accurate metamodel that is also sensitive to lost information at data points.   

 

Given that cross validation is insufficient for assessing models, employing additional points is 

essential in metamodel validation.  When additional points are used for validation, there are a 

number of different measures of model accuracy.  The first two are the root mean square error 

(RMSE) and the maximum absolute error (MAX), defined below: 
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where y  is the mean of the observed values at the validation points.  It is to be noted that Eq. (3) 

is computed for the additional validation points, which differs from the traditional use of R square 

[61].  Variations of the three measures exist in the literature [13]. 

Design Space Exploration  

 

Given a reasonably accurate metamodel, the design space can be explored to obtain deeper 

insight into the design problem and better formulate the optimization problem.  Most of today’s 

design tools such as CAD aim at improving the productivity of a design engineer.  The 

relationship between design variables and product performance is usually embedded in complex 

equations or models in FEA or CFD codes.  Engineers, by experience, often only have a vague 

idea about such relationship.  A common method an engineer uses to understand a design 

problem is through sensitivity analysis and “what if” questions.  Sensitivity analysis, however, is 

based on a fixed condition with the variation of one variable.  If the condition is changed, the 

sensitivity information changes as well.  An engineer still cannot have an idea of the overall 

structure of the problem.  The metamodeling approach can assist the engineer to gain insight to 

the design problem, currently, through two channels. The first is through the metamodel itself.  

Given the metamodel, one can analyze the properties of the metamodel to gain a better 

understanding of the problem.  A good example is for the quadratic polynomial metamodel, if all 

the design variables are normalized to [-1, 1], then the magnitude of the coefficients in the 

metamodel indicates the sensitivity or importance of the corresponding term [87].   This is in fact 

used for screening of design variables.   The second way of enhancing the understanding is 

through visualization.  
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Visualization of multi-dimensional data alone has been an interesting topic, and many methods 

have been developed over the years [88, 89].  Winer and Bloebaum developed a visual design 

steering method based on the concept of Graph Morphing [90, 91]. Eddy and Kemper proposed 

cloud visualization for the same purpose [92].  Also, SGI and Ford integrated parallel 

computation and metamodeling for rapid visualization of design alternatives [93].  Visualization 

methods for multidimensional data sets and identifying Pareto Frontiers for multiobjective 

optimization problems are also recently developed [94-97].  Ligetti and Simpson [98] and Ligetti 

et al. [99] proved that both the design efficiency and effectiveness could be improved by using 

the metamodel approach in graphical design interface. A recent study by the group [100] 

suggested as the problem size increases, the impact of the metamodel-based approach on design 

effectiveness decreases. It was also stated that we needed to better understand what graphical 

capability within a design interface would be effective and why [100].   This study reflects our 

opinion that the research on visualization needs to go more in-depth on understanding the needs 

of engineers and on designing the best intuitive interface in support of design. Questions need to 

be answered include, to list a few: what are the more intuitive and easy-to-understand 

visualization techniques? what data in design need to be visualized, why? what are the interactive 

means that the tool should and can provide to users? how will the visual aid help a designer to 

enhance the understanding of the problem or better direct the design? 

Problem Formulation 

 

Building a design optimization model is the first and yet critical step for design optimization.  

The quality of the optimization model directly affects the feasibility, cost, and effectiveness of 

optimization.  The optimization problem, however, is usually formulated only from experience in 

making following decisions: 1) the objective function(s) and, in certain cases, goals, 2) the 
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constraint function(s) and limits, 3) the design variables, and 4) the search range of each design 

variable.  Metamodeling and design space exploration can help the engineer to decide on a 

reasonable goal for objectives and limits on constraints.  Some of the objectives or constraints 

can be eliminated, combined, or modified.   More importantly, metamodeling helps significantly 

in reducing the number of design variables and their range of search.  In return, the reduction of 

dimensionality and search space is important for metamodeling because the sampling cost is 

directly influenced by the number of variables and their search range.   

 

On the issue of reducing the number of design variables, the early work of Box and Draper [101] 

introduced a method to gradually refine the response surface to better capture the real function by 

“screening” out unimportant variables.  Welch et al. [102] documented a systematic approach for 

screening the variables. The variable-complexity response surface modeling method used 

analyses of varying fidelity to reduce the design space to the region of interest [11, 103].  The 

dimensionality was found difficult to reduce for multidisciplinary and multi-objective design 

problems, however, due to conflicting objectives [2].  

 

In design engineering optimization, engineers tend to give very conservative lower and upper 

bounds for design variables at the stage of problem formulation.  This is often due to the lack of 

sufficient knowledge of function behavior and interactions between objective and constraint 

functions at this early stage.  Chen and her co-authors [104] developed heuristics to lead the 

surface refinement to a smaller design space.  Wujek and Renaud [105, 106] compared a number 

of move-limit strategies that all focused on controlling the function approximation in a more 

“meaningful” design space.   Many researchers advocated the use of a sequential metamodeling 

approach using move limits [107] or trust regions [108, 109].  For instance, the Concurrent 
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SubSpace Optimization procedure used data generated during concurrent subspace optimization 

to develop response surface approximations of the design space, which formed the basis of the 

subspace coordination procedure [110].  Wang and colleagues developed the Adaptive Response 

Surface Method (ARSM), which systematically reduced the size of the design space by 

discarding portions of it that corresponded to objective function values larger than a given 

threshold value at each modeling-optimization iteration [45, 111].  Heuristic approaches were 

also developed to gradually concentrate on a smaller design space [46, 112, 113]. 

Support of Various Optimization Needs 

Due to various needs in design, a design optimization problem could be global optimization, 

multiobjective optimization in order to satisfy multiple design objectives, multidisciplinary 

design optimization where coupling between functions is present, or probabilistic optimization 

when uncertainties of variables are considered (see Fig. 1).  In all these various optimization 

problems, metamodeling has been intensively used. 

 

In general, classical gradient-based optimization methods have several limitations that hinder the 

direct application of these methods in modern design.   

� First, gradient-based optimization methods require explicitly formulated and/or cheap-to-

compute models, while engineering design involves implicit and computation-intensive 

models such as FEA, CFD, and other simulation models with unreliable and expensive 

gradient information. 

� Second, gradient-based methods often output a single optimal solution, while engineers 

prefer multiple design alternatives.   



 18 

� Third, the gradient-based optimization process is sequential, non-transparent, and 

provides nearly no insight to engineers, and 

� Lastly, to apply the optimization methods, high-level expertise on optimization is also 

required for engineers.   

The advantages of applying metamodeling in optimization are manifold: 1) the efficiency of 

optimization is greatly improved with metamodels; 2) because the approximation is based on 

sample points, which could be obtained independently, parallel computation is supported 

(assuming an optimization requires 50 expensive function evaluations and each takes 2 hours, 

these 50 evaluations can be computed in parallel and thus the total amount of time is 2 hours as 

compared to 100 hours.); 3) the approximation process can help study the sensitivity of design 

variables, and thus give engineers insights to the problem; and 4) this method can handle both 

continuous and discrete variables.  

Metamodel-based Design Optimization (MBDO) Strategies 

Three different types of strategies of MBDO can be found in the literature, as illustrated in Fig. 2.  

The first strategy (Fig. 2a) is the traditional sequential approach, i.e., fitting a global metamodel 

and then using the metamodel as a surrogate of the expensive function.  This approach uses a 

relatively large number of sample points at the outset.  It may or may not include a systematic 

model validation stage. If yes, the validation method might have to be cross-validation.  This 

approach is commonly seen in literature [1, 8, 114].  The second approach (Fig. 2b) involves the 

validation and/or optimization in the loop in deciding the re-sampling and re-modeling strategy.  

In Ref. [115],  samples were generated iteratively to update the approximation to maintain the 

model accuracy. Osio and Amon [116] developed a multi-stage kriging strategy to sequentially 

update and improve the accuracy of surrogate approximations as additional sample points were 
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obtained.  Trust regions were also employed in developing several other methods to manage the 

use of approximation models in optimization [117, 118].  Schonlau, et al. [119] described a 

sequential algorithm to balance local and global searches using approximations during 

constrained optimization.  Sasena et al. [120] used Kriging models for disconnected feasible 

regions.  Knowledge was also incorporated in the identification of attractive design space [121]. 

Wang and colleagues developed a series of adaptive sampling and metamodeling methods for 

optimization, in which both the optimization and validation are used in forming the new sample 

set [45, 46, 111].  The third approach is recent and it directly generates new sample points 

towards the optimum with the guidance of a metamodel [37, 38, 122].  Different from the first 

two approaches, the metamodel is not used as a surrogate in a typical optimization process. The 

optimization is realized by adaptive sampling alone and no formal optimization process is called.  

The metamodel is used as a guide for adaptive sampling and therefore the demand on model 

accuracy is reduced.  This method needs to be further tested for high dimensional problems. 

 

 

 

 

 

(a)     (b)     (c) 

Figure 2 MBDO strategies: a) sequential approach, b) adaptive MBDO, and c) direct 

sampling approach. 

Global Optimization 

A standard non-linear optimization problem is usually formulated as  
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where T

nxxx ],,,[ 21 L=x is a vector of design variable; UL xx ,  are the lower and upper bound 

vectors, respectively, which define the search range for each variable, and together define the 

design space.   A typical metamodel-based optimization problem therefore becomes  
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where the tilde symbol indicates the metamodels for corresponding functions in Eq. (4).   

 

Often a local optimizer is applied to Eq (5) to search for the optimum.  A limited number of 

methods have been developed for metamodel-based global optimization.  One successful 

development was in Refs. [119, 123], where the authors applied the Bayesian method to estimate 

a Kriging model, and then gradually identified points in the space to update the model and 

perform the optimization. Their method, however, has to pre-assume a continuous objective 

function and a correlation structure among sample points.  A Voronoi diagram-based 

metamodeling method was proposed in which the approximation was gradually refined in ever 

smaller Voronoi regions and global optimum could be obtained [124].  Since Voronoi diagram is 

from computational geometry, the extension of this idea to problems with more than 3 variables 

may not be efficient. Global optimization based on multipoint approximation and intervals was 

performed in Ref. [75].  Metamodeling was also used to improve the efficiency of genetic 

algorithms (GA) [125, 126]. Wang and colleagues developed an adaptive response surface 

method (ARSM) for global optimization [45, 111]}.  A so-called Mode-Pursuing Sampling 

(MPS) method was developed [37], in which no existing optimization algorithm was applied.  
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The optimization was realized through an iterative discriminative sampling process.  MPS 

demonstrated high efficiency for optimization with expensive functions on a number of 

benchmark tests and design problems of low-dimension. 

Multiobjective Optimization (MOO) 

A metamodel-based multi-objective optimization problem can be defined as in Eq. (6). 
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where r number of objective functions are to be optimized with the tilde symbol indicates the 

metamodels.   

 

Recent approaches to solve MOO problems with black-box functions were to approximate each 

single objective function or directly approximate the Pareto optimal frontier [127-130].  Wilson 

et al. [128] used the surrogate approximation in lieu of the computationally expensive analyses to 

explore the multi-objective design space and identify Pareto optimal points, or the Pareto set, 

from the surrogate.  Li et al. [129] used a hyper-ellipse surrogate to approximate the Pareto 

optimal frontier for bi-criteria convex optimization problems.  If the approximation is not 

sufficiently accurate, then the Pareto optimal frontier obtained using the surrogate approximation 

will not be a good approximation of the actual frontier.  Recent work by Yang et al. [130] 

proposed the first framework managing approximation models in MOO.  In the framework, a 

GA-based method was employed with a sequentially updated approximation model.  It differed 

from [128] by updating the approximation model in the optimization process.  The fidelity of the 

identified frontier solutions, however, was still built upon the accuracy of the approximation 



 22 

model.  The work in Ref. [130] also suffered from the problems of the GA-based MOO 

algorithm, i.e., the algorithm had difficulty in finding frontier points near the extreme points (the 

minimum obtained by considering only one objective function).  Shan and Wang recently 

developed a sampling-based MOO method in which metamodels were used only as a guide [38].  

New sample points were generated towards or directly on the Pareto frontier. 

Probabilistic Design Optimization 

Probabilistic design optimization consists of both robust design optimization (RDO) and  

reliability-based design optimization (RBDO). Both types of probabilistic optimization problems 

have been intensively studied.  A robust design optimization problem is usually formulated as 

follows [81]: 
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where ],,[ 1 lqq L=q  is a vector of design parameters whose values are fixed as a part of the 

problem specifications.  Both design variables and parameters could be the contributing sources 

of variations.  Therefore both the objective function F(x, q) and g(x, q) are random functions. 

The commonly used objective is to minimize both the mean, µ , and variance, σ , of the 

objective function in robust design optimization.  The tilde symbol, again, indicates the 

metamodel. 

 

The other type is called reliability-based design optimization (RBDO), which focuses on 

achieving the feasibility of constraints under uncertainty.  
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where P0k is the desired probability for satisfying constraint k.  The use of metamodeling in RDO 

and RBDO is extensive.  Instead of providing a detailed review of these areas, this work only 

summarizes works involving metamodeling with references to a few representative articles. 

 

Reliability assessment is the building block for RBDO.  Metamodels are often used to 

approximate expensive constraint functions, or the limit state function.  Some recent work 

included using importance sampling (IS) together with metamodels [32, 33].  Zou and colleagues 

developed a method, in which Monte Carlo Simulation was only performed in a reduced region 

around the limit state [31].  Shan and Wang recently developed a more flexible discriminative 

sampling method with high efficiency and accuracy [39, 122].  A novel concept, failure surface 

frontier (FSF), was also defined for reliability assessment [122].  FSF makes the accuracy of 

metamodeling less important, because in FSF-based reliability assessment, metamodels are 

mainly used as a guide of sampling. 

 

Metamodels are commonly used as a surrogate of expensive processes; and probabilistic 

optimization processes are applied directly on the metamodels.  Chen [9] applied metamodeling 

in robust design in her Ph.D. dissertation and from then on developed a series of methods in the 

field [56, 131-133].  Booker continued on the surrogate management framework (SMF) [117] 

and applied it to reliability-based design [134].  These methods are implemented into Boeing’s 

Design Explorer tool.  Choi and his group has been very active in this area [135].  They started to 

look into using metamodels in support of RDO and RBDO.  
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Recently, Jin et al. performed a study on using metamodeling techniques for optimization when 

uncertainties were present [81]. It is found that a metamodel that is acceptable for deterministic 

optimization may not be acceptable for modeling the performance variations and the probability 

of constraint feasibility.  

Multidisciplinary Design Optimization (MDO) 

MDO has been an intensively studied area, partially due to its broad definition. Its general 

formulation is as follows 
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where y is a state parameter output from its corresponding discipline; yci is a vector of state 

parameters output from other disciplines to disciplines i; xi is a vector of disciplinary / local 

design variables; xcs denotes a vector of system design variables; and vector x is the union of xi 

and xcs. As compared with Eq. (4), MDO problems feature couplings between disciplines.   

 

In real practice, MDO often involves a large number of design variables, computationally-

intensive function evaluations, and coupling between disciplinary functions.  All these features of 

MDO make metamodeling an attractive tool to be included in MDO methodologies [4, 11, 136]. 

A detailed survey of MDO in aerospace was given in Ref. [136]. Golovidov et al. discussed in 

detail the strategies of using metamodeling in MDO via a commercial software tool iSight [137]. 

Batill et al. used metamodels in solving the coordination between design subspaces [138].  The 

use of metamodels in a current popular MDO methodology, Collaborative Optimization (CO), 

was archived in Ref. [139].  Wang et al. used metamodeling to guide sampling design solutions 
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that satisfied the coupling requirements between disciplines [140]. A metamodel-based approach 

was also developed to search for boundaries of coupled state parameters.  With such boundaries, 

a coupled MDO problem can be reformulated with as an uncoupled problem and design 

engineers can have an enhanced understanding of the problem. 

Applications and Tools 

A wide spectrum of applications of metamodeling and MBDO was documented in the literature.  

More than half a century ago, there was an aircraft jet engine inlet design involving 11 variables 

and 5 responses that used a 12 point Plackett-Burman design [141].  Otto et al. [142, 143] applied 

Bayesian validated surrogates in the optimization of air foil and trapezoidal ducts.  Golovidov et 

al. [137] built a global metamodel for an oil tanker design with 6 inputs, 14 outputs, and 50 

function evaluations for each of the disciplinary analysis, hydrodynamics and structural analysis.  

Wang et al. [144] applied the ARSM for the shape design of an air intake scoop for a helicopter’s 

engine cooling bay (see Fig. 3).  To reduce ice build-up on the intake scoop, the scoop shape is 

optimized with certain additional heat added to the scoop.  Both heat transfer and air flow finite 

element models were built.  The optimization involves 5 inputs and 45 function evaluations to 

reach the global optimum.  Automotive crashworthiness has been intensively studied with special 

sessions in recent ASME Design Engineering Technical Conferences.  Yang et al. [145] 

presented an example with 9 input variables, 11 output responses, and only 33 sample points to 

fit global metamodels for crashworthiness analyses.  Gu [1] compared the accuracy of different 

metamodels for crashworthiness studies.  Recent work documented crash-related design problems 

of 2, 11 and 20 variables [146]. The design of High Speed Civil Transport (HSCT) was also 

studied by many researchers [2, 147] (see Fig. 4).  Metamodeling was also applied to fuel cell 
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component  and system design [38, 148], electronic packaging [116], engine bearings [149], and 

fixture configuration [114].  

 

Current tools with MBDO capabilities are listed as follows.  To avoid commercialism, readers are 

referred to individual URLs to learn about each tool. 

Commercial tools: 

• iSight, by Engineous Software, Inc. (http://engineous.com/products.htm) 

• Optimus, by Neosis Solutions NV (http://www.noesis.be) and built into LMS Virtual.Lab 

optimization (http://www.lmsintl.com/simulation/virtuallab/optimization) 

• VisualDOC,  by Vanderplaats Research and Development, Inc. (http://vrand.com/) 

• ModelCenter, by Phoenix Integration (http://www.phoenix-

int.com/products/ModelCenter.php) 

• MARS, by Salford System, http://www.salford-systems.com/ 

• LS-OPT,  by Livermore Software Technology Corporation, http://www.lstc.com/ 

 

 
 

Figure 3 Schematic of engine cooling bay inlet flow [144]. 
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Figure 4 A typical HSCT configuration [147]. 

Public domain tools: 

• DAKOTA, written in C++ by Sandia National Laboratories, is publicly available and 

under continuous development (http://endo.sandia.gov/DAKOTA/). 

In-house tools: 

• Design explorer, by Boeing Company, commercially available through Phoenix 

Integration 

• PEZ System, General Electric Company 

Challenges and Future Development  

Though intensive research on metamodeling and MBDO has been carried out and success has 

been achieved through numerous applications, some major research challenges remain to be 

overcome. 
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Large-scale Problems 

It is widely recognized that when the number of design variables is large, the total computation 

expense for metamodel-based approaches makes the approaches less attractive or even infeasible 

[2].  As an example, if the traditional central composite design (CCD) and a second-order 

polynomial function are used for metamodeling, the minimum number of sample points is 

(n+1)(n+2)/2, with n being the number of design variables.  Therefore, the total number of 

required sample points increases exponentially with the number of design variables.  Therefore, a 

well-known problem is the so-called “curse-of-dimensionality” for metamodeling.   There seems 

to be a lack of research on large-scale problems, and many questions are not answered or even 

addressed.  For example, what are the characteristics of a large-scale problem?  Are there special 

models and sampling schemes that best suit large-scale problems [150]? Is decomposition the 

necessary path to solve the large-scale problem? What is the best decomposition strategy then? Is 

decomposition always feasible? What are the visualization techniques so that high dimensional 

data are comprehensible? How does visualization help metamodeling for high dimensional 

problem? It seems that the limitation for large-scale problems is the most prominent problem in 

MBDO.  New metamodeling techniques for large-scale problems, or simple yet robust strategies 

to decompose a large-scale problem, are needed. 

Flexible Metamodeling 

Recent research seems to be moving towards developing more flexible and generic metamodeling 

approaches.  Metamodels of variable fidelity across the entire or sub-domains of design spaces 

have been integrated to increase overall efficiency [151].  Metamodeling of multiple responses 

from a single simulation was also developed [152].  Sahin and Diwekar [153] used re-weighting 

to update a kernel density estimator when new sample points were obtained.  The metamodeling 
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process was not repeated, and thus the efficiency of metamodeling was improved [153].  

Recalibrated composite approximation models were also used in support of optimization [154].  

The extended RBF method allows the user to choose the best RBF model from many alternatives 

that all interpolate the sample points [68].  

 

Currently metamodeling is mostly used for approximating the design variables and their 

performances, which are often used as an output of the “black-box” functions.  It would be 

beneficial to have a model of gradient of the performance function, a model of curvatures, and so 

on.  In the case of uncertainties, it might be helpful to have a metamodel of standard deviation to 

help probabilistic design optimization [81].  Moreover, it would be even better if such a 

metamodel of certain function property can be derived from the metamodel of the performance 

function.  Therefore, new innovative metamodel forms may be invented for this purpose.   

Second, if engineers have a priori knowledge about a computation intensive process, how can 

this knowledge be categorized, represented, and incorporated in metamodeling [155]? Third, 

studies on metamodels and metamodeling techniques for problems with mixed discrete and 

continuous variables are lacking.  Lastly, when models of different fidelity are used to generate 

sample points for metamodeling, if a metamodel is proved to be accurate for a low fidelity model, 

can it be tuned for a higher fidelity model?  In the field of electrical engineering, a method called 

space mapping [156] was developed, which built a connection between low and high fidelity 

models.  Another situation is when the “black-box” function is slightly altered, for example, a 

constant is changed due to the change of operating condition.  Can we have a mechanism to fine 

tune the existing metamodel to adapt to such a change?  
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Intelligent Sampling 

Current sampling schemes for metamodeling focus on the initial sampling in order to achieve 

certain space filling properties.  As a matter of fact, if the function to be approximated is 

considered as a “black-box,” the best initial sample size will remain to be a mystery.  Without 

knowing the best sample size, the distribution of the sample points becomes less important.  

Therefore, the subtle differences between various space filling sampling methods may not 

deserve so much attention.  The focus on sampling, in our opinion, should shift to how to 

generate a minimum number of sample points intelligently so that the metamodel reflects the real 

“black-box” function in areas of interest.   This statement implies that the sampling process is 

iterative and ought to be progressive, which is reflected in some recent work [157, 158]. Though 

there are methods on iterative sampling as reviewed before, more “intelligent” sampling schemes 

need to be developed to further advance the metamodeling techniques. 

Uncertainty in Metamodeling 

Metamodeling can be used to filter noises in computer simulation [159].  On the other hand, the 

uncertainty in metamodels brings new challenges in design optimization.  For constrained 

optimization problems, if both constraint and objective functions are computation expensive and 

metamodeling is applied, it is found that the constrained optimum is very sensitive to the 

accuracy of all metamodels [46].  Mathematically rigorous methods have to be developed to 

quantify the uncertainty of a metamodel, only based on which metamodel-based probabilistic 

optimization and constrained optimization can be confidently performed.  
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Summary 

This work provides an overview of the metamodeling techniques and their application to support 

engineering design optimization.  Research and development in metamodeling are categorized 

according to the needs of design engineers: model approximation, design space exploration, 

problem formulation, and support of optimization.  Challenges and future developments are also 

discussed. It is hoped that this work can help researchers and engineers who are just starting in 

this area.  Also it is hoped that this work will help current researchers and developers by being a 

reference and inspiration for future work. 
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