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Mode Pursuing Sampling Method
for Discrete Variable Optimization
on Expensive Black-Box Functions
Based on previously developed Mode Pursuing Sampling (MPS) approach for continuous
variables, a variation of MPS for discrete variable global optimization problems on
expensive black-box functions is developed in this paper. The proposed method, namely,
the discrete variable MPS (D-MPS) method, differs from its continuous variable version
not only on sampling in a discrete space, but moreover, on a novel double-sphere strat-
egy. The double-sphere strategy features two hyperspheres whose radii are dynamically
enlarged or shrunk in control of, respectively, the degree of “exploration” and “exploi-
tation” in the search of the optimum. Through testing and application to design problems,
the proposed D-MPS method demonstrates excellent efficiency and accuracy as com-
pared to the best results in literature on the test problems. The proposed method is
believed a promising global optimization strategy for expensive black-box functions with
discrete variables. The double-sphere strategy provides an original search control
mechanism and has potential to be used in other search algorithms.
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Introduction
Although most of the classic approaches of design optimization

onsider continuous variables, many practical problems deal with
iscrete or integer variables. For example, the diameters of a pipe,
hickness of a structural member, or size of a screw are discrete
esign variables since they may have to be selected from commer-
ially available or standard sizes. Also, many other design vari-
bles such as the number of bolts, number of teeth of a gear, or
umber of coils of a spring must be integers. If there is a discrete
ariable in an engineering optimization problem, it is often a
ixed discrete-continuous nonlinear programming problem

MDNLP�. Reference �1� reviewed different software tools that
re currently used for solving MDNLP. It has been agreed on that
he existence of any noncontinuous variable considerably in-
reases the difficulty of finding the optimal solution �2�. This is
ue to the fact that MDNLP combines the difficulties of both of its
ubclasses: the combinatorial nature of mixed integer programs
MIPs� and the difficulty in solving nonconvex �and even convex�
LPs with nonlinear �or even linear� constraints �3�. Reference

4� categorized the mixed continuous-discrete variable problems
nto six types depending on the type of the variables, type of the
bjective function �differentiable, nondifferentiable, combinato-
ial�, and whether or not the discrete variables can have nondis-
rete values during the solution process. This categorization is
ased on the assumption that the objective function is presented
xplicitly. In most of the engineering design problems, this is not
he case because engineers often deal with computer analysis or
imulation processes, such as finite element analysis �FEA� and
omputational fluid dynamics �CFD� processes. These computa-
ional processes are usually referred as black-box functions, which
an be nonconvex, nondifferentiable, and even discontinuous.
onsidering that only the input and output for these types of func-

ions are available, characteristics of the function, such as the
radient and Hessian matrix, can be numerically approximated,
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but they are usually unreliable �5�. Although in most of the prac-
tical engineering problems, a suboptimal or even feasible solution
is satisfactory, the global optimum is always preferred. This work
addresses the challenge of discrete variable global optimization
with expensive black-box functions such as FEA and CFD pro-
cesses.

In general, global optimization approaches can be classified
into two groups: deterministic and stochastic methods. Reference
�6� gives a review of global optimization methods for MDNLP.
Recently, metamodeling optimization techniques have been stud-
ied in the literature in support of engineering design optimization.
Reference �7� gives a review of metamodeling techniques. Some
of the deterministic, stochastic, and metamodeling methods will
be discussed below.

When the objective/constraint functions are explicitly expressed
and known, deterministic methods can be applied. These methods
include the well-known branch and bound �B&B�, sequential lin-
ear programming �SLP�, cutting plane techniques, outer approxi-
mation �OA�, Lagrange relaxation �duality� approaches, and so
on. Another group of methods are called the rounding methods
�8�, which use simple dynamic rounding-off techniques. Most of
these methods such as B&B �9� either use the closely related NLP
to reach to the main MDNLP, or rely on the successive solution of
the related mixed integer programming �MIP� such as OA �10�.

For optimization problems with nonlinear constraints, linearly
constrained Lagrangian �LCL� methods solve a sequence of sub-
problems that minimize an augmented Lagrangian function sub-
ject to linearization of constraints �11�. These deterministic ap-
proaches are based on explicitly expressed objective and
constraint functions. Thus, they are not directly applicable to
black-box functions, which is the main concern in this paper.

Some of the stochastic methods for global optimizations in-
clude the sequential random search, pure adaptive search �PAS�
�12�, and various evolutionary programming methods, such as
simulated annealing �SA� �13� and genetic algorithms �GAs� �14�.
Most of these stochastic methods do not need a priori knowledge
about the objective function, which makes them good candidates
for optimization on black-box functions. These methods, however,
usually require a large number of function evaluations, often in

the magnitude of 10,000 even for a two-variable problem, which
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akes these methods impractical in modern design involving
omputational intensive processes. For example, it is reported that
t takes Ford Motor Company about 36–160 h to execute one
rash simulation �15�. Assuming only 50 crash simulations are
eeded to solve a two-variable optimization problem, the total
omputation time would be 75 days to 11 months, which is prac-
ically unacceptable. Several sequential random searches such as
he PAS have been developed to ease the computational demand
16�. In addition, Ref. �17� introduced a Lipschitz global optimi-
ation algorithm called DIRECT for black-box functions, whose
isadvantage is its slow convergence �18�. Different modifications
f DIRECT have been proposed by Ref. �18� to solve the slow
onvergence problem and provide modifications for higher dimen-
ions. Another approach for discrete variable optimization on
lack box function is to use soft-computing based approaches
uch as neural networks �NNs� as a modeling paradigm because of
ts universal approximation property. Moreover, combining NN
ith evolutionary algorithms and genetic quantum algorithms has

lso been studied in Refs. �19,20�.
Metamodel based optimization algorithms are developed spe-

ifically for expensive black-box functions in order to reduce the
umber of function evaluations in stochastic and direct optimiza-
ion. Most of these methods are based on the idea of sampling in
he design space, building approximation models from these
ample points, and then performing optimization on the approxi-
ation function. Detailed review on research in this area can be

ound in Refs. �7,21�. Reference �7� described different metamod-
ling techniques including model approximation, problem formu-
ation, and design space exploration, which form a common sup-
ortive base for all types of optimization problems. As an
xample, Ref. �22� applied a Bayesian method to estimate a krig-
ng model, and to gradually identify points in the space to update
he model and perform the optimization. In their model, they as-
ume a continuous objective function and a correlation function
etween sample points. Wang et al. �23� developed a mode pur-
uing sampling �MPS� method, which has been successfully ap-
lied to solve many benchmark as well as engineering design
roblems with continuous variables.

This paper adapts the MPS method to the discrete domain. The
roposed method is called discrete variable MPS �D-MPS�, dis-
inguishing from the original MPS in Ref. �23�, which is referred
s continuous variable MPS �C-MPS�. Due to the discrete variable
ature, the convergence scheme of C-MPS is no longer applicable.

novel double-sphere strategy is developed to control the con-
ergence of D-MPS. In Sec. 2, MPS in its original form �23,24�
ill be presented. In Sec. 3, the basic D-MPS method will be
escribed. Section 4 is devoted to explaining D-MPS with the
ouble-sphere strategy. Parameters of the D-MPS method will
lso be discussed in Sec. 4. Section 5 will show test problems and
omparison with results from the literature. Section 6 discusses
he generalization of the double-sphere strategy, and Sec. 7 is the
onclusion.

Review of Mode Pursuing Sampling Method
The MPS method as described in Ref. �23� is referred as the

-MPS to differentiate from this work. The C-MPS algorithm
ntegrates the technique of metamodeling and a novel discrimina-
ive sampling method. It generates more sample points in the
eighborhood of the function mode �optimal� and fewer points in
ther areas as guided by a special sampling guidance function.
asically, C-MPS consists of four steps. The first step is the initial

andom sampling in which m points are generated, where m is an
rbitrary integer that usually increases as the dimension of the
roblem increases. These m points are called “expensive points”
ince their function value should be evaluated by the black-box
unction. Using the points generated in the first step, a linear

pline function is fitted:
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f̂�x� = �
i=1

m

ci�x − x�i�� �1�

where f̂�x� is an approximation of the original black-box function
f�x� with coefficients c; x�i�, i=1, . . . ,m are sample points. Then

another function is defined, g�x�=c0− f̂�x�, as the sampling guid-
ance function, where c0 is a constant. In the second step, N �usu-
ally large� number of points are randomly sampled and sorted in
the descending order of their guidance function value. These
points are called “cheap points” since their function values are
evaluated by the linear guidance function, not the black-box func-
tion. Their function values will be referred as “approximation val-
ues.” The third step is discriminative sampling of m points from
the “cheap points.” The inverse cumulative density function
�CDF� sampling method is used for discriminative sampling, in
which the CDF is constructed based on the approximation values.
Hence, the new m sample points have the tendency to concentrate

around the minimum of f̂�x�. For better convergence, a speed-up
factor is used in this step to increase the probability of sampling
better points. The fourth step involves a quadratic regression in a
subarea around the current best solution. When the approximation
in the subarea is sufficiently accurate, local optimization can be
performed in this subarea to obtain the optimum.

In short, C-MPS is an algorithm, which uses discriminative
sampling as its engine and has an intelligent mechanism to use the
information from past iterations to lead the search toward the
global optima. These mechanisms are based on the following ap-
proximations:

1. Approximation of the entire function. By fitting the meta-
model described in Eq. �1� with all the previous expensive
points, C-MPS tries to improve the metamodel �approxima-
tion� accuracy. The linear spline function is used for ap-
proximation due to its simplicity and its interpolation of ex-
isting points. Also because the metamodel is used only for
guiding the sampling in MPS, the accuracy of the meta-
model is not as critical as the cases when metamodels are
used as surrogates in optimization. Meanwhile, MPS does
not dictate the exclusive use of the linear spline; other meta-
model types can be applied in lieu of the linear spline model.

2. Approximation around the attractive subareas. Due to the
discriminative sampling, more and more points are gener-
ated around attractive regions, so the approximation accu-
racy of theses regions gradually increases.

For problems of discrete variables, the sampling and approxi-
mation will be performed only at valid discrete points. The qua-
dratic regression in a subarea is no long applicable. Therefore,
new methods are needed for optimization on expensive black-box
functions with discrete variables.

3 Development of Basic Discrete Variable Mode Pur-
suing Sampling

This section describes the basic D-MPS without the double-
sphere strategy.

3.1 Basic Discrete Variable Mode Pursuing Sampling
Algorithm. Suppose an n-dimensional black-box function, f�x�,
has to be minimized over a domain S�f�. As in most of the discrete
engineering problems, it is assumed that each variable xi has a
predefined index set Ii. Without loss of generality and with the
assumption that each set Ii has ik members, S�f�= �X1 ,X2 , . . . ,XI�
can be written, where I=	k=1

n ik and Xi is a vector of length n,
representing a point in the solution space.

Assume that f�x� is positive on S�f�. In general, if f�x� is nega-
tive for some X�S�f�, then a positive number can be always

added to f�x�, so that it becomes positive on S�f�. Note that mini-
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izing f�x� is equivalent to maximizing −f�x�. The proposed al-
orithm consists of three main tasks: generating cheap points,
pproximation, and discriminative sampling.

1. Generating cheap points. S�f� is the domain from which
cheap points will be generated. In the first step, a discrete
space SN�f��S�f� is generated consisting of N uniformly
distributed base points in S�f�. SN�f�= �X1 , . . . ,XN� consists
of the cheap points in the current iteration. This sampling is
performed in the normalized index space defined by I
=	k=1

n ik. The sample points are mapped back to its original
S�f� to find its real variable values when function evaluation
is performed. The normalization brings variables of the dif-
ferent unit and scale to the same �0 1� region. The sampling
in the index space handles variables of nonuniformly distrib-
uted valid discrete values. Such a sampling strategy is used
throughout the D-MPS method. After obtaining the sample
points, the infeasible points are deleted before proceeding to
the next step. In the proposed algorithm, the domain for
generating SN�f� is not always S�f�. The double-sphere strat-
egy, which will be introduced in Sec. 4, controls the domain
for generating cheap points.

2. Approximation. The second task is the linear spline interpo-
lation step. At the first step, m points are randomly gener-
ated. Then at each iteration, the interpolation is done based
on all the existing expensive points. All of the expensive
points form a set E�f�. Then, the linear spline function in Eq.

�1� is used to fit the points and f̂�x� is derived. Note that f�x�
is defined over a discrete set S�f�, whereas f̂�x� is continu-

ous. Therefore, there is a need to discretize f̂�x� before con-
tinuing to the next step. For all the discrete points in SN�f�,
their approximated function values are obtained as p�k�
= f̂�Xk� for k=1,2 , . . . ,N.

3. Discriminative sampling. First, all the points in SN�f� are
sorted by their approximated function values p�k�. Because
of the desire to raise the sampling probability for points of
lower function value for the purpose of minimization, g�k�
=c0− p�k� is defined as the sampling guidance function,
where c0 is a constant larger than or equal to the maximum
of p�k� to ensure that g�k� is always positive. Then, g�k� for
each point is divided by the sum of all g�k� values to gen-
erate a value analogous to a probability density. Then, these
“probability density” values are added up to generate an
analogous CDF with respect to the sorted sample points
named as G�k�. At the end, m random numbers inside the
interval �0, 1� are generated, and m new samples are selected
at which the corresponding CDF values equal to these ran-
dom numbers along the sorted sample. As a result, more
points of lower f value will be selected due to the convex
and monotonically increasing shape of CDF. All the new
samples are then added to the E�f� with their actual function
values. In the next iteration, these new sample points will be
used in addition to all existing expensive points for interpo-
lation. The next section explains the basic D-MPS algorithm
with an example.

3.2 Sampling Example for Basic Discrete Variable Mode
ursuing Sampling. For the ease of understanding, the basic
-MPS �without the double-sphere strategy� is illustrated with the
ell known six-hump camel back �SC� function, which is known
aving six local minima �11�. The mathematical expression of SC
s

fSC�x� = 4x1
2 −

21
x1

4 +
1

x1
6 + x1x2 − 4x2

2 + 4x2
4 �2�
10 3
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Although this function in its original form has two continuous
variables, we discretize the variables with “0.01” distance be-
tween each index as follows: x1 ,x2� �−2,−1.99, . . . ,2�. A contour
plot of the continuous SC function is shown in Fig. 1, where the
H2 and H5 indicate the two global optima at �−0.09, 0.71� and
�0.09, −0.71�, respectively, with fmin=−1.0316. With discretiza-
tion, the domain set S�f�= ��−2,−2� , �−1.99,−2� , . . . , �2,2�� can
be defined. The three main steps of D-MPS algorithm are de-
scribed below:

1. Generating cheap points. By assuming N=100, SN �f� is uni-
formly constructed by selecting N members of S�f�. By as-
suming m=6, X1 ,X2 , . . . ,X6 are then randomly selected
from SN�f�. These points will be added to E�f�
= ��X1 , f�X1�� , ¯ , �X6 , f�X6���. E�f� is the set for all expen-
sive points.

2. Approximation. In this step, f̂ is constructed by fitting Eq.
�1� to the m sample points.

3. Discriminative sampling. Calculate all p�k�= f̂�Xk� for k
=1,2 , . . . ,N. Then a discrete function g�k�=c0p�k� for k
=1,2 , . . . ,N is constructed for all of the members of SN�f�.
c0 is set to be the maximum of p�k� so that g�k� will be
positive. Sorting the points in SN�f� in the descending order
of the values of g�k�, the sequence of corresponding function
values of g�k� is plotted in Fig. 2�a�. Next, the g�k� /�k=1

N g�k�
will be calculated, which result in g�k� or “probability” for
each cheap point. By using the sorted SN�f�, the G�k� for Xk
will be calculated, which is the “cumulative probability den-
sity” for each point, as shown in Fig. 2�b�. Then m=6 points
are drawn with replacement according to the distribution of
G�k�. All such points form the new sample points
X7 ,X8 , . . . ,X12. These new samples will be passed to the
black-box function and receive the corresponding function
values. Accordingly, the number of function evaluation is
increased by m and the set of expensive points will be up-
dated as E�f�= ��X1 , f�X1�� , ¯ , �X12, f�X12���. Continuing
the process until convergence, the final set of sample points
are plotted in Fig. 5�a�, which are compared with the com-
plete D-MPS �with the double-sphere strategy.� The conver-
gence criterion is set to be the maximum number of
iterations.

4 Development of Complete Discrete Variable Mode
Pursuing Sampling With Double-Sphere Strategy

In C-MPS, Wang et al. �23� used quadratic fitting with a speed

Fig. 1 Contour plot of the SC function
control factor to control the convergence of MPS. For D-MPS,
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ince the optimization region is not continuous, the quadratic fit-
ing approach no longer applies. Moreover, it is more difficult to
each the exact global optimum in a discrete domain than in a
ontinuous domain, for which the optimum can be closely ap-
roached. In this paper, a novel double-sphere strategy has been
eveloped for D-MPS. To distinguish from the basic D-MPS,
-MPS with the double-sphere strategy is called the complete
-MPS.

4.1 Double-Sphere Concept. Double-sphere consists of two
yperspheres with the center on the current optimum �the best
olution, which has been found in the algorithm at the current
teration� and their radii are dynamically changing based on the
nformation from previous iterations. Sampling should be done
nside these hyperspheres. The two hyperspheres dynamically
ontrol the “exploration” and “exploitation” functions of the
earch algorithm. Description of the two hyperspheres is as fol-
ows.

4.1.1 Hypersphere S. This hypersphere with a small initial ra-
ius shrinks to a new radius Rs

*� if there is no improvement after
� iterations, where Rs is the current radius of S and � is a coef-
cient within �0, 1� for size control. If there is an improvement in

he current iteration, i.e., a better solution is found by the algo-
ithm, hypersphere S increases in size with a new radius Rs /�.

4.1.2 Hyper-Sphere B. This hypersphere starts with a large
nitial radius Rb and acts as a dual of hypersphere S. It grows to a
ew radius Rb /� if there is no improvement after n� iterations and
hrinks to Rb

*� if there is an improvement in the current iteration.
t iteration i of the double-sphere strategy, neither Rs nor Rb can
e larger than the original design space, Rb,0.

The two hyperspheres, B and S, are designed in order to
chieve the balance between exploration and exploitation in the
earch process. Exploration aims to extend the search scope, while
xploitation intensifies the search in a local area thus speeds up

ig. 2 Plot of the ranked point distributions of „a… g†k‡ and „b…
†k‡
he search. There is no definite task assignment of the two hyper-
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spheres as which controls exploration or exploitation, as one
might expect. In an iteration of the search, S could have a bigger
radius than B or vice versa, and they may even have equal radii.
In the case when the search yields marginal or no improvement,
hypersphere S shrinks for exploitation in the attractive region,
while hypersphere B enlarges for exploration of new promising
regions. On the other hand, if the search procedure is inside an
attractive region in which consecutive improvements occur, then S
tends to grow to avoid being trapped intro a local optimum, i.e.,
exploration, and B tends to shrink for exploitation. The dynamic
coupled behavior of the two hyperspheres is the core of the
double-sphere strategy, which will be further discussed in follow-
ing sections.

4.2 Discrete Variable Mode Pursuing Sampling With
Double-Sphere Strategy. In the first iteration, the initial radii for
B and S are set as Rb,0 and Rs,0, respectively, where Rb,0�Rs,0
�Rmin. Rs,0 is one of the parameters of the proposed algorithm,
which denotes the initial radius of the smaller hypersphere. Rmin is
set to be the smallest radius that encloses m discrete points in S�f�,
noting for discrete variables there are only a finite number of valid
points in a given region. Therefore, when a discrete variable space
is given, Rmin can then be determined. Rb,0 is set to be the smallest
real number that contains all the points inside the feasible region
S�f�.

Recall that the basic D-MPS is composed of three main steps,
i.e., generating cheap points, approximation, and discriminative
sampling. In the complete D-MPS, these main steps will be per-
formed on the domains provided by the double sphere. For the
objective function f�x� on domain S�f�, the double-sphere strategy
dynamically provides a domain D1�D2�S�f�; D1 is the domain
inside the smaller hypersphere, and D2 is the domain between the
smaller hypersphere and bigger hypersphere. The three main steps
of D-MPS are performed on both D1 and D2. In other words,
generating cheap points, approximation, and discriminative sam-
pling are called two times at each iteration of the algorithm.
Therefore, at each iteration, one will have m /2 new samples or
expensive points from D1, and m /2 new samples or expensive
points from D2. Although the number of expensive points from
each subset can also be dynamically changed, it is fixed in this
work for the simplicity of algorithm parameter setting. These two
groups of sample points are generated on the basis of two approxi-
mations:

• Approximation inside the smaller hypersphere �D1�. This
approximation will in general be of higher quality than the
one in the original space, since it is performed inside a
smaller hypersphere. This approximation provides rich in-
formation about the black-box function in the attractive re-
gion.

• Approximation for the space between the smaller hyper-
sphere and bigger hypersphere �D2�. This approximation re-
sults in an approximation of a solution space inside the big-
ger sphere excluding the smaller hypersphere.

The double-sphere strategy uses a Boolean input biter=0 or 1 to
indicate if the new sample point in the current iteration has a
better objective function value than the previously found opti-
mum. Steps of the sampling procedure of the complete D-MPS
algorithm are as follows. Figure 3 shows the flowchart of the
proposed method.

The following are the inputs:

• S�f�= �X1 ,X2 , . . . ,XI�: Domain or the discrete set over which
f�x� is to be minimized.

• N: Number of cheap points to be generated in each iteration.
• m: Number of expensive points or sample points to be gen-
erated in each iteration.
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• �: The coefficient for increasing/decreasing the radius of
hyperspheres.

• n�: The number of consecutive iterations to activate the
double-sphere strategy.

• Rs,0: The initial radius of hyper-sphere S.
• f�x�: The �expensive� black-box objective function.

The following are the outputs:

• The optimum X* and f�X*� from the Set E�f�, which has all
the expensive points with their function values.

• nEval: number of expensive function evaluations.

Step 1. Initialize the five parameters N, m, �, n�, and Rs,0;
efine D1, D2, and set Counter=0, where “Counter” counts the
umber of consecutive iterations at which no improvement is
ade.
Step 2. Generate a uniform distribution �in the index space� of
/2 points from D1 and D2, respectively, to form discrete space

ets SN,1�f� and SN,2�f�. Delete the infeasible points.
Step 3. Perform basic D-MPS in D1 and D2, respectively, to

enerate m /2 points from SN,1�f� and SN,2�f�, respectively. Evalu-
te the m points.

Step 4. Add the m points and their function values to E�f�;
�f�= ��X1 , f�X1�� , . . . , �Xiter*m , f�Xiter*m���, where “iter” is the
umber of iterations thus far. Find the lowest function value and
pdate Xiter

* as the best solution. If the stopping criterion is satis-
ed, i.e., the maximum number of iterations is reached, go to Step
. Otherwise, if there is an improvement, set biter=1; else biter
0.
Step 5. Double-sphere strategy.

Step 5.1. If biter=1 go to Step 5.2, else Counter=Counter+1, go
to Step 5.3.
Step 5.2:

• Move the center of both hyper spheres to the current opti-
mum

• Increase the radius of smaller hypersphere to Rs /�
•

Fig. 3 Flowchart of the proposed complete DMPS algorithm
Reduce the bigger hypersphere to �Rb
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• Check if the inequalities Rmin� =Rb and Rs� =Rb,0 holds, if
not, set them to the closest bound �Rmin or Rb,0�.

Step 5.3. If Counter�n�, go to Step 6.

If Counter=n�

If �Rs�Rmin or Rb�Rb,0�

• Reduce the smaller radius to Rs*�
• Increase the bigger radius to Rb /�
• Check for the bounds as in Step 5.2
• Set “Counter” =0

If �Rs=Rmin and Rb=Rb,0�

• Set Rb=Rmin
• Set “Counter” =0

Step 6. iter=iter+1; define D1 ,D2 based on the new radii
�Rs ,Rb�; generate a uniform distribution of N points from D1 ,D2
to form a discrete space set SN,1�f�, SN,2�f�. Delete the infeasible
points. Go to step 3.

Step 7. Report the Xiter
* , and its corresponding variable as the

global minimum. Report the number of function evaluations
nEval=iter*m.

During an optimization process, if there are consecutive im-
provements, the double-sphere method may lead to a situation at
which Rb=Rmin and Rs=Rb,0. This situation usually happens at the
beginning of the search when it is desirable to exploit regions that
lead to improvements. On the other hand, if there are no consecu-
tive improvements, Rs may reach its minimum Rmin and Rb may
reach its maximum Rb,0. This situation is called a stable state. The
stable state happens usually at last iterations of the D-MPS algo-
rithm. Figure 4 shows the variation of both radii versus the itera-
tions for the gear train test problem �to be discussed in Sec. 5�.
The stars on the horizontal line indicate the iterations when an
improvement is observed.

From Fig. 4, one can see that the search reaches the stable
condition at which Rb=Rb,0 and Rs=Rmin at Iteration 15 and con-
tinues to Iteration 37, largely due to the fact that further shrinking
S or enlarging B is not possible in these iterations. Therefore in
Step 5.3 of the complete D-MPS algorithm, a “bouncing-back”
feature is designed. That is, when the stable condition is reached �
Rb=Rb,0 and Rs=Rmin and Counter=n��, hypersphere B is forced
to be of the same radius of Rmin. As it continues with no improve-
ment, hypersphere B will enlarge gradually to Rb,0 �while S takes
Rmin� so that the entire space is searched again in a layer-by-layer

Fig. 4 Hypersphere radii over iterations
manner for potential improvements.
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4.3 Example for the Complete Discrete Variable Mode
ursuing Sampling. Consider the SC function defined in Eq. �2�

n Sec. 3.2. The parameters of D-MPS are as follows:

• The number of expensive points at each iteration, m=4.
• The number of cheap points generated at each iteration, N

=32.
• The radius of the small hypersphere, Rs,0=0.5.
• The coefficient for increasing/decreasing the radius, �=0.7.
• The number of steps for the double-sphere strategy, n�=2.

he solution space for SC function is �−2,2�2; the center for both
yperspheres S and B is �0, 0�, and Rb,0=
8. Since both variables
re discretized to an interval of size 0.01, Rmin=0.01
2 /2. The
nitial state is shown in Fig. 5�a�, where the circles show the twin
lobal optima and the cross shows the center for hyperspheres B
nd S. Hypersphere S is shown with the dotted line and hyper-
phere B is shown with the solid line.

The D-MPS algorithm runs for 30 iterations. Hyperspheres at

Fig. 5 Example for D-MPS with the
terations 2, 4, 8, and 20 are shown in Figs. 5�b�–5�f�, respec-

21402-6 / Vol. 130, FEBRUARY 2008
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tively. In the second iteration of D-MPS, as shown in Fig. 5�b�, a
new best solution improves the current optima, and the center of
both hyperspheres moves to the new optimum. In addition, the
radius of hypersphere S is increased to avoid being trapped to a
local optimum, while B is decreased for potential exploitation. In
the next iterations, the algorithm continues to find better solutions
and hypersphere B becomes smaller than S, as it can be noted
from Fig. 5�c�. From the fourth iteration to the eighth iteration, no
improvement is made. Therefore, hypersphere S starts to shrink
for exploitation around the region of current optima, while B
starts to grow to explore other regions in the search space. As a
result, S becomes smaller than B, as shown in Fig. 5�d�. At the
Iteration 20, as it is shown in Fig. 5�e�, most of the sample or
expensive points are around the mode of the function, while in the
meantime the entire solution space is explored. Figure 5�f� shows
the contour plot of the SC function with all the sample points
generated by the D-MPS algorithm.

The basic D-MPS algorithm �without the double-sphere strat-
egy� is compared with the complete D-MPS �with the double-

ble-sphere strategy for SC function
dou
sphere strategy� for the SC problem. Figure 6 shows the expensive
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oints with small circles. In both cases, 150 expensive points have
een generated. Figure 6�b� generated by the complete D-MPS
hows a concentration of points around one of the global optima,
hile no obvious pattern is observed in Fig. 6�a� for the basic
-MPS.

4.4 Analysis of Variance Study of Discrete Variable Mode
ursuing Sampling Parameters. As discussed in Sec. 4.1, there
re five parameters that have to be set for the proposed method. In
his section, the result of analysis of variance �ANOVA� study of
he parameters on the SC function will be discussed. As it can be
een from Table 1, each parameter has three different levels, and
en runs are executed for each setting. For a full factorial design,
430 runs are executed in total. Table 1 shows the different levels
or the variables. For a two-variable problem, N is taken as the
quare of the number of indices for each variable, Nd.

The total number of function evaluations needed to reach the
nown global optimum is the output factor of concern. The aver-
ge function value for every ten runs is used for the ANOVA
tudy. The ANOVA results are listed in Table 2 and the parameter

ig. 6 Result comparison between „a… the basic D-MPS and „b…
omplete D-MPS
nteractions are plotted in Fig. 7. The first column of Table 2

ournal of Mechanical Design

aded 25 Jan 2008 to 142.58.187.10. Redistribution subject to ASME
shows the source of variability with some interaction terms omit-
ted due to negligible effects. The second shows the mean squares
due to each source; the third is the F statistics, and the fourth is
the p value for the F statistics. If p is sufficiently small ��0.01�,
the associated factor has a nontrivial effect on the result.

It can be seen from Table 2 that N is not sensitive with respect
to the number of function evaluations �nEval�. The interaction
effect between N and other parameters is also negligible �see Fig.
7�. It thus suggests that N can be set to a low level to decrease the
computation cost. Parameter � is the most sensitive variable.
When � is high �i.e., little changes in radii�, the interactions be-
tween � and other parameters, especially Rs and n�, have high
influence on the number of function evaluations. This is under-
stood that when there is little change in radii of the hyperspheres,
the double-sphere strategy does not function actively and there-
fore D-MPS performs as a basic D-MPS, for which Rs and n� play
a more important role in algorithm control. Therefore, parameter
� is recommended at a low setting, e.g., 0.5. If � is too low,
however, the algorithm will be too aggressive and may converge
prematurely. From Fig. 7, Rs, n�, and m can also be chosen at a

Table 1 Variables for ANOVA study

Factor No. Levels Values

N 3 162, 322, 642

m 3 4, 8, 10
n� 3 1, 4, 8
� 3 0.5, 0.75, 0.95

Rs,0 3 0.2, 0.7, 1.4

Table 2 ANOVA results for all the parameters

Source
Mean
square F p

N 1681 0.34 0.716
m 561406 112.81 0.000
n� 1461420 293.66 0.000
� 2694001 541.34 0.000

Rs,0 1280365 257.28 0.000
m*n� 40663 8.17 0.000
m*� 79712 16.02 0.000

m*Rs,0 71000 14.27 0.000
n�

*� 241748 48.58 0.000
n�

*Rs,0 165153 33.19 0.000
�*Rs,0 571855 114.91 0.000

m*�*Rs,0 39489 7.94 0.000
n�

*�*Rs,0 67093 13.48 0.000
Fig. 7 Parameter interaction plot „mean versus nEval…
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ow level to reduce the total number of function evaluations. One
s cautioned that when parallel computation is possible and the
oal is to reduce the total computing time at the expense of more
unction evaluations, these parameters can be set at higher levels.
lthough the parameter study is based on the SC function, it helps
ne understand the influence of the parameters and their interac-
ions, and provides some guidelines for application as in the test
ases in Sec. 5.

Test of Discrete Variable Mode Pursuing Sampling
Three test problems have been solved using the proposed

-MPS algorithm. These problems are �1� discrete six-hump
amel back �SC� function �11�, �2� gear train problem �4�, and �3�
ressure vessel problem �25�. In the following, these problems
ill be discussed and D-MPS will be compared with other meth-
ds from the literature on the results. As described in Refs. �21,26�
or black-box functions, the number of function evaluations is a
ore appropriate indicator of computation efficiency than CPU

ime. Therefore, this work also uses the number of function evalu-
tions for efficiency comparison.

5.1 SC Problem. The six-hump camel back �SC� function is
efined in Eq. �2� and discussed in Sec. 3.2. The variables are
ssumed to be discretized as follows: �−2,−1.99, . . . ,1.99,2�. Pa-
ameters are set to �N ,m ,Rs,0 ,� ,n��= �256,4 ,0.2,0.5,1�. Ten
uns have been performed. Results of D-MPS are given in Table 3,
here nIter stands for the number of iterations and nEval stands

or the number of function evaluations. The known analytical op-
ima for the discretized problem are �−0.09, 0.71� and �0.09,
0.71� with the function value f*=−1.0316. From Table 3,
-MPS consistently find a close-to-optimum solution with a mod-

st number of function evaluations.

5.2 Gear Train Problem. The objective of the GT problem is
o optimize the gear ratio for the compound GT, as shown in Fig.
. The gear ratio for a reduction GT is defined as the ratio of the
ngular velocity of the output shaft to that of the input shaft �Table
�. In order to produce the desired gear ratio, the compound GT is
onstructed out of two pairs of the gear wheels, “d�a” and “b-f.”
he gear ratio itot between the input and output shafts can be
xpressed as

Table 3 Results of D-MPS on SC

un No. nIter nEval X1* X2* Y*

1 16 64 0.1 −0.72 −1.0309
2 16 64 0.11 −0.72 −1.0298
3 8 32 0.09 −0.7 −1.0303
4 12 48 −0.07 0.7 −1.0291
5 16 64 0.07 −0.7 −1.0291
6 22 88 −0.08 0.7 −1.0301
7 15 60 −0.07 0.7 −1.0291
8 19 76 0.1 −0.71 −1.0311
9 15 60 0.1 −0.7 −1.0298

10 11 44 0.08 −0.71 −1.0312
Avg. 15 60 ¯ ¯ −1.0301
Fig. 8 GT problem

21402-8 / Vol. 130, FEBRUARY 2008
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itot =
wo

wi
=

zdzb

zazf
�3�

where wo ,wi are the angular velocities of the output and input
shafts, respectively, and z denotes the number of teeth on each
gear wheel. It is desirable to produce a gear ratio as close as
possible to 1 /6.931, which is given as a standard parameter from
the designer �27�. For each gear, the number of teeth must be from
12 to 60. The design variables are denoted by a vector X
= �x1 ,x2 ,x3 ,x4�= �zd ,zb ,za ,zf�. Hence, x1, x2, x3, and x4 are the
numbers of teeth of Gears d, b, a, and f, respectively, which must
be integers. The optimization problem is expressed below with a
known optimum of zero:

min f = � 1

6.931
−

x1x2

x3x4
�2

s.t. 12 � xi � 60i = 1, . . . ,4 �4�
For the GT problem, ten runs have been executed with the

following parameter setting, m=4, N=1250, �=0.7, n�=7, and
Rs,0=0.33 �all variables are normalized to �0, 1��. The Table 5
compares the best solution of D-MPS with those from gradient-
based approaches and different evolutionary algorithms.

The methods that have been compared with D-MPS in Table 5
are as follows: mixed integer branch and bound using the sequen-
tial quadratic programming algorithm �MIBBSQP� �28�, integer-
discrete-continuous nonlinear programming algorithm �IDCN-
LPC� �29�, SA �30�, mixed-variable evolutionary programming
�MVEP� �25�, mixed-integer hybrid evolutionary algorithm �MI-
HDE� �28�. All the results from references are based on 50,000
function evaluations, as compared to 1610 needed by D-MPS.

Authors in Ref. �31� tested different ant algorithms for the GT
problem. Their results are compared to the D-MPS in Table 6.
Their results are based on an average of 30 runs with 10,000
function evaluations per run. The methods which have been com-
pared to D-MPS in Table 6 include ant system �AS�, ant colony
system �ACS�, max-min ant system �MMAS�, rank based ant sys-
tem �RBAS�, and best-worst ant system �BWAS� �31�. As can be
seen from Tables 5 and 6, D-MPS leads to better solutions than
most of the methods, while the number of function evaluations is
much lower.

5.3 Design of a Pressure Vessel. The pressure vessel problem
is to design a compressed air storage tank with a working pressure
of 3000 psi and a minimum volume of 750 ft3. The schematic of a
pressure vessel is shown in Fig. 9. The cylindrical pressure vessel
is capped at both ends by hemispherical heads. Using rolled steel
plate, the shell is to be made in two halves that are joined by two
longitudinal welds to form a cylinder. Each head is forged and

Table 4 Results of D-MPS on GT

Run No. nIter nEval
Function

value X*

1 500 2000 2.3078E−011 15 26 53 51
2 215 860 2.7009E−012 19 16 49 43
3 21 84 2.7009E−012 19 16 49 43
4 500 2000 1.8274E−008 14 16 42 37
5 500 2000 9.9216E−010 24 13 46 47
6 500 2000 1.0936E−009 17 15 57 31
7 290 1160 2.7009E−012 16 19 43 49
8 500 2000 1.3616E−009 17 14 55 30
9 500 2000 1.1661E−010 17 22 54 48
10 500 2000 2.3576E−009 15 18 39 48

Avg./
Median

Avg:
402

Avg:
1610

Median:
5.5439E−010
then welded to the shell. Let the design variables be denoted by

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t
i
s

t
s
m

w
i
d
l
x
v
e
w
�
p
i

J

Downlo
he vector X= �x1 ,x2 ,x3 ,x4�. x1 is the spherical head thickness, x2
s the shell thickness, x3 and x4 are the radius and length of the
hell, respectively.

The objective function is to reduce the combined costs of ma-
erials, forming and welding of the pressure vessel. The con-
traints are set in accordance to ASME codes. The mathematical
odel of the problem is:

min f�X� = 0.6224x1x3x4 + 1.7781x2x3
2 + 3.1661x1

2x4 + 19.84x1
2x3

s.t. g1�X� = 0.0193x3 − x1 � 0

g2�X� = 0.00954x3 − x2 � 0

g3�X� = 750 � 1728 − �x3
2x4 −

4

3
�x3

3 � 0

g4�X� = x4 − 240 � 0 �5�

here the design variables x3 and x4, are continuous and x1, x2 are
nteger multiplies of 0.0625. We consider continuous variables as
iscrete ones with 0.1 increment. All the variables are in the fol-
owing ranges: x1� �1.0,1.375� ,x2� �0.625,1.0� ,x3� �25,150� ,

4� �25,240� Table 7 shows the result of D-MPS on pressure
essel for ten runs. For this test, different parameters are set for
ach run so that the performance of D-MPS can be observed for a
ide scope of parameter settings �n�� �1,3� ,RS� �0.6,0.7� ,�
�0.5,0.6��. The best results from different methods are com-

ared with that of D-MPS for this problem, as listed in Table 8. As
t can be noted, D-MPS leads to better quality results when com-

Table 5 Performance comparison bet

Items
MIBB-SQP

�27�
IDCN-LP

�28� SA

x1 18 14
x2 22 29
x3 45 47
x4 60 59

f�X� 5.7�
10−6

4.5�
10−6

2.3
1

Gear ratio 0.1466 0.1464 0.1
Error
�%�

1.65 1.47 0.

nEval 50,000 50,000 50

Table 6 Performance comparison be

AS ACS MMA

Best
�10−12�

2358 2.71 2459

Avg.
�10−4�

6.45 5.56 107

Worst
�10−2�

1.92 1.61 148.7

nEval 104 104 104
Fig. 9 Pressure vessel

ournal of Mechanical Design
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pared with other methods. The number of function evaluations
required by D-MPS on the problem is only 400, in contrast to
50,000 in other methods shown in Table 8.

6 Generalization of Double-Sphere Strategy
In the current D-MPS algorithm for discrete variables, the dis-

crete indices are normalized into the domain �0, 1�. The normal-
ization handles problems having variables in different units and
scales. The double-sphere strategy, however, may encounter diffi-
culties when there is a significant difference in the number of
indices for different variables, even with normalization. For ex-
ample, for handling binary variables as well as continues variable
in a mixed variable problem, binary variables have only two in-
dices, while a continuous variable can be represented as a discrete
variable with infinite number of indices. In this situation, a
d-dimensional hyper sphere that is symmetrical with respect to all
d variables is no longer a good measure for providing a domain
for optimization. Therefore, a generalization of the double-sphere
strategy is needed.

In the original form of double-sphere strategy, for a discrete
d-dimensional function f with support S�f�� I1I2 , . . . , Id, where Ij

�j=1, . . . ,d� is the index set for variable xj, the hypersphere B
provides a domain at the ith iteration,

n D-MPS and other algorithms on GT

� MVEP �25� MIHDE �27� D-MPS

30 19 16
15 16 19
52 43 43
60 49 49

2.36�
10−9

2.7�
10−12

2.7�
10−12

0.1442 0.1443 0.1443
0.033 0.00047 0.00047

50,000 50,000 1610

en D-MPS and ant algorithms on GT

RBAS BWAS D-MPS

2.71 27267 2.71

45.71 321.02 5.54E−6

6.82 25.09 1.83E−6

104 104 1610

Table 7 Results of D-MPS for the pressure vessel problem

Run
No. nIter nEval

Function
Value X*

1 100 400 7197.6932 1, 0.625, 49.5, 102.8
2 100 400 7249.9739 1.0625,0.625,55,66.5
3 100 400 7140.2116 1,0.625,50.9,93.3
4 100 400 7351.9418 1.0625,0.625,52.4,81.8
5 100 400 7279.9775 1.0625,0.625,54.8,68.2
6 100 400 7178.2013 1, 0.625, 51.3, 92.2
7 100 400 7241.1644 1.0625,0.625,53.7, 72.5
8 100 400 7372.8138 1.0625,0.625,54,74.4
9 100 400 7155.836 1,0.625,51,93.2

10 100 400 7072.9156 1,0.625,51.3,89.2
Avg./

Median
¯ ¯ 7224.073/

7219.429
wee

�29

30
15
52
60
6�

0−9

442
033

,000
twe

S

70

0

7
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S1�i� = x
x � S�f�, �
j=1

d

�X�j� − Xc�j��2 � Rb,�i−1�
2 �6�

hich Xc represents the current optima �a d-dimensional vector�.
generalization of Eq. �6� would be

S2�i� = x
x � S�f�, �
j=1

d
ij

i*
�X�j� − Xc�j��2 � Rb,�i−1�

2 �7�

here i*=max�i1 , i2 , . . . , id�, and ij represents the cardinal number
f the set Ij. If there exists a continuous variable, i* can be con-
idered as the solution precision of the continuous variable. In
ther words, instead of having a hypersphere, we will have a
yperellipse. Thus, in this generalized double-sphere strategy with
q. �7�, variables’ search domain varies in proportion to the num-
er of indices of the variable. If the cardinal numbers of the set Ij
re similar, i.e., ij � i*, Eq. �7� becomes Eq. �6� and the double-
phere strategy will be performed in its original form. In cases that
ll variables are binary, D-MPS as a general method may not be as
ffective as dedicated combinatorial optimization algorithms.

Conclusion
In this paper, an algorithm for optimization on expensive black-

ox functions with discrete variables is proposed. The proposed
pproach can be considered as an extension to the MPS method
or continuous variables �23�. Moreover, this work proposes a
ovel double-sphere method that dynamically controls the two
ften contradictory “exploration” and “exploitation” behaviors of
n optimization process. The double-sphere method is found ef-
ective and efficient in improving the D-MPS algorithm. In a more
eneral sense, the double-sphere method provides an original con-
ept for any direct optimization method. Compared to the well-
nown Trust Region method, the double-sphere method provides
ore control and flexibility over a search space. It is believed that

he double-sphere concept can be applied to other search pro-
esses, or design visualization applications.

Numerical results for three test cases show that D-MPS yields
igh quality results with a modest number of function evaluations.
ecause of the double-sphere strategy and approximation only in
ontrolled domains, D-MPS has potential for high-dimensional
roblems, although this needs to be further studied. It is found in
ractice that D-MPS often finds a high quality region that contains
lobal optima in a few steps. This is due to the coupling effect of
he MPS’ discriminative sampling strategy and the double-sphere
trategy. Future research will focus on examining and developing
-MPS for high dimensional expensive black-box functions.
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