
 1

Performance Study of Mode-Pursuing Sampling Method

X. Duan1, G.G. Wang2*, X. Kang1, Q. Niu1, G. Naterer3, Q. Peng1

Abstract

Since the publication of our recently developed mode-pursing sampling (MPS) method, questions have

been asked on its performance as compared with traditional global optimization methods such as genetic

algorithm (GA), and when to use MPS as opposed to GA. This work aims to provide an answer to these

questions. Similarities and distinctions between MPS and GA are presented. Then MPS and GA are

compared via testing with benchmark functions and practical engineering design problems. These

problems can be categorized from different perspectives such as dimensionality, continuous / discrete

variables, or the amount of computational time for evaluating the objective function. It is found that both

MPS and GA demonstrate great effectiveness in identifying the global optimum. In general, MPS needs

much less function evaluations and iterations than GA, which makes MPS suitable for expensive

functions. But GA is more efficient than MPS for inexpensive functions. In addition, MPS is limited by

the computer memory when the total number of sample points reaches a certain extent. This work serves

a purpose of positioning the new MPS in the context of direct optimization and provides guidelines for

users of MPS. It is also anticipated that the similarities in concepts, distinctions in philosophy and

methodology, and effectiveness as direct search methods for both MPS and GA will inspire the

development of new direct optimization methods.

Keywords: Mode-Pursuing Sampling, Genetic Algorithm, Global Optimization

1. Introduction

Practical engineering design problems are usually highly nonlinear and involve many continuous and/or

discrete variables. Often it is difficult to define a design problem or to express it as a mathematical model.

In addition, the increasingly wide use of finite element analysis (FEA) and computational fluid dynamics

(CFD) tools brings new challenges to optimization. FEA and CFD simulations involve a large number of

simultaneous equations and therefore are considered computationally expensive and also “black-box”

1 Dept. of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB, Canada R3T5V6

2 School of Engineering Science, Simon Fraser University, 250-13450 102 Ave., Surrey, BC, Canada V3T03A, Tel

1-778-782-8495, Fax 1-778-782-7514, Email: gary_wang@sfu.ca; *Corresponding author

3 Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street
North, Oshawa, Ontario

 2

functions. The gradients computed from FEA and CFD, which require extra computing resources, are

often not reliable (Haftka et al. 1998). Therefore, it is difficult to apply traditional gradient-based

optimization methods on these black-box functions, thereby inhibiting solutions of many practical design

problems. Metamodeling based design optimizations (MBDO) have emerged as a promising solution for

the expensive black-box problems. Its essence is to use a computationally simpler model to approximate

the original expensive black-box model. This approximation is realized by sampling in the design space

and performing model fitting for a chosen metamodel type. The metamodel can then be optimized.

Current research in MBDO focuses on developing better sampling methods, approximation models, or the

whole global optimization strategy (Wang and Shan 2007). Recently, Wang et al. (2004) developed a new

Mode Pursuing Sampling based global optimization (MPS) method for black-box functions. Its discrete

variable version was in (Sharif et al. 2008). In several applications (Wang et al. 2004, Sharif et al. 2008,

Liao and Wang 2008), the MPS was found to be effective and efficient.

Genetic Algorithm (GA), on the other hand, has been widely used in engineering for global optimization

(Goldberg 1989). The development of Genetic Algorithms (GA) was inspired by the principles of

genetics and evolution. GA employs the principal of “survival of the fittest” in its search process to

generate and select chromosomes (design solutions) composed of genes (design variables).

Chromosomes that are more adaptive to their environment (design objectives/constraints) are more likely

to be chosen. Over a number of generations (iterations), desirable traits (design characteristics) will

evolve and remain in the population (set of design solutions generated at each iteration). GA begins its

search from a randomly generated population of design. Three operators are often used to propagate the

populations from one generation to another to search for the optimum solution, namely, selection,

crossover, and mutation. GA can be used for problems that are not well-defined, difficult to model

mathematically, or black-box. It can also be used when the objective function is discontinuous, highly

nonlinear, stochastic, or it has unreliable or undefined derivatives. The limitation of GA is that it usually

demands a large number of function evaluations.

When analyzing the performance of MPS, it is found that there are many similarities between GA and

MPS: (1) the initial population is randomly created in GA and the sampling points are randomly

generated in MPS; (2) in GA, the chromosomes are chosen by a stochastic process and the probability of

a chromosome to be selected is determined by its fitness value, while in MPS, the points are sampled

according to a probability determined by its objective function value; (3) both GA and MPS are based on

a set of solutions, or population, and render themselves well suited for parallel computation; (4) both

methods use no gradient information and thus are called derivative-free methods, or direct methods.

 3

The distinctions between GA and MPS are also manifold. First they are based on different philosophies.

GA has its root in evolutionary processes, while MPS is based on “discriminative” sampling. Second, GA

explores the space through operations of genes; it is intuitively a bottom-up approach from the

perspective of exploring the entire design space. On the other hand, MPS is like a top-down approach as

the entire space is explored at every iteration. Specific similarities and distinctions between the two

methods are summarized in Table 1.

Table 1 Comparison of features of GA and MPS algorithms

 GA MPS

Si
m

ila
rit

ie
s Mechanism

Generate more points around current best point; Uses probability in
searching/sampling; Statistically cover the entire design space

Features Random process; Derivative free; Population-based search

Capabilities Perform a "global" optimization; Supporting parallel computation

D
is

tin
ct

io
ns

For discrete
problem

Discrete in nature; Easily handle continuous
problems

Needs different treatments for
continuous and discrete problems

Input
parameters

Many parameters are set by the user, e.g.
population size, reproduction operators,
crossover probability, and mutation
probability. The parameters are problem
dependent and could be sensitive.

Fewer parameters need to be changed
and not very sensitive.

Efficiency

Normally a large number of function
evaluations needed.

Developed specially for expensive
functions to minimize the number of
function evaluations

Form of
function
values

Usually coded form of the function values
rather than the actual values Actual function values

Robustness
Premature convergence may happen if the
operators are not set properly.

For the problems with a large
quantity of local optima, it may be
trapped in a local optimum.

To better understand the performance and the problems that most amenable to MPS, this work studies the

performance of MPS in parallel with GA. The selection GA is because of the similarities between the

two algorithms and because GA is well-known and widely used by practitioners, which makes the

performance study of MPS more relevant to real practice. The main purpose is thus to position MPS in

the context of engineering global optimization in order to provide some guidelines for MPS users. The

comparison between MPS and GA is thus not to determine which algorithm is the winner, but rather to

shed lights on characteristics and performance behaviour of MPS in reference to GA.

 4

2. Overview of MPS

MPS entails its continuous variable version, C-MPS (Wang et al. 2004), and its discrete variable version
D-MPS (Sharif et al. 2008). This overview will focus on its original continuous-variable version, and
provide a brief description of the new discrete-variable version.

2.1 Continuous-variable Mode-Pursuing Sampling (C-MPS) Method

The essence of MPS is the integration of metamodeling and a novel discriminative sampling method,

which generates more sample points in the neighbourhood of the function mode (local optimal) and fewer

points in other areas as guided by a special sampling guidance function.

Fundamental to MPS is the Fu and Wang’s algorithm (Fu and Wang 2002), which is used to generate a

sample of an asymptotic distribution of a given Probability Density Function (PDF). Given a d-

dimensional PDF g(x) with compact support dgS ℜ⊂)(, Fu and Wang’s algorithm (Fu and Wang 2002)

consists of three steps. In the first step, the discretization step, a discrete space SN(g) is generated

consisting of N uniformly distributed base points in S(g). Usually N is large and should be larger if the

dimension of g(x), d, is higher. These uniform base points may be generated using either deterministic or

stochastic procedures. In the second step, the contourization step, the base points of SN(g) are grouped

into K contours {E1, E2, …, EK} with equal size according to the relative height of the function g(x). For

example, the first contour E1 contains the [N/K] points having the highest function values among all base

points, whereas the last contour EK contains the [N/K] points having the lowest function values. Also in

this step, a discrete distribution {P1, P2, …, PK} over the K contours is constructed, which is proportional

to the average function values of the contours. Finally, a sample is drawn from the set of all base points

SN(g) according to the discrete distribution {P1, P2, …, PK} and the discrete uniform distribution within

each contour. As has been shown in the reference (Fu and Wang 2002), the sample drawn according to

their algorithm is independent and has an asymptotic distribution g(x). The approximation gets better for

larger values of N and K.

For optimization, we wish to minimize an n-dimensional black-box function f(x) over a compact set
nfS ℜ⊂)(. Following the convention of engineering optimization, we refer to the minimum as the

function mode. To simplify notation, assume that S(f) = [a, b]n, where ∞<<<∞− ba are known, and

 5

f(x) is positive on S(f) and continuous in a neighbourhood of the global minimum. In general, if f(x) is

negative for some x∈S(f), then we can always add a positive number to f(x), so that it becomes positive

on S(f). Note that minimizing f(x) is equivalent to maximizing –f(x). The MPS algorithm consists of the

following four steps:

Step 1. Generate m initial points x(1), x(2), …, x(m)
 that are uniformly distributed on S(f) (m is usually small).

Step 2. Use the m function values f(x(1)), f(x(2)),…, f(x(m)) to fit a linear spline function

∑
=

−=
m

i

i
i xxxf

1

)(||||)(ˆ α , (1)

such that)()(ˆ)()(ii xfxf = , i = 1, 2,…, m, where ||||• stands for the Euclidean norm.

Step 3. Define)(ˆ)(0 xfcxg −= , where c0 is any constant such that)(ˆ
0 xfc ≥ , for all x in S(f). Since

g(x) is nonnegative on S(f), it can be viewed as a PDF, up to a normalizing constant, whose modes are

located at those x(i)’s where the function values are the lowest among {f(x(i))}. Then apply the sampling

algorithm of Fu and Wang [7] to draw a random sample x(m+1)
, x(m+2), …, x(2m) from S(f) according to g(x).

These sample points have the tendency to concentrate about the maximum of g(x), which corresponds to

the minimum of)(ˆ xf .

Step 4. Combine the sample points obtained in Step 3 with the initial points in Step 1 to form the set x(1),

x(2), …, x(2m) and repeat Steps 2–3 until a certain stopping criterion is met.

For ease of understanding, the MPS method is illustrated with the well-known six-hump camel-back (SC)

problem (Branin and Hoo 1972). The mathematical expression of SC is

2
21

4
2

2
221

6
1

4
1

2
1]2,2[),(,44

3
1

10
214)(−∈+−++−= xxxxxxxxxxf sc . (2)

A contour plot of the SC function is shown in Figure 1, where the H’s represent local optima. H2 and H5

are two global optima at points (-0.090, 0.713) and (0.090, -0.713), respectively, with an equal function

value fmin= –1.032.

 6

Figure 1 Contour plot of the SC function.

In the first step of the MPS algorithm, we start with m = 6 initial random points x(1), x(2), …, x(6)

2]2,2[−∈ . Then)(ˆ xf is computed by fitting Eq. 1 to f(x(1)), f(x(2)), …, f(x(6)). Further, the function g(x)

is obtained by using the maximum of {f(x(i)), i=1, …, 6} as c0.

Now Fu and Wang’s algorithm is applied to draw a sample as follows. First, N = 104 uniformly

distributed base points are generated to form SN(g), the discretized version of the sample space 2]2,2[− .

Note that the base points in SN(g) are cheap points, in contrast to the original m = 6 expensive points used

to build)(ˆ xf . Further, without loss of generality, suppose the points in SN(g) are sorted in ascending

order of the values of function)(ˆ xf . The sequence of corresponding function values of)(ˆ xf is plotted

in Figure 2(a), whereas the function g(x) is plotted in Figure 2(b).

H1 H2

H3

H4

H5 H6

 7

Figure 2 A screen shot of ranked point distribution of f̂ , g, g~ , G and G
)

 for the SC problem.

According to Fu and Wang’s method (Fu and Wang 2002), the ordered 104 base points are grouped into

K = 102 contours {E1, E2, …, E100}, with each having N/K = 100 points. For example, the first contour E1

contains the 100 points at which the values of function)(ˆ xf are the lowest, whereas the last contour E100

contains the 100 points at which the values of)(ˆ xf are the highest. Let)(~ ig be the average of)(xg

over Ei, i = 1, 2, …, 100. The function)(~ ig , i = 1, 2, …, 100 is plotted in Figure 2(c) and its cumulative

distribution function G(i) is displayed in Figure 2(d).

Finally, m = 6 contours are drawn with replacement according to distribution {G(i)} and, if the contour Ei

occurs mi > 0 times in these draws, then mi points are randomly drawn from Ei. All such points form the

new sample x(m+1)
, x(m+2), …, x(2m).

As one can see from Figure 2(d), the contours from E80~E100 (corresponding to high f̂ values) have

lower selection probabilities for further sampling than other contours, since the G curve is relatively flat

Model
Points

Model
Points

Point
Contours

Point
Contours

Point
Contours

f̂

g

g~

G

Ĝ

(a)

(b)

(c)

(d)

(e)

 8

in this area. However, such a probability for each contour is always larger than zero. On the other hand, it

is generally desired to increase the probability of the first few contours as they correspond to low f̂

values. To better control the sampling process, a speed control factor is introduced [3]. Figure 2(e)

shows {)(iG
)

}, which is obtained by applying the speed control factor to {)(iG } in Figure 2(d). From

Figure 2(e), one can see that the first few contours have high selection probabilities for next-step

sampling, while the contours from E40 ~E100 have low probabilities. This curve shows an aggressive

sampling step, as many more new sample points are close to the current minimum of f(x) as compared to

the sampling based on Figure 2(d).

The whole procedure is repeated eight times, so that a total of 48 sample points are generated. Figure 3

shows these 48 sample points, where the circles indicate attractive design points having a function value

less than –0.5. Even with only 48 sample points, many attractive points have already shown up around H2

and H5. It can also be seen that points spread out in the design space with a high density around function

mode H2 (global minimum). In the mode-pursuing sampling step, every point has a positive probability

of being drawn, so that the probability of excluding the global optimum is zero. As the iteration process

continues, more and more sample points will be generated around the minimum of function f(x).

2.2 Discrete-variable MPS (D-MPS)

D-MPS inherits the metamodeling and discriminative sampling ideas from C-MPS. For the discrete

variable space, sample points are mapped from a continuous space to the discrete variable space. The

main difference between C-MPS and D-MPS lies on their convergence strategies.

In C-MPS (Wang et al. 2004), a local quadratic metamodel is employed to adaptively identify a sub-area,

with which a local optimization is called to search for the local optimum. For a discrete variable space,

there lacks of a continuous sub-area to be approximated. Even if one could build a continuous function in

a discrete space, the local optimum on a continuous function might not be a valid or optimal solution in

the discrete space. Therefore the local quadratic metamodeling does not apply to discrete variable

optimization problems.

 9

Figure 3 Sample points of the SC problem generated by the MPS method, where “o” indicates its

function value less than –0.5; and H2 and H5 are the locations of two global optima.

For the discrete problems, a “Double Sphere” method is used. This method includes two areas (or

“spheres”) of dynamically changing radius. One sphere controls the “exploration,” and the other controls

“exploitation.” Recall that the C-MPS is composed of three main steps, i.e., generating cheap points,

approximation, and discriminative sampling. In D-MPS, these main steps will be performed on the

domains provided by the double-sphere. For the objective function f(x) on domain S[f], the double-sphere

strategy dynamically provides a domain][DD 21 fS⊂∪ ; D1 is the domain inside the smaller hyper-

sphere; and D2 is the domain between the smaller hyper-sphere and bigger hyper-sphere. The three main

steps of D-MPS are performed on both D1 and D2. The discriminative sampling is performed

independently in the two spheres until the optimum is found or the maximum number of iterations is

reached. D-MPS thus does not call any existing local optimization routine and there is no local

metamodeling. The optimum is found by sampling alone (Sharif et al. 2008).

H2

H5

 10

3. Testing functions and problems

Given the focus on examining the performance of MPS, in this work a real-value GA is employed. The

implementation from Ref. (Houck et al. 1995) is selected for a number of reasons. First, this

implementation has commonly-used operators and it demonstrates good performance. Second, it is based

on MatlabTM, which renders a common basis for computational cost (CPU time) comparisons because

MPS is also based on MatlabTM. Last, since there exists a large number of GA implementations and

algorithms, this work is not intended to draw any general conclusion in regard to GA as a whole. It is

intended to obtain certain qualitative insights into MPS and provide guidelines to users of MPS, which

should largely be insensitive to the choice of specific GA implementation.

The selected implementation (Houck et al. 1995) forces the design variable to only take values within its

upper and lower bounds to ensure the feasibility of solutions. It uses three selection operators, namely, the

normGeom selection (a ranking selection based on the normalized geometric distribution), the roulette

selection (a traditional selection with the probability of surviving equal to the fitness of an individual over

the sum of the fitness of all), and the tournament selection (choosing the winner of the tournaments as the

new population). It also has three crossover operators, namely, the simple crossover, the heuristic

crossover, and the arithmetic crossover. Finally, it uses four optional mutation operators, called the

boundary mutation, multi-non-uniform mutation, non-uniform mutation, and uniform mutation. Details of

these operators are in the reference (Houck et al. 1995). Two termination criteria are used in the GA

implementation. The first is based on the maximum number of generations, which is suitable for problems

without knowing the analytical optimum a priori. The second termination criterion occurs when the

analytical optimum is reached. The GA optimization process will be terminated whenever one of these

two criteria is met. For constrained optimization problems, the discard method was used in order to

satisfy the constraints. Three constraint checks are performed on the initial population, with new children

generated from crossover, as well as from mutation operations at each iteration. Any chromosome that

does not pass the constraint check will be discarded from the population. For discrete variable problems,

if all of the variables are integers, a simple rounding function is used to round a number to its closest

integer. If the discrete variable values are picked from a set, for example, x∈[16.2, 17.1, 18.5, 19.3], we

first index the possible values, e.g., index = {1， 2，3，4}, and then generate a random number and

round it to the closest index. For example, if index=3, then we use x=18.5. For mixed-variable problems,

only the discrete variables are handled as described above.

 11

Nine problems are tested for a performance comparison of the chosen GA implementation and MPS

optimization algorithms. The characteristics of these problems are summarized in Table 2. In Table 2,

only optimization problems with constraints other than bounds are referred as constrained problems.

Table 2 Characteristics of test functions and problems.

Function (n: number of variables) Characteristics

Six-hump camel-back (SC) (n=2) Multiple local optima

Corana (CO) function (n=2) Flat bottom, multiple local optima

Hartman (HN) function (n=6) Multiple local optima

Gear train (GT) problem (n=4) Discrete, multiple local optima

A high dimensional function (F16) (n=16) High dimension

Rosenbrock function (R10) (n=10) Flat bottom, relatively high dimension, multiple
local optima

Insulation layer (IL) design (n=2) Constrained Engineering Problem

Pressure vessel (PV) design (n=4) Constrained Engineering Problem

Fixture and joining position design (FJP) (n=4) Constrained, expensive, black-box function

As one can see from Table 2, the test functions and problems present different challenges to the

optimization algorithms. This section briefly describes each test problem.

• Six-hump camel-back (SC) problem

The SC problem is a well-known benchmark test problem. It appears early in Ref. (Branin and Hoo 1972)

and it was used by many other researchers. The mathematical expression is shown in Eq. (2). The SC

function has six local optima. A contour plot of the SC function is shown in Figure 1.

• The Corana (CO) function

The Corana function is a well known benchmark test function (Corana et al. 1987). It was also tested in

Ref. (Humphrey and Wilson 2000). The Corana function is a paraboloid with axes parallel to the

coordinate direction, except a set of open, disjoint, rectangular flat “pockets”. Let the domain of the

function)(xf in an n-dimensional space be:

},......2,1,;:{ niRaaxaRxD n
iiii

n
f =∈≤≤−∈≡ +

Let mD represent the set of “pockets” in fD :

 12

},......2,1,
2

;,;;:{,.....,1
ni

s
tRstΖktskxtskDxd i

i
n

iiiiiiiiiifkk n
=<∈∈+<<−∈= +

.0,......,0,0
,.....,1

,1
ddD

knk
kkm n
−= U L

The Corana function can then be defined as:

⎪
⎪
⎩

⎪⎪
⎨

⎧

≠∈

∈−∈
=

∑

∑ +

0),....,(,,

,,
)(

1,....,
2

1

2

1 nkkiir

n
n

imfii

kkdxzdc

RdDDxxd
xf

n

 (3)

where
⎪⎩

⎪
⎨

⎧

>−
=
<+

=
0,
0,0
0,

iiii

i

iiii

i

ktsk
k
ktsk

z

The parameters in this test are set to n=4,)1(,15.0,05.0,2.0,100 −===== i
iriii edctsa . A less

extreme weight id is used as compared to the standard representation,)1(10 −i . The searching space is

xi∈[-100, 100]. The four-dimensional Corana function has its global minimum f*=0 at x*=(0, 0, 0, 0). A

difficulty arises from the fact that the optimum is located in a deep valley, and several deep flat bottoms

exist along the space. Figure 4 shows a 2-D Corana function in the range of [-0.5, 0.5].

Figure 4 2-D corana function in [-0.5, 0.5]

 13

• Hartman (HN) function

The Hartman function with n=6 was tested in Ref. [3]. It can be expressed as

⎥
⎦

⎤
⎢
⎣

⎡
−−−= ∑∑

==

n

j
ijjij

i
iHN pxcxf

1

2
4

1

)(exp)(α , nixi ,...,1],1,0[=∈ (4)

where ijα and ijp are listed below.

i
ijα , j=1,...,6 ci

1 10 3 17 3.5 1.7 8 1

2 0.05 10 17 0.1 8 14 1.2

3 3 3.5 1.7 10 17 8 3

4 17 8 0.05 10 0.1 14 3.2

i pij, j=1,...,6

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

• Compound gear train (GT) design problem

This is a discrete variant problem involving a compound gear train design (Fu et al. 1991, Cai and

Thierauf 1996), as shown in Figure 5. It is desired to produce a gear ratio as close as possible to 1/6.931.

For each gear, the number of teeth must be an integer between 14 and 60. The integer design variables are

the numbers of teeth, x=[Td, Tb, Ta, Tf]T=[x1, x2, x3, x4]T. The optimization problem is formulated as:

Minimize

2

43

21

931.6
1)(⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

xx
xxXGT (5)

 Subject to

 ,6014 ≤≤ ix 4,3,2,1=i

 14

Figure 5 Compound gear train

• A function of 16 variables (F16)

This high dimensional problem was described in Ref. (Wang et al. 2004). It can be expressed by

∑∑
= =

++++=
16

1

16

1

22
16)1)(1()(

i j
jjiiijF xxxxaxf , i, j =1, 2, …, 16, (6)

• Ten-dimensional Rosenbrock function (R10)

The Rosenbrock function is a widely used benchmark problem for testing optimization algorithms such as

Refs. (Bouvry et al. 2000, Augugliaro et al. 2002). It can be expressed as

∑
−

=
+ −+−=

1

1

222
1))1()(100()(

n

i
iiiRO xxxxf (7)

The Rosenbrock function has its global minimum minf =0 at x*= (1,1…,1). While attempting to find a

global minimum, a difficulty arises from the fact that the optimum is located in a deep parabolic valley

with a flat bottom. In the present study, the 10-dimensional Rosenbrock function will be used as another

high dimensional benchmark problem, in addition to F16. The searching range for each variable is [-5, 5].

• Two layer insulation design (IL) problem

This is a problem involving the design of a two-layer insulated steam pipe line, as shown in Figure 6. The

objective is to design r1 and r2 to minimize the total cost per unit length of pipe ($/m) in one year of

 15

operation. The total cost function includes the cost of heat loss, the cost of insulation materials, and the

cost of fixed charges including interest and depreciation (with a rate of 15%). The parameters in the

design are (1) Inner radius r0= 273mm, (2) Steam temperature Tf = 400 deg. C, and the temperature of the

ambient air Ta=25 deg. C, (3) The conductive resistance through the wall is neglected, (4) The convective

heat transfer rate at the inner surface has hf =55W/m2K, (5) The first layer of insulation is rock wool, with

a thermal conductivity k1=0.06W/mK and thickness δ1= r1-r0, (6) The second insulation layer is calcium

silicate with k2=0.051W/mK and thickness of δ2=r2-r1, (7) The outside convective heat transfer

coefficient is h0=10W/m2K, (8) The cost of heat is Ch=0.02$/kWh; cost of rock wool, Ci1=146.7$/m3; cost

of calcium silicate Ci2=336$/m3. The constraints are determined by the insulation requirement and other

practical considerations, which are described in Ref. (Zaki and Al-Turki 2000).

Figure 6 A steam pipe with two-layer insulation

The total cost per unit length of pipe can be expressed as:

Minimize

),(21 rrf IL = [])()(

2
1

2
)/ln(

2
)/ln(

2
1

)(001.0 2
1

2
2

2
0

2
1

22

12

1

01

0

21
rrCrrCf

hrk
rr

k
rr

hr

TT
C ii

of

af
h −+−+

+++

−
π

ππππ

τ (8)

Subject to:

38mm<δ<5r0; r1>r0 ; r2>r1;
o

of

af
a hr

hrk
rr

k
rr

hr

TT
T

2

22

12

1

01

0

2
1

2
1

2
)/ln(

2
)/ln(

2
1

)(
π

ππππ
+++

−
+ <60 (9)

The characteristic of this problem is its complexity in both the objective function and the last constraint.

The optimum solution is f*= 5.5362$/m, at r1=0.311m and r2=0.349m.

• Pressure vessel design (PV) problem

 16

The design of a pressure vessel was used as a test problem in Ref. (Wang et al. 2004) and it is shown in

Figure 7. There are four design variables: radius, R, and length, L, of the cylindrical shell, shell thickness,

Ts, and spherical head thickness, Th, all of which are in inches. They have the following ranges of interest:

25 ≤ R ≤ 150, 1.0 ≤ Ts ≤ 1.375, 25 ≤ L ≤ 240, and 0.625 ≤ Th ≤ 1.0.

Figure 7 Pressure vessel (adapted from Ref. (Wang et al. 2004))

The design objective is to minimize the total system cost, which is a combination of welding, material and

forming costs. The optimization model is then expressed as:

Minimize),,,(LTTRf hsPV = RLTs6224.0 + LTRT sh
22 1661.37781.1 + + RTs

284.19 (10)

Subject to: 00193.0 ≥−Ts ; 000954.0 ≥− RTh ; 06296.1
3
4 32 ≥−+ ERLR ππ (11)

The optimum continuous solution is f* = 7006.8, occurring at R*= 51.814 in., Ts = 1.0 in., L*=84.579in.,

and Th*=0.625in.

• Fixture and joining positions (FJP) optimization problem

Simultaneous optimization of fixture and joining positions for a non-rigid sheet metal assembly was

studied by Liao and Wang (2008). This is a black-box function problem involving finite element analysis,

which makes it computationally expensive. The optimization problem can be described as follows. In the

presence of part variation and fixture variation, as well as the constrains from the assembly process and

designed function requirements, find the best locations of fixtures and joining points so that the non-rigid

sheet metal assembly can achieve the minimal assembly variation. An assembly of two identical flat sheet

metal components by lap joints shown in Figure 8 is optimized. Assuming that these two components are

manufactured under the same conditions, their fabrication variations are expected to be the same. The size

of each flat sheet metal part is 100×100×1mm, with Young’s modulus E = 2.62e+9 N/mm2, and Poison’s

ratio ν = 0.3. The finite element computational model of the assembly is created in ANSYSTM. The

 17

element type is SHELL63. The number of elements and the number of nodes are 1250 and 1352,

respectively.

Figure 8 An assembly of two sheet metal parts

(note: The symbol ‘p’ indicates the fixture location and ‘s’ indicates the joint positions)

The mathematical optimization model for this specific example can be written as follows,

 Minimize))(())(()(21 xabsxabsx UU zz
+=Θ (12)

Subject to (x1-x3)2 + (x2-x4)2 ≥ 100; 20 ≤ x1, x2, x3, x4 ≤ 80; 10 ≤ x5 ≤ 40 (13)

where U is the deformation of critical points in an assembly. It is obtained by modeling the assembly

deformation using the finite element analysis through ANSYSTM. In this study, ANSYSTM and MatlabTM

are integrated to implement the optimization on a FEA process for both MPS and GA.

4. Results and discussions

4.1 Performance criteria

Two main performance criteria are used to evaluate the two algorithms, namely effectiveness and

efficiency. The effectiveness includes the robustness of the algorithm and the accuracy of the identified

global optimum. For robustness, 10 independent runs are carried out for each problem and each

algorithm, except for the expensive FJP problem, where only 5 runs are performed. The range of variation

and median value of the optima are recorded and compared against the analytical or known optimum. If

the known solution of a problem is not zero, the accuracy of an algorithm is quantified by

solQ =
solutionknown

solutionknownsolution −
−1 (14)

 18

If the known solution is zero, the deviation of the solution from zero is examined. When there is no

analytical or known optimum, the optima found by GA and MPS are compared by the values. The second

criterion for comparison is efficiency. In this study, the efficiency of an algorithm in solving a problem is

evaluated by the number of iterations, nit, and number of function evaluations, nfe, as well as the CPU

time required to solve the problem. Again, the average (arithmetic mean) and median values of these

values in 10 (or 5) runs are used.

4.2 Effects of tuning parameters

As discussed previously, there are several optimization operators to be set in the GA program. In testing

the same problems, these factors were found to have significant effects on the efficiency. Figure 9 shows

the variation of GA performance under different crossover rates, Pc, when solving the SC function (with a

population size of 100 and a mutation rate of Pm=0.01). A general trend can be observed in Figure 9,

whereby increasing Pc implies that the number of function evaluations, nfe, increases and the number of

iterations, nit, decreases, while the computation time remains at a similar level. With a small Pc, the GA

needs more generations to establish the optimum, therefore more iterations are needed. When Pc is set to

be very large, nfe increases sharply because almost all parents are replaced and few good solutions are

inherited.

0

100

200

300

400

500

600

700

800

900

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Crossover Rate

Pe
rf

or
m

an
ce

 e
va

lu
at

io
n

nfe

nit×10

time×100

Figure 9 Performance evaluation with different crossover rates in solving the SC problem.

 19

Similarly, the effect of mutation rate, Pm, on GA’s performance in solving the SC problem (with a

population size of 100 and crossover rate of Pc=0.6) is studied. It is observed that the minimum of nfe

occurs at Pm=0.1 and nfe increases with Pm>0.1.

In the MPS program, there is a tuneable parameter (difference coefficient, k), which was also found to

have noticeable effect on performance of the MPS. The difference coefficient, k, (denoted as dc in Ref.

[3]) is used for a convergence check in a quadratic model detection. A smaller difference coefficient

makes the MPS have a more accurate solution, but it may cause more computational expense, as shown in

Table 3. By examining the MPS performance in several problems in this study, it is found that k=0.01 is a

good choice for most problems. However, for the discrete GT problem and the R10 problem, a larger

coefficient (k > 0.5) must be used to establish an acceptable solution.

Table 3 Efficiency of MPS with different k values on the SC and PV problems

SC problem

Coefficient, k Average CPU time (s) average of nit Average of nfe

0.001 15.3531 17.9 67.1

0.01 4.6312 9.6 34.7

0.1 3.5311 6.9 27.8

PV problem

Coefficient, k Average CPU time (s) Average of nit Average of nfe

0.001 46.6891 8.8 51.8

0.01 26.2938 5.2 37.2

0.1 31.2279 5.8 39.9

Both the random characteristic and the effects of their tuning parameters necessitate the method of using

results of multiple runs in this comparison study. Specifically for the comparison in this work, we used

crossover rates of 0.6 or 0.7, mutation rates of 0.05 or 0.1 for GA. For MPS, we used the difference

coefficient of 0.01 for most problems but a coefficient larger than 0.5 for the GT problem and the R10

 20

problem. For both MPS and GA, different combinations of parameters for a problem are first tested; and

the set of parameters that yields the best solution is then used for comparison. Hence for each test

problem, the best results of GA are compared with the best results of MPS.

4.3 Effectiveness comparison of GA and MPS

For those problems with known optima of non-zero (SC, HN, F16, IL, PV), the qualities of the solutions

(using the median solution) are compared based on Eq. (14). The results are shown in Figure 10. It can be

seen that for all these five problems, both GA and MPS methods can find solutions of high quality close

to 100%. Only a lower quality of 98.7% was obtained by GA on the HN problem.

95

96

97

98

99

100

SC HN F16 IL PV

Functions/problems

Q
ua

lit
y

of
 s

ol
ut

io
ns

 %

GA MPS

Figure 10 Mean quality ratings of solutions obtained by GA and MPS for 5 testing problems.

The two algorithms, however, show great differences in solving the other problems. For the CO problem

(analytical optimum of zero), GA finds very good solutions ranging from 0 to 0.003, while MPS only

finds solutions from 34.25 to 5,337.44. For the ten-dimensional R10 function (analytical optimum of

zero), GA also outperforms MPS. The solutions obtained by GA range from 0 to 0.013, while those

obtained by MPS range from 73.92 to 128.79. It was found in solving the R10 function MPS reaches the

computer memory limit when the number of function evaluations reaches about 2,500. This is because all

of the 2500 points participate in the construction of the metamodel defined by Eq. (1). GA, on the other

hand, can afford around 3,000,000 function evaluations. In a later comparison, we let both GA and MPS

run for 2,500 points and found that the results are similar with those of the MPS, as shown in Table 4.

 21

Table 4 Comparison of effectiveness of GA and MPS for R10 and CO problems (*: solutions of GA for

2500 nfe’s)

Function N Space

Minimum

GA MPS

Range of variation Median Range of variation Median

CO 4 [-100,100] [0.000, 0.003] 0 [34.256, 5337.445] 306.019

R10 10 [-5,5]
[0, 0.013] 0.003

[73.926, 128.794] 118.341
[63.641,207.665]* 130.889*

A particular interest in this study is to compare the effectiveness of GA and MPS in solving discrete

problems. In this study, a well known gear train (GT) problem is solved and the solutions are compared.

Table 5(a) shows the solutions of the GT problem with different optimization algorithms. The MPS

outperforms most of the other approaches, including GA. Table 5(b) shows the solutions with 10 runs of

both GA and MPS. The MPS outperforms GA for the discrete problem.

Table 5 Solutions of the gear train design problem

(a) Best results

Approach Optimization solution
minGT

PFA [11] 14,29,47,59 4.5×10-6

2-ES [12] 18,15,32,58 1.4×10-6

GA 20,20,47,59 9.75×10-10

MPS 16, 19, 43,49 2.7×10-12

(b) Solutions of 10 runs

 Solutions

Algorithm
Range of variation Median Average

GA [9.745×10-10, 1.683×10-6] 4.615×10-9 4.033×10-7

MPS [2.701×10-12, 1.827×10-8] 5.544×10-10 2.423e×10-9

 22

Another particular problem, the FJP problem, also deserves more explanation. It is an expensive black-

box function problem which involves finite element analysis (FEA). When testing this problem with GA,

the maximum number of generations is set as 60; population size is 100 with the normGeomSelect

parameter, as well as the 3 crossover (Pc=0.7) and 4 mutation methods (Pm=0.1) as described in Section

2. For MPS, k=0.01. The results are shown in Table 5. Both GA and MPS give good solutions in all five

independent runs. But MPS provides a wider range of variation of the solutions and it gives a better

optimum of 0.1515.

Table 6 Comparison of optimal solutions of the FJP problem by GA and MPS

(a) With 5 runs

 Solutions

Algorithm
Range of variation Median Average

GA [0.2177, 0.3451] 0.2468 0.2714

MPS [0.1515, 0.4104] 0.2187 0.2453

 (b) Best results

Algorithm Optimization solution
minΘ

MPS P1= (75.153,31.709), P2= (68.117, 59.831), S= 37.473 0.1515

GA P1= (63.944, 65.459), P2= (20.043, 27.741), S=18.297 0.2177

4.4 Efficiency comparison of GA and MPS

The efficiencies are compared in Figure 11 in terms of the number of function evaluations, the number of

iterations, and CPU times used to solve the problems. The number of function evaluations and iterations

needed by GA are dramatically larger than those needed by MPS for most problems, except the HN

problem. In Figure 11 (a), note that the nfe of GA is scaled by 0.1 for better illustration. It can also be

found that GA needs more function evaluations and iterations for high dimensional problems and

complex design problems, such as the F16, PV and IL problems. The lower nfe of MPS occurs because of

 23

its discriminative sampling and metamodeling formulation in the algorithms. Only the expensive points

are calculated using the objective function, while the cheap points are calculated using an approximate

linear spline function or quadratic function. Since only several expensive points are generated in MPS, nfe

is very low. However, for GA, each individual in the population is calculated using the objective function,

so nfe is very high.

As for the CPU time used for solving the problems, MPS method uses more CPU time than GA in all of

the five problems, especially the HN problem, where MPS spends 100 times more CPU time than the GA,

as shown in Figure 11 (c). The reason is that MPS needs to generate ten thousand points per iteration, and

calculate the function value of each point from the metamodel, thereby leading to a large computing load

and high CPU time. But this has not been counted as a function evaluation since the fundamental

assumption of MPS is that the objective function evaluation is at least one magnitude more expensive

than evaluation with a metamodel in MPS.

For the other functions / problems, the computational expenses by GA and MPS are listed in Table 7.

Generally GA performs better than MPS on the high dimensional problems with inexpensive functions.

The efficiency advantage of MPS shows in the expensive function problem, the FJP problem, in which

MPS uses only half of the computational efforts of GA and finds better solutions.

 24

0

300

600

900

1200

SC HN F16 IL PV

Functions/problems

N
o.

of
 F

un
ct

io
n

Ev
al

ua
tio

ns
 .

MPS,nef GA,nef/10

0

20

40

60

80

100

120

SC HN F16 IL PV

Functions/problems

N
o.

of
 It

er
at

io
ns

MPS GA

(a) (b)

0

50

100

150

200

250

SC HN F16 IL PV

Functions/problems

C
PU

 ti
m

e
(s

)

MPS GA

(c)

Figure 11 Computational expenses of MPS and GA for the solution of five testing problems (a)

numbers of function evaluations (b) numbers of iterations and (c) CPU times

 25

Table 7 Efficiency of the GA and MPS algorithms in some optimization problems

Function
or

Problem

Number of function evaluations, nfe Number of iterations, nit CPU time(s)

GA MPS GA MPS GA MPS

Average Median Average Median Average Median Average Median Average Median Average Median

SC 418.8 408 27.8 27 5.9 6 6.9 7 0.5 0.5 4.6 3.9

HN 2837.1 2193.5 603.4 535 25.7 23.5 63.9 56.5 1.9 1.5 232.8 79.9

F16 5887 5889 191.8 163 106.8 107.5 2.2 4 4.5 4.5 5.1 3.9

IL 10821.2 10812.2 12.7 13 95.7 97 2 2 24.3 24.2 68.6 68.7

PV 7566 4643.5 37.2 34 65.1 39.5 5.2 4.5 16.1 10.1 26.3 23.3

CO 2854.7 2807.5 20.3 19 65.2 65.5 1.2 1 2.5 2.5 1.0 0.6

GT 291.7 283 1610 2000 4.5 4.5 402 500 0.5 0.5 3847.6 4846.3

R10 2928774.5 2928511 2231 2434 4963.8 4972.5 158.5 173 1648.9 1652.4 23830.9 26043.7

FJP 3421 3752 1371 1591 37 42 234.8 291 27595.9 11766.5 12393.2 4864.5

 26

5. Summary and Remarks

This paper studies the performance of mode-pursuing sampling (MPS) method, in reference to widely

used Genetic Algorithm (GA). Based on qualitative analysis of MPS and GA and quantitative

comparisons on test problems, the following observations are made:

1. MPS can robustly and accurately identify the global optimum for a majority of test problems,

including both continuous and discrete variable problems. It meets its limitation, however, when

the number of function evaluations required for convergence is larger than a certain value that

exceeds the computer memory. From this regard, MPS is best suited for low dimensional

problems and high dimensional problems with simple functions. For high-dimensional complex or

expensive functions, large-memory computers are needed or a better memory-management

strategy needs to be developed for MPS.

2. MPS is recommended for global optimization of expensive functions. MPS is developed for

expensive functions and it therefore does not bear advantages over GA for global optimization on

inexpensive functions.

3. The difference coefficient, k, is a sensitive parameter for MPS. It is recommended to set k=0.01 if

the user has no a priori knowledge of the optimization problem.

4. Common features of MPS and GA, such as the group-based (or population-based) sampling and

selective generation of new samples may be found in other recognized global optimization

methods, e.g. simulated annealing, ant colony optimization, particle swamp optimization, etc. The

unique philosophy behind MPS, namely, the top-down exploration and discriminative sampling,

may inspire the development of future algorithms.

Future research on MPS is to enhance its capability for high dimensional problems. One possible method

is to employ a more economical metamodeling method to avoid using all of the evaluated points in model

fitting while still providing an overall guide for discriminative sampling.

References

Augugliaro, A., Dusonchet, L., and Sanseverino, E.R., 2002. An Evolutionary Parallel Tabu Search
Approach for Distribution Systems Reinforcement Planning. Advanced Engineering Informatics, 16, 205-
215.

Bouvry, P., Arbab, F., and Seredynski, F., 2000. Distributed Evolutionary Optimization in Manifold: the
Rosenbrock's Function Case Study. Information Sciences, 122, 141-159.

Branin, F.H. and Hoo, S.K., 1972. A method for finding multiple extrema of a function of n variables. In:
Lootsma, F., editor. Numerical methods for non-linear optimization. New York: Academic Press, 231-237.

 27

Cai, J., and Thierauf, G., 1996. Evolution Strategies for Solving Discrete Optimization Problems.
Advances in Engineering Software, 25, 177-183.

Corana, A., Marchesi, M., Martini, C., and Ridella, S., 1987. Minimizing Multimodal Functions of
Continuous Variables with the "Simulated Annealing" Algorithm. ACM Transactions on Mathematical
Software, 13, 262-280.

Fu, J., Fenton, R.G., and Cleghorn, W.L., 1991. A Mixed Integer Discrete-continuous Programming
Method and Its Application to Engineering Design Optimization. Engineering Optimization, 17, 263-280.

Fu, J.C., and Wang, L., 2002. A random-discretization based Monte Carlo sampling method and its
applications. Methodology and Computing in Applied Probability, 4, 5-25.

Goldberg, G., 1989, Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA:
Addison-Wesley.

Haftka, R.T., Scott, E.P., Cruz, J.R., 1998. Optimization and Experiments: A Survey. Applied Mechanics
Review, 51(7), 435-448.

Houck, C., Joines, J., and Kay, M., 1995. A Genetic Algorithm for Function Optimization: A Matlab
Implementation, Technical Report NCSU-IE-TR-95-09, North Carolina State University, Raleigh, NC.

Humphrey, D.G., and Wilson, J.R., 2000. A Revised Simplex Search Procedure for Stochastic Simulation
Response Surface Optimization. INFORMS Journal on Computing, 12(4), 272-283.

Liao, X., and Wang, G.G., 2008. Simultaneous Optimization of Fixture and Joint Positions for Non-rigid
Sheet Metal Assembly. International Journal of Advanced Manufacturing Technology, 36, 386-394.

Sharif, B., Wang, G.G., and ElMekkawy, T., 2008. Mode Pursuing Sampling Method for Discrete
Variable Optimization on Expensive Black-Box Functions. Transactions of ASME, Journal of Mechanical
Design, 130(2), 021402-1-11.

Wang, G.G., and Shan, S., 2007. Review of Metamodeling Techniques in Support of Engineering Design
Optimization. Transactions of ASME, Journal of Mechanical Design, 129(4), 370-380.

Wang, L., Shan, S., and Wang, G.G., 2004. Mode-Pursuing Sampling Method for Global Optimization on
Expensive Black-box Functions. Journal of Engineering Optimization, 36(4), 419-438.

Zaki, G.M., and Al-Turki, A.M., 2000. Optimization of Multilayer Thermal Insulation for Pipelines. Heat
Transfer Engineering, 21, 63-70.

