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Abstract: This paper investigates the nesting issue and the machining path 
planning issue for improving the sheet metal machining efficiency. The nesting 
issue is to maximise sheet metal material utilisation ratio by nesting parts of 
various shapes into the sheet. The path planning issue is to optimise machining 
sequence so that the total machining path distance and machining time are 
minimised. This work investigates the two issues by using Genetic Algorithms 
(GA). The proposed GA approach uses a genetic encoding scheme and a 
genetic reproduction strategy to reach an optimum solution. Case studies are 
carried out to test the GAs. The effectiveness of the GA path planning approach 
is compared with the Ant Colony (AC) algorithm (Wang and Xie, 2005).  
The results show that GA achieves better performances in path planning than 
the AC algorithm.
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1 Introduction 

In sheet metal industry, there are a lot of small- and medium-sized job shops. These 
small- and medium-sized manufacturing companies have been facing keen competitive 
pressure in the market. This pressure has forced them to make every effort to shorten 
product development lead-time, improve production efficiency, approach high-quality 
standards, but at the same time cut down the costs.  

Compound machines (Xie et al., 2001), or combined punch and laser cutting 
machines (Clark and Carbone, 1980), are developed to increase the functionality and 
efficiency of sheet metal machining. By using this compound method, the cutting process 
and punching process can be carried out sequentially or concurrently in the same CNC 
sheet metal compound machine without altering the fixtures. This compound 
manufacturing method takes the high efficiency and low cost advantages of the CNC 
punching and makes use of the high flexibility of the CNC cutting for complex contour 
cutting (Xie et al., 2001). 

Normally sheet metal products design, processes planning, and manufacturing, are 
achieved by utilising different computer-aided software tools. They normally include a 
Computer-Aided Design (CAD) system taking care of product design, a computer aided 
process planning translates design information into the process steps and instructions  
to efficiently and effectively manufacture products which includes a Computer-Aided 
Path Planning (CAPP) system responsible for generating optimal tool paths and a 
Computer-Aided Nesting (CAN) system for optimal nesting of two-dimensional parts 
with regular and complicated shapes in order to effectively improve the utilisation ratio 
of sheet metal materials, and a Computer-Aided Manufacturing (CAM) system 
generating G and M-codes for different sheet metal processing machines (Xie and Xu, 
2006).

The machining path planning and the nesting problem are both combinatorial 
optimisation problems which have been proven to have high computational complexity. 
In literature, the optimum path planning problem is traditionally addressed as the 
Travelling Salesman Problem (TSP) which has been the subject research for many 
decades (Hwang and Ahuja, 1992). The two dimensional sheet metal path planning 
problem is similar to the traditional TSP problem. It can be described as: Given a set of 
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starting and end points of the machining operations, such as cutting or punching, the 
objective is to find the shortest path of all of the points of a cutting process or a punching 
process. The distance between each pair of points is symmetric in sheet metal path 
planning optimisation.  

The nesting problem is defined as the problem of finding an efficient layout of 
products to be cut in a containing region without overlapping. Its main objective is to 
maximise the use of material. The nesting problem is characterised by the intrinsic 
difficulty of dealing with geometry, satisfaction of the no-overlapping and containment 
constraints, and complex computation. Currently, there are still lack of practical 
algorithms in industry to nest complex and multiplex parts, which impedes the realisation 
of effective automatic nesting (Xie et al., 2001).  

Though process planning tools have been used on general sheet metal cutting or 
punching machines, as well as compound machines, the optimisation of process planning 
dedicated to compound machines, based on our literature search results, is limited. This 
work addresses the process-planning problems for the compound punch-laser machine by 
using Genetic Algorithms (GAs). The GAs are developed for optimisation of both the 
cutting or punching tool path and the nesting of two-dimensional parts with regular and 
complicated shapes. This enables our future work on the efficient integration of the two 
algorithms for finding a global optimal solution for both nesting and path planning.  

2 Literature review 

The branch and bound algorithm is an insertion algorithm (Hendrix et al., 2008) which 
does a truncated search on the entire solution space. The branching generates all the 
possible solutions available and bounding limits the search by not expanding a partial 
tour, if it is already longer than the best solution. Computational experience with this 
method shows that there is a difficulty in setting the bound which will limit the search 
without compromising optimality. The Clarke-Wright saving heuristic (Albano and 
Sapuppo, 1980) is derived from a more general vehicle routing algorithm by choosing a 
point as a hub. The initial solution starts with the salesman returning after visiting every 
other point. The construction terminates when the hub is connected to only two other 
points. The best performance of this algorithm is better than that of the greedy algorithm. 

The tabu search (Cordeau et al., 2008) is based on the assumption that all locally 
optimal solutions are not good global solutions. Therefore, by minimising the randomised 
starting heuristic using a tabu list (a list close to the solution just found), a global 
optimum can be found. It is more effective than the original 2-opt and 3-opt since it only 
considers a tabu list instead of random starting points. The use of a tabu list in preference 
to the random starting heuristic restricts the algorithm which in some cases ‘misses’ the 
optimum path. 

Meeran and Shafie (1997) implemented the convex hull boundary into system for the 
given set of points as its initial sub-tour. Then a local search heuristic is applied 
successively until all the given points are included in the path. Every point is identified in 
a family hierarchy, hence the relation between each point inside the convex hull boundary 
and the convex edges can be established without a combinatorial search. 
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Considering the contours of the sheet products, the sheet metal nesting problem can 
be classified as two types: regular nesting and irregular nesting. 

Regular nesting is specifically considered the two-dimensional rectangular nesting 
problem. Lesh and Marks (2000) presented a Bottom-Left-Decreasing (BLD) algorithm 
that includes successive random perturbations of the original four decreasing orderings. 
Their experiments on both benchmark and randomly generated problems show that BLD 
substantially outperforms BLD as well as applying Bottom-Left (BL) to randomly chosen 
orderings. The Bottom-Left heuristic sorted the rectangles by decreasing width, but the 
heuristic is not competitive when sorted by decreasing height. Hopper and Turton (1999) 
solved a two-dimensional packing problem frequently encountered in the wood, glass and 
paper industry, which consists of nesting rectangular shaped parts onto a rectangular 
object while minimising the used object space. The nesting process has to ensure that 
there is no overlap between the rectangular parts, which are allowed to rotate by 90°.

Xie et al. (2007) discussed a heuristic nesting algorithm for irregular parts. They 
represented irregular shapes according to a set of non-overlapping rectangles. The system 
places each part in an orientation such that its length is larger than its height and always 
into the bottom-left most direction. The parts are then sorted by non-increasing part 
height. The shapes are packed into a rectangular scene in a raster fashion, building up 
layers of intermeshed packed shapes.  

Dori and Ben-Bassat (1984) were the first to investigate the nesting of shapes within a 
polygon rather than a rectangle. They notified the assumption that the packing plane is 
infinite. The algorithm is only applicable to the nesting of congruent convex shapes.  
The problem involves cutting a number of similar but irregular pieces from a steel board, 
this is referred to as the template-layout problem. Considering the contours of the sheet 
products, the sheet metal nesting problem can be classified as two types: regular nesting 
and irregular nesting. 

Wang and Xie (2005) addressed the process-planning problem for the combined 
punch-laser machine by integrating knowledge, quantitative analysis, and numerical 
optimisation approaches. The Ant Colony Optimisation (ACO) algorithms were 
developed in searching the optimal tool path. Experimental results showed that their 
proposed method can significantly improve the operation efficiency for the combined 
punch-laser machine.  

According to our literature review, the optimisation of process planning dedicated to 
compound laser cutting and punching machines, is still limited. The research in this area 
is now behind the fast development of the compound machines. This has significantly 
influenced the efficiency and productivity of the compound machines. This work 
attempts to develop GAs for the optimisation of sheet metal cutting and punching 
processes.

3 Genetic approach 

The products to be machined in compound machines are normally small in size.  
They also have completely shapes, sizes and are also different from one another.  
Normally, one product could need both cutting and punching operations. According to  
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our experience, for a product that requires both cutting and punching operations, the 
punching operations will be carried out first. This is due to the fact that extra fixtures are 
required if the product is cut first. This is one of the constraints that needs to be taken into 
account in process planning. 

One assumption needs to be made first before discussing the proposed GA for path 
planning, which is each product is represented by a starting point for the cutting operation 
(Xie et al., 2001) as shown in Figure 1. For punching operations, the centre point of the 
feature to be punched is used as the reference point. 

Figure 1 Reference points of different contours 

When nesting the contour of a product in computer, the contour is represented by a 
reference point and the other vertex of this contour is calculated according to the 
reference point. When manufacturing a sheet metal product, the machining tool first 
reaches the reference point of this product. Then, different machining processes are 
carried out such as auxiliary cutting path design. Figure 1 illustrates the reference point of 
three types of product contours. 

The main structure of the proposed GA for path planning is showed in Figure 2. 
Genetic integer coding scheme creates an initial population for the GA to find the 
optimum path. The generation loop records the best results found in each generation, 
while the offspring loop reproduces on each generation to generate the next generation. 
The process is terminated in two different ways.  

• Manipulated stop. The optimum requirement is reached. For example, in some cases, 
it is not necessary to have the optimist path since the computational complexity is 
proportion to the accuracy of the optimum.  

• Auto stop. The algorithm stops when it is designed to stop. For instance, if the 
optimum result is estimated to appear after around the 90th generation, then we can 
design the algorithm to stop at the 100th generation.  

The evolving process of the proposed GA contains two loops, the generation loop and 
offspring loop. The generation loop includes the offspring loop and it has a function of 
recording optimum path found in each generation and terminating GA when an ideal 
solution appears. On the other hand, offspring loop evolves the solution path in each 
generation in an improving means by using several operators, such as selection, 
crossover, mutation and replacement operators. In addition, elitism scheme copies the 
optimum solution found in each generation to the next generation population, which 
ensures GA evolving towards the optimum. 
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Figure 2 Structure of a Genetic Algorithm for path planning and nesting 

3.1 Genetic coding string 

Each product is represented by an integer number. All the numbers combined forms a 
genetic string. The genetic string contains the sequence of the product machining process. 
That is which product is manufacturing first, which is second, and so on.  

Figure 3 shows an example of representing a string of six products. The product 
numbers ‘4, 1, 6, 3, 5, 2’ are considered in the same sequence for manufacturing these 
five products. 

Figure 3 A genetic coding string for manufacturing five products 

3.2 Initial population 

The size of the population significantly influences the search space and the computational 
time needed to reach an optimal solution. According to the literature, the population size 
is considered equal to the length of the string (Hopper and Turton, 1999). 

3.3 Fitness function 

Since the objective of path planning is to find the shortest path for the machining 
operation, the fitness function equation is defined as following.  
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1/F = D1,2 + D2,3 +  + Di,i+1 +  + Dn–1,n

where Di,i+1 is the distance between the ith and (i + 1)th product to be manufactured, n is 
the total number of the products to be manufactured. 

On the other hand, the fitness function of genetic sheet metal nesting is: 

1/F = Height 

where Height is the final Height of all the nested area (we assume that the nesting 
direction is along the height). 

The fitness function for any genetic string represents the effectiveness of the string in 
manufacturing process. During the genetic evolutionary process, the strings with higher 
fitness values will survive and those with lower fitness values will be eliminated by the 
survival of fittest principle in GA. 

3.4 Genetic reproduction 

The main purpose of reproduction is to preserve the good strings in the population and try 
to generate better strings in the population. To achieve the first task in the genetic 
reproduction process, an elitism scheme is applied into the proposed GA. The elitism 
scheme passes the fittest string into the next generation without any changes. However, 
the second task is achieved by using different genetic operators. 

3.4.1 Selection 

Two selection schemes are set to generate mating pool from the previous generation but 
with different mechanism. On the other hand, Tournament methods are more objective 
than Roulette Wheel method; it chooses a small group first, and then picks up the highest 
fitness within the small group.  

In Roulette Wheel method, a real-valued interval, Sum, is determined as either the 
sum of the individuals’ expected selection probabilities or the sum of the raw fitness 
values over all the individuals in the current population. Individuals are then mapped  
one-to-one into contiguous intervals in the range [0, Sum]. The size of each individual 
interval corresponds to the fitness value of the associated individual. For example, in 
Figure 4 the circumference of the roulette wheel is the sum of all six individual’s fitness 
values. Individual five is the fittest individual and occupies the largest interval, whereas 
individuals 1 and 4 are the least fit individuals and have correspondingly smaller intervals 
within the roulette wheel. To select an individual, a random number is generated in the 
interval [0, Sum] and the individual whose segment spans the random number is selected.  

On the other hand, Tournament methods are more objective than Roulette Wheel 
method; it chooses a small group first, and then picks up the fittest string within the small 
group. It works in three steps: 

Step 1: Set a random number t as the tournament size. 

Step 2: Choose t individuals from the population. 

Step 3: Return the fittest individual of these t.
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Figure 4 Roulette wheel selection 

3.4.2 Crossover 

Two types of crossover operators are the alternatives: the Uniform Order-Based 
Crossover (UOX) and the Partially Matched Crossover (PMX). Each crossover operator 
is subjected to the probability of crossover. 

Uniform Order-based Crossover (UOX): two parent paths are selected according to 
crossover probability for crossover. UOX operator creates a mask of equal length with 
parent whose position value is ‘1’ or ‘0’ generated randomly. Starting from the first 
position on the mask, if the value is ‘1’, the two children inherit the same gene of the 
same position from the two parents respectively; while the value is ‘0’, the first child 
receives the corresponding gene from the second parent and the second child receives the 
corresponding gene from the first parent. For example, as shown in Table 1, the middle 
part of two paths is crossover by UOX, while creating new chromosome 1 and 2, the first, 
third and sixth genes are inherited form parents, chromosome 1 and 2, respectively 
without change; while the second, fourth and fifth are switched. According to the values 
of the positions in the mask, the first value of the mask is one, so the 10th gene value of 
the new path 1 is copy the 10th gene value of path 1, while 10th gene of new path 2 gets 
the 10th gene value of path 2. The second value of the mask is 0, then, the 11th gene 
value of the new path 1 is the same as the 11th gene value of path 2. 

Table 1 An example of applying Uniform Order-Based Crossover 

Position of gene 1st … 10th 11th 12th 13th 14th 15th …
Chromosome 1 1 … 16 7 22 31 10 25 …
Chromosome 1 1 … 25 31 7 16 22 10 …
Mask   1 0 1 0 0 1  
New_Chrom 1 1 … 16 31 22 7 10 25 …
New_Chrom 1 1 … 25 16 7 22 31 10 …

Partially Matched Crossover (PMX): Instead of mask, two crossover points are generated 
randomly in PMX. Firstly, PMX proceeds by position-wise exchanges between the two 
points. Then it maintains the crossed parts and transfers the rest which has the same value 
with genes in crossed parts in each chromosome into the gene lost during crossing 
operation. 
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After the gene positions are picked up for crossover, such as 11th, 13th and 14th 
genes. The PMX operator changes the values between them as first step, following a 
elimination step which checks the same genes in one chromosome and replaces them by 
missing gene during the crossover process. 

As shown in Table 2, 12th and 14th position is selected to be crossover points.  
The PMX operator processes in two steps. The integers between 12th and 14th positions 
of chromosome 1 and 2 are exchanged in the first step. In the second step, since the  
10th and 11th gene has the same integer with 13th and 12th respectively, the 10th and 
11th location is changed to the values which different to the integer value of crossing 
parts. 

Table 2 An example of applying Partially Matched Crossover 

Position of gene … 10th 11th 12th 13th 14th 15th …
Chromosome 1 … 16 7 22 31 10 25 …
Chromosome 1 … 25 31 7 16 22 10 …

   7 16 22  …
Step 1 

   22 31 10  …
New_Chrom 1 … 31 10 7 16 22 25 …
New_Chrom 1 … 25 16 22 31 10 7 …

3.4.3 Mutation 

As the crossover operation operates on two strings and changes the sequence in which the 
products are to be manufactured, the mutation operator operates on one string. Two types 
mutation operators are applied in the proposed GA. 

Flip operator: It operators within two flip sites of a chromosome. The values insides the 
sites are reordered (inversed). For example, in a path chromosome, from 10th to 15th 
genes are reversed by the Flip mutator as shown in Table 3. 

Table 3 An example of applying two mutation operators 

Position of gene 1st … 10th 11th 12th 13th 14th 15th …
Parent 1 1 … 16 7 22 31 10 25 …
Flip mutation 1 … 25 10 31 22 7 16 …
Swap mutation 1 … 16 10 22 31 7 25 …

Swap mutation: The values of two positions are switched under the Swap operator.  
Figure 4 presents the Swap mutation which exchange 11th and 14th gene value. 

4 Case study 

The case studies to be carried out are to test the feasibility of the proposed GAs for the 
two optimisation issues. The performance of the algorithms are compared with some of 
the existing algorithms developed in literature. 
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4.1 Sheet metal path planning problem 

The purpose of this case study is to apply the proposed genetic path planning algorithm to 
industrial cases and to demonstrate the performance of the proposed algorithm in sheet 
metal path planning process. Wang and Xie (2005) has proposed an ant algorithm for 
solving the path planning issue for combined sheet metal machines. The results showed 
that the ant algorithm achieved a better performance than the normally used intuitive 
method. In this research, the ant algorithm is used as a comparison for the proposed 
genetic path planning algorithm.  

Figure 5 shows an example that is selected from Wang and Xie (2005). It includes a 
batch of work pieces that is used for the case study. There are four different types of 
components to be cut or punched: 104 small holes of diameter Φ50, 31 holes of Φ60, 31 
Φ100 contouring, 22 rectangular block contours and 30 contours of clips. 

Figure 5 A batch of work piece 

There are two machining methods used in the case study: punching and cutting. 
Following on the defined cutting and punching rules in Wang and Xie (2005), the  
22 rectangular block and the 30 clips are to be cut, while the rest of the features are to be 
punched. Since there are three sizes of holes features Φ50, Φ60 and Φ100, three types of 
punch tools are used.  

The case study is to investigate which algorithm of the two gives the shortest 
cutting/punching path. The optimisation result and the time that it takes to arrive the 
solution will be compared. 

4.1.1 Genetic path planning 

A GA is developed to find the shortest machining of the example as illustrated  
in Section 2. This algorithm includes the following key modules/steps: genetic encoding, 
fitness function definition, genetic reproduction and population replacement. 
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Genetic encoding 

The coding strategy takes into consideration of the notion of a point and a path.  
For example, a point is represented as a gene in genetic coding string, which encodes to  
a positive integer. The points chosen depend on types of features. However, a path is 
comprised of this reference points and is encoded into a chromosome, which is thus 
subsequently the ordered set of integers. Following the chromosome string from left to 
right, the order of integers in a chromosome is therefore the same order of machining 
sequence.

Figure 6 illustrates the genetic path planning encoding according to the particular 
case. The name of each hole is represented as in the graph with integers from 1 to 32 as 
part identity integers. The chromosome in Figure 6 lists the possible machining sequence 
before an optimisation is carried out. Each feature in the chromosome is represented as a 
gene. The genes are represented by 32 integers. Furthermore, the location of an integer in 
a chromosome string indicates the sequence of the machining operation. For instance, 
part of this chromosome is defined as a middle path for explanation, 16, 7, 22, 31, 10  
and 25. Integer 16 places at the position of 10th gene, which means feature 16 is the 10th 
feature to be machined in terms of this path chromosome. In a similar manner, feature 
seven is the 11th feature to be machined, then feature 22, 31 and 10. Feature 25 thus is 
the last one to be machined.  

Figure 6 Genetic integer encoding scheme of path planning (see online version for colours) 

Fitness function

According to the fitness equation defined in Section 2, the chromosome illustrated before, 
the fitness function of the middle parts is calculated as an example.  

f(x) = 1/(d16,7 + d7,22 + d22,31 + d31,10 + d10,25)

where, d16,7 is the distance between feature 16 and 7. 
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Genetic reproduction 

Several genetic operators are set up for reproduction. As selection methods, roulette 
wheel selection and tournament selection are alternatives. PMX and uniform crossover 
with high crossover probability are two options for genetic crossover. Two points swap 
mutation and flip mutation operators are designed for avoiding early convergence in the 
proposed GA. 

4.1.2 Experimental results and discussion 

Φ60

punching path optimisation. Figure 7 shows an optimal path (solid line) found by the GA, 
while the ant algorithm gives another different path as shown in the dotted line.  

Figure 7 Optimum paths found by the Genetic Algorithm and the Ant Algorithm (see online 
version for colours) 

The GA used elite of one individual, 81individuals in mating pool initially, a crossover 
probability of 0.8 and a mutation rate of 0.1.  

Table 4 shows a comparison of the two machining routes generated by the ant 
algorithm and the proposed GA. The total lengths of the two machining routes are 
calculated. It can be found that the genetic algorithm produces a better search result. 
Figure 8 shows the path generated by the genetic algorithm. The algorithm is able to find 
a machining path that is 169 mm shorter than using the Ant Colony (AC) algorithm.  
The computational time is also shorter than the AC algorithm. In the experiment, the GA 
runs ten times with 500 loops. The results are recorded together with the AC algorithm as 
shown in Table 5. 

As shown in Table 5, the average performance of the proposed GA is much better 
than the Ant Colony algorithm. Though both algorithms are evolutionary algorithms, the 
GA is superior to the AC algorithm with regard to time in this path planning. This is 
important especially when the optimisation problem becomes more complex. 



      

      

      

   32 S.Q. Xie et al.    

      

      

      

      

Table 4 Performance comparison between the Genetic Algorithm and the Ant Colony 
algorithm

Φ60 punching 
Time (s) Path length (mm)

Genetic Algorithm 15.51 3546 
Ant Colony algorithm 23 3715 

Figure 8 Optimum paths of punching and cutting machining process generated by ant algorithm 
and Genetic Algorithm (see online version for colours) 

Table 5 Optimum punching path results by both Genetic Algorithm (GA) and Ant Colony 
(AC) algorithm

Time (s) 22.89 22.87 22.83 22.73 22.66 22.72 22.83 23 22.89 23 AC
L (mm) 3611 3674 3542 3993 3827 3545 3611 3591 3452 3715 
Time (s) 16.14 15.95 15.89 15.75 16.15 15.95 15.78 15.67 15.92 15.51 GA
L (mm) 3499 3477 3540 3545 3560 3542 3568 3499 3495 3546 

Genetic parameter investigation 

An ideal choice of the genetic parameters guarantees a better exploration of the solution 
space and a quicker convergence towards the optimal solution. A good balance between 
crossovers and mutations is needed. Crossover allows the exploration of a wider 
neighbourhood of solutions, while mutation allows the diversification of the population. 
Similarly, a good trade-off between the size of the population and the number of 
generations is necessary to guarantee good quality solutions in short run times.  

In this case study, there are in total 32 parts to be punched. The optimisation of the 
path of which a punch tool travels involves a large number of combinations. The results 
of different combinations of crossover and mutation operators, crossover possibility and 
mutation possibility, generation loops are listed in Appendix. The results indicate the 
combination of a PMX with crossover possibility of 0.9, a flip mutation with mutation 
possibility of 0.1 and initial population size of 61 yields the optimum path at around 
20,000th generation. 
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Cutting path optimisation. The encoding scheme and genetic operators are set up as the 
same as punching path optimisation, but this GA has a large size of the initial population, 
151, since large problem size. Table 6 presents different numbers of generations (loops) 
and population size are tested and summarised.  

Table 6 Optimum cutting path results by both Ant Colony algorithm and Genetic Algorithm 

Ant Colony algorithm Loops = 60 Loops = 80 Loops = 100 Loops = 120 
Time (s) 156.547 227.422 286.094 396.047 
Length (mm) 9663.64 9716.586 9501.618 9492.532 
Genetic Algorithm Pop = 81,  

Loops = 3000 
Pop = 81,

Loops = 5000 
Pop = 151,

Loops = 3000 
Pop = 151,

Loops = 2000 
Time (s) 216.844 544.688 197.016 288.016 
Length (mm) 8914.5 8225.5 8637.7 8278.4 

From Table 6, the proposed GA has better results than the ant algorithm no matter in time 
or quality. 

Paths integration 

It is time to consider the punching and cutting machining process at the same time, since 
in real manufacturing settings the two processes are operated sequentially. Starting point 
is the same in two algorithms to make comparison accurately. The optimum paths are 
plotted in the same graph below. 

The total distance of cutting process using two algorithms are shows in Table 7. 

Table 7 Optimum paths results of punching and cutting 

Cutting optimisation Time (s) Path length (mm)

Genetic Algorithm 321.234 7911.7 
Ant Colony algorithm – 9348-212.64 = 9135.36 

212.64 mm is the distance between last second point (1856, 110) and end point
(2060, 50). The end point means the machining header’s finial position after whole 
manufacturing process. 

It is undeniable that a significant improvement is achieved by using the GA. A total 
machining path of 1223.66 mm is shortened in this example. This is due to the constraint 
on the Ant algorithm that the path has to finish at (2060, 50). The GA shows time 
advantage as well. By running the ant algorithm ten times, the results are contrast to the 
GA result. During the investigation of both algorithms, the GA finds optimum quickly 
while ant algorithm improves smoothly with the time. 

Results presented of case study carried out in the preceding section suggest that the 
proposed GA could be an effective optimisation methodology. GA has been proved its 
performance in sheet metal path planning optimisation problem.  
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4.2 Sheet metal nesting 

The difference between the sheet metal path planning and nesting is the fitness function. 
A bottom left heuristic algorithm is applied in sheet metal nesting fitness function.  
We only concern the rectangular sheet metal nesting problem in this paper. 

The case study is carried out in a six rectangular with various sizes nesting problem. 
The genetic coded nesting string contains only integers which is a sequence of parts 
coding identification. A typical string is formulated as shown in Table 8. 

Table 8 A string coded by Genetic Algorithm and dimensions of the nesting parts 

5 4 1 2 3 6 

15 × 25 20 × 10 10 × 30 15 × 35 25 × 20 20 × 10 

In this particular string, the six elements represent the six nesting parts. In view of the 
complexity in the optimal placement of nesting parts, the present approach considers  
the nesting parts in a sequential manner. The No. 5 part of size 15 × 25 is first placed in 
the heuristic algorithm, and then No. 4 part is placed second. Following the sequence, the 
No. 6 part is the last to be nested into the sheet. 

The heuristic algorithm considers each rectangular part in the same order that appears 
in the string for generating a nested pattern. For nesting any particular parts, these parts 
are arranged from the bottom left position of the sheet. It is ensured that the part does not 
overlap with the previous parts or cross the boundary of the sheet. After placing each part 
on the sheet, new positions for the next part to be placed are identified. The positioning of 
part on the sheet is based on a two dimensional translation. For translating the part to any 
node, the bottom-left corner of the part, chosen as reference point, is coincided with that 
node. The following procedure is adopted for the generation of a placement of the coding 
string shown in Table 8. 

Step 1: The first rectangular part in the sequence, i.e., the fifth rectangular part 
(15 × 25 mm), is translated to the bottom-left corner of the first rectangular sheet in the 
sequence, i.e., the third sheet, in such a way that the first dimension (15 mm) is 
positioned along the x-axis and the second dimension (25 mm) along the y-axis. After 
translating this part, positions, e.g., left-top corner and right-bottom corner of the part are 
obtained for positioning the next part. These two nodes are represented as nodes 1 and 2 
in Figure 9. 

Step 2. The next part in the sequence is the second part (20 × 10 mm), which is translated 
to node two since this particular node is located at the bottom-left position on the 
remaining sheet. This part is positioned by 20 mm side along the x-axis and the 10 mm 
side parallel to the y-axis, as shown in Figure 9. Nodes 3 and 4 are identified as new 
nodes for translating the next part on the sheet. In a similar placing manner, the first and 
second parts are also nested, and nodes 5–8 are identified as the new nodes for arranging 
the next part. Nodes 5 and 7 are obtained by projecting the top horizontal edges of the 
parts 1 and 7 onto the vertical edge of the sheet. 

Step 3: The next part in the string sequence is No. 3. It is translated to the first node 
where the part does not overlap with those that are already nested and ensures the 
bottom-left-most position. After translating the part, nodes 9–12 are identified as new 
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nodes. Node ten is obtained by projecting the right vertical edge of the fifth part onto the 
top horizontal edge of the second part. Nodes 11 and 12 are projections of horizontal 
edges of part 1 and 7 on the right vertical edge of part 3. In a similar way, the next and 
the last part in the sequence, is translated to the third node. Node 14 is obtained by 
projecting the right vertical edge of part 5 onto the top horizontal edge of part 3. 

With the bottom left heuristic, the case of above reaches a material utilisation ratio of 
75% using the proposed genetic nesting approach. 

Figure 9 A heuristic placement considering the coding string: 5 4 1 2 3 6 

4.3 Discussion 

The case studies show that the proposed GAs are able to provide good solutions for sheet 
metal machining problems. It has been shown that the GA is able to produce comparable 
results than the AC algorithm that was originally developed in our research group.  
The experimental results of the proposed GA show that the algorithm is able to find 
efficient machining path. This is achieved by designing effective genetic operators, which 
can improve algorithm performance towards optimum.  

A genetic nesting algorithm is also proposed for solving a rectangular nesting 
problem. However, this area requires further work to accommodate the nesting of parts 
with irregular shapes (Xie and Xu, 2006), which is more often encountered in sheet metal 
manufacturing process. The problem will be more complex as the shape of parts becomes 
more complicated. Future study is to be carried out to explore how a GA can be 
developed for this nesting issue. AC algorithm will be also an alterative methodology for 
the nesting of irregular parts. 

Moreover, it is well known that the sheet metal path planning process is conducted 
after a computer aided nesting process, which generates a compact layout based on 
minimising the wastage of the sheet materials. However, this does not take consideration 
of the efficiency of manufacturing process. It is better to put the products, which have the 
same operation type, together from the operation efficiency point of view. Future study 
on the global optimisation of both path planning and nesting integration is a valuable 
research topic. 
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5 Conclusion 

A new search methodology based on evolutionary process is introduced and studied in 
this work and its application to the solution of a classical optimisation problem in sheet 
metal manufacturing industry, sheet metal machining path planning and sheet metal 
nesting issues.  

This research investigates the optimal process planning issues in sheet metal product 
development. GAs are proposed and developed for the sheet metal path planning issue 
and nesting issue. Case studies are carried out to demonstrate the performance of the 
proposed algorithms on the path planning optimisation issues. 

For the sheet metal path planning optimisation problem, the proposed GAs are tested 
in a sheet metal industrial case against the AC algorithm. The proposed GAs are 
programmed in Matlab. The experimental results are compared with the results from  
the AC algorithm. The performance of the proposed GA shows better performance than 
the AC algorithm. 
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Appendix: Experimental results of investigation genetic parameters 

PMX Partially Matched Crossover 
UOX Uniform Order-Based Crossover 
SWAP Swap two random positions in a single route 
FLIP Flip function to rearrange the order in single route 
Loop Generations 
Pc Possibility of crossover 
Pm Possibility of mutation 
Popsize Initial population pool size 
PMX CROSSOVER + SWAP MUTATION, FLIP MUTATION 
Loop = 10,000; Pc = 0.9; Pm = 0.05 – 0.1; 
Popsize = 31; Parts = 32. Distance = 4.0384e+003 
Loop = 5000; Pc = 0.8; Pm = 0.1;
Popsize = 51; Parts = 32. Distance = 3.8703e+003 
Loop = 10,000; Pc = 0.9; Pm = 0.05 – 0.1; 
Popsize = 31; Parts = 32. Distance = 3.8730e+003 
Loop = 5000; Pc = 0.8; Pm = 0.1;
Popsize = 81; Parts = 32. Distance = 3.6694e+003 
Loop = 5000; Pc = 0.8; Pm = 0.1;
Popsize = 81; Parts = 32. Distance = 3.8623e+003 
Loop = 5000; Pc = 0.8; Pm = 0.1;
Popsize = 81; Parts = 32. Distance = 3.9582e+003 
PMX CROSSOVER + SWAP MUTATION Loop = 5000 
Loop = 2000; Pc = 0.9; Pm = 0.05; 
Popsize = 61; Parts = 32.
Distance = 5.3182e+003 
UOX CROSSOVER + SWAP MUTATION 
Loop = 3000; Pc = 0.9; Pm = 0.1; 
Popsize = 61; Parts = 32. Distance = 3.7232e+003 
PMX + FLIP MUTATION 
Loop = 2000; Pc = 0.7; Pm = 0.15;
Popsize = 61; Parts = 32.

Distance = 6.8509e+003 

PMX + SWAP MUTATION 

Loop = 2000; Pc = 0.7; Pm = 0.15;

Popsize = 61; Parts = 32.

Distance = 6.2296e+003 

PMX CROSSOVER + FLIP MUTATION 
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Appendix: Experimental results of investigation genetic parameters 
(continued)

Loop = 5000; Pc = 0.9; Pm = 0.1; 

Popsize = 61; Parts = 32. Distance = 3.5682e+003 

PMX CROSSOVER + FLIP MUTATION 

Loop = 20000; Pc = 0.9; Pm = 0.1; 

Popsize = 61; Parts = 32. Distance = 3.5227e+003


